Auteur: Maria José Linders, Reinoud Segers, Manon van Middelkoop, Sander Brummelkamp, Krista Keller, Glenn Muller, Sara Houweling
Hernieuwbare Energie in Nederland 2020

7. Buitenluchtwarmte

Warmte uit de buitenlucht kan gebruikt worden om gebouwen te verwarmen met een warmtepomp. Het principe is hetzelfde als bij warmtepompen die gebruik maken van bodemenergie. Een belangrijk verschil is dat de gebruikte bodemwarmte gemiddeld een hogere temperatuur heeft dan de buitenlucht. Daardoor is het verschil tussen de temperatuur van de warmtebron en het afgiftesysteem hoger en heeft een warmtepomp op buitenlucht relatief meer elektriciteit (of gas) nodig dan een warmtepomp op bodemwarmte. Daar staat tegenover dat de aanleg van een systeem voor het benutten van de bodemwarmte een stuk duurder is dan een aanzuigpomp voor de buitenlucht. Buitenluchtwarmte is goed voor 4 procent van het eindverbruik van hernieuwbare energie in 2020.

Ontwikkelingen

Het gebruik van buitenluchtwarmte met warmtepompen groeit gestaag. De laatste jaren is de populariteit van dit type warmtepomp zelfs flink gestegen. In 2020 werden 230 duizend installaties geplaatst met een totaal vermogen van 1 350 megawatt. Het jaar daarvoor waren dit 154 duizend installaties met 990 megawatt aan vermogen. De groei van 2020 zit vooral in de afzet van warmtepompen gekoppeld aan luchtverwarmingssystemen. Veel van deze warmtepompen, in het bijzonder die geïnstalleerd zijn in woningen (150 duizend stuks), hebben een kleine capaciteit en zullen relatief vaak uitsluitend voor koeling gebruikt worden. 
Daarnaast neemt ook het aantal warmtepompen gekoppeld aan verwarmingssystemen op basis van water sterk toe. Het gaat dan ook vooral om installaties in woningen.

Warmtepompen met gebruik van buitenluchtwarmte kunnen relatief goedkoop geïnstalleerd worden in een nieuw gebouw en de toegenomen bouw van woningen en kantoren zal dan ook aan de stijging van de afzet hebben bijgedragen. Daarbij speelt ook dat de steeds strengere energienormen in de nieuwbouw en het vervallen van de aansluitplicht op het gasnet voor nieuwe woningen per 1 juli 2018 een extra aanzet zullen geven om warmtepompen te installeren. 

Daarnaast heeft de ISDE-regeling een impuls gegeven voor de afzet van warmtepompen. Uit een analyse van ontvangen RVO-databestanden met gegevens over aanvragen voor ISDE-subsidie blijkt dat in 2018 voor 110 megawatt aan warmtepompen met buitenlucht met ISDE is geplaatst, in 2019 was dit 150 megawatt en 2020 120 megawatt. Het ging dan in alle gevallen om warmtepompen met water als afgiftesysteem, want voor warmtepompen met lucht als afgiftesysteem geldt geen subsidie. In tegenstelling tot bij warmtepompen op bodemwarmte (zie paragraaf 6.2) worden ISDE warmtepompen op buitenluchtwarmte voor het grootste deel in bestaande gebouwen geplaatst. Ongeveer de helft van de ISDE warmtepompen met buitenluchtwarmte werd bij woningen geplaatst in 2020.

De benutting van de buitenlucht voor verwarming met verwarmingssystemen op basis van lucht gebeurt van oudsher vooral in kantoorgebouwen. Het gaat dan vaak om omkeerbare warmtepompen. Dat zijn warmtepompen die in de zomer kunnen worden gebruikt als airco om te koelen, en in de winter om te verwarmen. De meerkosten van koelmachines die niet alleen kunnen koelen maar ook kunnen verwarmen zijn beperkt. Daardoor worden de omkeerbare warmtepompen vaak verkocht zonder veel subsidie. Wel is het mogelijk om voor efficiënte omkeerbare warmtepompen een korting te krijgen op de belasting via de Energie-investeringsaftrekregeling (EIA).
De laatste jaren zijn er veel lucht-lucht systemen bij woningen geplaatst. Over de wijze van functioneren van deze systemen is weinig bekend, maar het zou kunnen dat deze apparaten primair voor koeling zijn aangeschaft en heel weinig voor verwarming worden gebruikt. 

Opvallend is dat de vermeden emissies van CO2 voor warmtepompen op buitenlucht tot en met 2017 vaak negatief zijn, maar dat het vermeden verbruik van fossiele primaire energie positief is. De verklaring hiervoor is dat de besparing van deze warmtepompen afhangt van het verschil tussen het uitgespaarde aardgasverbruik en de daaraan gerelateerde emissies enerzijds (aardgasketel) en het extra verbruik van elektriciteit en de daaraan gerelateerde primaire energie en emissies anderzijds (warmtepomp). Elektriciteitsopwekking heeft volgens de huidige referenties een hogere CO2-emissie per eenheid verbruikte energie dan warmteopwekking in een aardgasketel. De laatste tijd neemt de bijdrage van steenkool aan de elektriciteitsproductie in Nederland af, daardoor wordt de referentie elektriciteitsproductie minder CO2-intensief en neemt de berekende CO2 besparing van de warmtepompen met gebruik van buitenluchtwarmte weer toe tot ongeveer 100 kton.

Overigens is het belangrijk om te weten dat zowel het vermeden verbruik van primaire energie als de vermeden emissies van CO2 sterk afhangen van de energieprestatiefactor van de warmtepompen. Deze waarde voor deze factor is overgenomen van een richtsnoer van de Europese Commissie (zie RVO.nl en CBS, 2015), maar feitelijk is nog erg weinig bekend over de prestaties van warmtepompen op buitenlucht in de praktijk.

7.0.1 Buitenluchtwarmte
Onttrekking van warmte uit buitenlucht (TJ)Bruto eindverbruik (TJ)Vermeden verbruik van fossiele primaire energie (TJ)Vermeden emissie CO2 (kton)
Totaal2000 23 23 3 0
Totaal2005 81 81 12- 1
Totaal2010 536 536 133- 1
Totaal20152 0192 019 439- 39
Totaal20184 6684 6681 598 1
Totaal20196 1686 1682 370 74
Totaal2020**7 9997 9993 063 95
Utiliteitsgebouwen20182 6952 695 925 1
Utiliteitsgebouwen20193 2493 2491 251 39
Utiliteitsgebouwen2020**3 8613 8611 483 46
Woningen20181 9721 972 673 0
Woningen20192 9192 9191 119 35
Woningen2020**4 1394 1391 580 49
Bron: CBS.
**Nader voorlopige cijfers

Bijlage 6: Warmtepompen met gebruik van buitenluchtwarmte is beschikbaar in de bijlage.

Methode

In de EU-Richtlijn voor hernieuwbare energie wordt buitenluchtwarmte aerothermische warmte genoemd.
De statistische methode voor de buitenluchtwarmte is dezelfde als voor bodemenergie die benut wordt met warmtepompen. Via gegevens over de afzet en een aanname over de levensduur wordt het opgesteld vermogen bepaald. Daaruit worden vervolgens de relevante energiestromen bepaald op basis van kengetallen.

Verkoopgegevens van de warmtepompen zijn verzameld in samenwerking met de branchevereniging. De Vereniging Warmtepompen (voorheen DHPA Dutch Heat Pump Association en daarvoor Stichting Warmtepompen) heeft de verkoopgegevens van de leden geleverd. Het CBS heeft zelf de leveranciers geënquêteerd die geen lid zijn van de branchevereniging. In het verleden is voor de warmtepompen door het CBS en de Stichting Warmtepompen een andere indeling gehanteerd die geen onderscheid maakte naar warmtebron (bodemwarmte of buitenluchtwarmte). Het CBS heeft de oude indeling herleid tot de nieuwe indeling. Daarbij is gebruik gemaakt van enkele aannames en van gegevens uit 2007 en 2008 waarin data zijn verzameld volgens zowel de oude als de nieuwe indeling.

Omkeerbare warmtepompen worden regelmatig alleen gebruikt voor koeling, als gewone airco, samen met bijvoorbeeld een gewone verwarmingsketel die de gehele of een gedeelte van de warmtevoorziening regelt. Voor leveranciers van warmtepompen is het erg lastig om in te schatten welk deel van de omkeerbare warmtepompen daadwerkelijk wordt ingezet voor verwarming. Als gevolg van de onzekerheid in het daadwerkelijk gebruik van omkeerbare warmtepompen voor verwarming is het kengetal voor omrekening van het vermogen in de warmteproductie uit het Protocol Monitoring Hernieuwbare Energie onzeker. Om deze onzekerheid te reduceren is er onderzoek verricht onder de installateurs van de omkeerbare warmtepompen. Zij zitten dichter op de projecten dan de leveranciers en hebben dus beter zicht op het gebruik van omkeerbare warmtepompen voor verwarming. Segers en Busker (2015) beschrijven de uitkomsten van dit onderzoek en de aanvullende aannames die nodig zijn om de resultaten uit het onderzoek te benutten. 

Volgens de EU Richtlijn Hernieuwbare Energie mogen warmtepompen alleen meetellen als ze de energieprestatie (warmteproductie gedeeld door elektriciteitsverbruik) groter is dan een bepaalde norm. Vooral bij (oude) warmtepompen op buitenlucht is het onzeker of ze voldoen aan deze norm. In de Richtsnoer voor de rekenmethodiek voor warmtepompen (Europese Commissie, 2013) is vervolgens bepaald dat lidstaten zelf een expertschatting mogen maken voor het deel van de warmtepompen dat voldoet aan deze norm. Deze expertschatting hebben Segers en Busker (2015) verdisconteerd in de rekenfactor voor de omrekening van het vermogen naar de warmteproductie.

Het onderzoek onder de installateurs was helaas te laat om mee te worden genomen in de meest recente update van het Protocol Monitoring Hernieuwbare Energie. Voor de kengetallen waarmee de vermogens worden omgerekend naar warmteproductie, onttrekking van hernieuwbare energie, eigen energieverbruik en vermeden verbruik van fossiele energie en vermeden emissies van CO2 is daarom gebruik gemaakt van het Protocol aangevuld met de nieuwe informatie uit Segers en Busker (2015). 

Het onderzoek van Segers en Busker (2015) omvat data over schattingen van installateurs over in 2014 geplaatste systemen. Over de oude en nieuwere systemen is weinig bekend. Daarnaast zijn er geen goede representatieve data over de energieprestatie van de warmtepompen in de praktijk, waardoor het onduidelijk is welk deel van de aerothermische warmtepompen voldoet aan de ondergrens voor de energieprestatie uit de EU-Richtlijn Hernieuwbare Energie. Daarom blijft het eindverbruik van de aerothermische warmtepompen onzeker.
Het CBS schat de onnauwkeurigheid voor de hernieuwbare energie uit buitenluchtwarmte op 40 procent.