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Non-probability samples provide a challenging source of information for official statistics, 
because the data generating mechanism is unknown. Making inference from such samples 
therefore requires a novel approach compared with the classic approach of survey sampling. 
Design-based inference is a powerful technique for random samples obtained via a known 
survey design, but cannot legitimately be applied to non-probability samples such as big data 
and voluntary opt-in panels. We propose a framework for such non-probability samples based 
on predictive inference. Three classes of methods are discussed. Pseudo-design-based methods 
are the simplest and apply traditional design-based estimation despite the absence of a survey 
design; model-based methods specify an explicit model and use that for prediction; algorithmic 
methods from the field of machine learning produce predictions in a non-linear fashion through 
computational techniques. We conduct a simulation study with a real-world data set containing 
annual mileages driven by cars for which a number of auxiliary characteristics are known. A 
number of data generating mechanisms are simulated, and—in absence of a survey design—a 
range of methods for inference are applied and compared to the known population values. The 
first main conclusion from the simulation study is that unbiased inference from a selective non-
probability sample is possible, but access to the variables explaining the selection mechanism 
underlying the data generating process is crucial. Second, exclusively relying on familiar pseudo-
design-based methods is often too limited. Model-based and algorithmic methods of inference 
are more powerful in situations where data are highly selective. Thus, when considering the use 
of big data or other non-probability samples for official statistics, the statistician must attempt 
to obtain auxiliary variables or features that could explain the data generating mechanism, and 
in addition must consider the use of a wider variety of methods for predictive inference than 
those in typical use at statistical agencies today.     
 
Keywords: big data; pseudo-design-based estimation; predictive modelling; algorithmic 
inference   
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1. Introduction 
With the emergence of big data as a potential source of official statistics, there is increased 

attention for estimation procedures for non-probability samples. Big data are sometimes 

referred to as found data, reflecting that they happen to be available but were not originally 

intended for statistical purposes. Big data sources typically describe large subgroups in great 

detail, making them potentially interesting for small area estimation with high precision. Unlike 

administrative registers, however, big data sources typically do not cover the entire population, 

making unbiased estimation of population parameters precarious. The data generating 

mechanism is often unknown and is generally very different from random sampling. 

Examples of big data sources that have been discussed in the literature include internet search 

behavior (Ginsberg et al. 2009), social media and mobile phone metadata (Daas et al. 2015). 

While the data sets in these examples are large, they are generated by a subset only of the 

entire population. The examples mentioned concern respectively users of the Google search 

engine, active Twitter users and mobile phone users. None of these groups coincide with a 

population of interest to official statistics. Such data sets are said to be selective and can lead to 

biased estimates when basing inference on them (Buelens et al. 2014). An additional problem 

may be conceptual differences between quantities measured in big data sets and variables of 

interest to the statistician. We do not address such measurement bias here, and concentrate on 

selection bias specifically. 

In the present article predictive inference methods are investigated as a technique of removing 

non-random selection bias. Three classes of predictive methods are considered: pseudo-design-

based methods, which proceed as if the data set was generated through random sampling; 

model-based methods, which formulate explicitly some statistical model; and algorithmic 

methods, which are popular in data-mining and machine-learning communities. 

A simulation study is conducted based on real data from the Online Kilometer Registration 

(OKR) system in the Netherlands. Various non-probability data selection scenarios are 

implemented, and the performance of the predictive inference methods is assessed by 

comparing the estimation results to the—in this case—known population totals.  

The main risk of basing inference on selective big data sources is biased estimates. The extent to 

which predictive methods can correct such bias is crucially dependent on the availability of 

auxiliary variables that can be used as auxiliary data in the models and algorithms. The 

algorithmic approaches are more flexible than the pseudo-design-based and traditional model-

based methods and should be considered in real world settings, in particular when the relations 

between auxiliary and target variables are complex and non-linear. In certain situations 

however equally good results can be obtained through pseudo-design-based methods. 

Section 2 covers a brief history of inference in official statistics and the emergence of models in 

the last decades. Methods of predictive inference used in the presented study are presented in 

section 3. Section 4 discusses the simulation setup and the OKR data source. The main results 

are shown in section 5, with additional results in the supplement. Section 6 draws final 

conclusions. 
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2. History  
National statistical institutes are mandated by law to publish statistical information about 

economic and social developments of a society. This information is generally referred to as 

official statistics and it is often defined as totals, means or proportions at the national level as 

well as breakdowns in various subpopulations. The finite population values for these variables 

are unknown. Until the beginning of the twentieth century this kind of information was 

obtained by a complete census of the target population. The concept of random probability 

sampling has been developed, mainly on the basis of the work of Bowley (1926), Neyman (1934) 

and Hansen and Hurwitz (1943) as a method of obtaining valid estimators for finite population 

parameters based on a modest but representative sample, rather than on a complete census.  

National statistical institutes traditionally use probability sampling in combination with design-

based or model-assisted inference for the production of official statistics. This refers to 

estimation procedures that are predominantly based on the randomization distribution of the 

sampling design. This means that statistical properties of the estimator, like expectation and 

variance, are derived under the concept of repeatedly drawing samples from a finite population 

according to the sample design while keeping all other parameters fixed. Statistical modelling of 

the observations obtained in the survey does not play any role so far. Under this approach, an 

estimator of unknown population totals is obtained as the sum over the observations in the 

sample, expanded with the so called design weights. These weights are constructed such that 

the sum over the weighted observations is a design-unbiased estimate of the unknown 

population total and are obtained as the inverse of the probability that a sampling unit is 

included in the sample. In sampling theory this is a well-known estimator and is called the 

Horvitz-Thompson estimator, Narain (1951), and Horvitz and Thompson (1952). 

National statistical institutes often have auxiliary information about the target population from 

external sources. The precision of the Horvitz-Thompson estimator can be improved by taking 

advantage of this auxiliary information. One way is to improve the efficiency of the sampling 

design, for example through stratified sampling with optimal allocation or sampling with 

unequal inclusion probabilities proportional to the size of the target variable. Another way is to 

use this auxiliary information in the estimation procedure via the so called general regression 

estimator proposed by Särndal et al. (1992) or calibration estimators (Deville and Särndal 1992). 

These estimators adjust the design-weight of the HT estimator such that the sum over the 

weighted auxiliary variables in the sample equates the known population totals. In the model-

assisted approach, developed by Särndal et al. (1992), this estimator is derived from a linear 

regression model that specifies the relationship between the values of a certain target variable 

and a set of auxiliary variables for which the totals in the finite target population are known. 

Most estimators known from sampling theory can be derived as a special case from the general 

regression estimator. 

The general regression estimator has two very attractive properties. Although this estimator is 

derived from a linear model, it is still approximately design unbiased. If the underlying linear 

model explains the variation of the target parameter in the population reasonably well, then 

the use of this auxiliary information will result in a reduction of the design variance compared to 

the Horvitz-Thompson estimator and it might also decrease the bias due to selective non-

response, Särndal and Swenson (1987), Bethlehem (1988), and Särndal and Lundström (2005). 

Model misspecification might result in an increase of the design variance but the property that 
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this estimator is approximately design unbiased remains. From this point of view, the general 

regression estimator is robust against model misspecification. The linear model is only used to 

derive an estimator that uses auxiliary information but the resulting estimator is still judged by 

its design-based properties, such as design expectation and design variance. This is the reason 

that this approach is called model assisted. 

Design-based and model-assisted inference are very powerful concepts that are still used in 

modern statistical science because: 

1) It allows drawing valid inference of unknown variables of a large population based on a 

relatively small but representative sample. 

2) Uncertainty of using an estimator of the unknown population total can be measured by 

calculating the design variance of this estimator. 

3) The precision of the estimator can be improved by taking advantage of auxiliary 

information in the design of the sample or in the estimation procedure.  

 

Model-based inference procedures for finite population parameters have also been developed. 

They rely on the probability structure of an explicitly assumed statistical model, whereas the 

probability structure of the sampling design plays a less pronounced role. Royal (1970) 

proposed the prediction approach, where a model is assumed for the realized values of the 

finite population. The observations in the sample are used to fit the model and predict the 

values of the unobserved units that are not included in the sample. To avoid selection bias, 

sampling features can be incorporated in the model. An extensive treatment of the predictive 

modelling approach is given by Vaillant, Dorfman and Royal (2000).  

The major drawback of the model-based approach is that model misspecification can result in 

poor inference. Hansen, Madow and Tepping (1983) show that even small model 

misspecification in a large sample can result in spurious inference. This is one of the major 

reasons that design-based and model-assisted modes of inference are traditionally used by 

national statistical institutes. For decades, there has been the prevailing opinion that official 

statistics must be free from model assumptions, since model misspecification easily translates 

into wrong statements about the variable of interest.  

Design-based and model-assisted inference procedures, however, also have some limitations. A 

major drawback is that they have large design variances in the case of small sample sizes and do 

not handle measurement errors effectively. In such situations model-based estimation 

procedures can be used to produce more reliable estimates, see Rao (2011) for an appraisal. In 

situations where the sample size within the sub populations is too small to produce reliable 

estimates with design-based or model-assisted procedures, explicit model-based procedures 

can be used to increase the effective sample size within the separate domains using cross-

sectional sample information from other domains or temporal sample information from 

preceding periods. This is often referred to as small area estimation, Rao (2003), Pfeffermann 

(2002, 2013). Model-based procedures are also required to account for non-sampling errors, 

like selective nonresponse and measurement errors. See Rao (2011) for a more complete 

discussion. 

There is a persistent pressure on national statistical institutes to reduce administration costs 

and response burden. This must be accomplished by using register data like tax registers, or 

other large data sets that are generated as a by-product of processes unrelated to statistical 
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production purposes. Examples are data available from mobile phone companies and social 

media like Twitter and Facebook, as well as Google trends, to describe all kinds of 

developments that can be derived from activities on the Web. A recent related development is 

the increasing use of non-probability samples, like opt-in panels observed through the Web. In 

areas like marketing research this type of survey sampling is popular since voluntary opt-in 

samples are cheap and have a fast turnaround time. 

A common problem with this type of data sources is that the process that generates the data is 

unknown and likely selective with respect to the intended target population. A challenging 

problem in this context is to use this kind of data for the production of official statistics that are 

representative of the target population. There is no randomized sampling design that facilitates 

the generalization of conclusions and results obtained with the available data to an intended 

larger target population. As a result, the traditional design-based inference framework is not 

appropriate to these situations. Baker et al. (2013) evaluate available inference procedures for 

non-probability samples. One approach is to apply weighting and calibration techniques, 

originally developed for design-based inference in probability sampling, to construct weights 

that correct for possible selection bias. This is referred to as the pseudo-design-based approach. 

An alternative approach is the aforementioned model-based prediction approach developed by 

Royal (1970). The extent to which both approaches successfully remove selection bias depends 

on the extent to which the available auxiliary information, used to construct pseudo-design 

weights or model-based predictions, explains the data generating process. Baker et al. (2013) 

mention that probability sampling is not the only way of making valid statistical inference about 

intended target populations. In many other scientific areas advanced statistical methods are 

used to draw inference from data that are not obtained through probability samples. A class of 

techniques that can be used are algorithmic inference procedures known from the area of 

machine learning (Hastie et al. 2009). In this paper, the use of algorithmic inference procedures, 

like neural networks and support vector machines as well as the pseudo-design-based and 

predictive inference approach are investigated in a simulation study.  
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3. Methods  

3.1 Predictive inference 
Methods of inference are aimed at providing an estimate of some population quantity based on 

a partial observation of that population. The units for which observations are available 

constitute the sample, which may be a non-probability sample. Many texts discuss inference in 

general. This section is mainly based on Valliant et al. (2000) and Hastie et al. (2009). 

 

For a variable  , the quantity of interest    is generally a function          for        , 

with    the values of   for each of the   units in the population. Common functions   are the 

sum and the mean. The    are known for the units in the sample  , and unknown for the units in 

the remainder of the population,  . Through predictive inference, an estimate of    is obtained 

as 

 ̂              ̂      , 

with  ̂  predictions—or estimates—of the values of   for units not in the sample. The variance 

of the estimate  ̂  depends on the uncertainty associated with the unit predictions  ̂  and can 

be quantified through bootstrapping. Any method capable of producing the unit predictions can 

be used to arrive at the estimate  ̂ . 

 

Such methods typically use the observed   values of the sample to establish appropriate values 

for the unobserved part of the remainder of the population. In addition, auxiliary characteristics 

  known for the observed and the unobserved parts of the population are often used. In data-

mining and machine-learning contexts these are referred to as attributes or features. Prediction 

methods ordinarily contain some parameters   that need to be estimated. Henceforth, a 

prediction method   is written in general terms as 

 ̂        ̂  for    , 

with the estimates for   obtained from the sample through some procedure  , 

 ̂            for    , 

which is commonly referred to as model fitting, training or learning. In addition, many methods 

require some prior optimization in that choices must be made about some specific properties of 

the method. This will be clarified below for the methods under consideration. 

 

Predictive inference is rarely perfect. First, the prediction method F may be inappropriate for 

the data at hand or make wrong assumptions. Second, even if F is perfect in principle, the 

estimation of its parameters is subject to error. Both types of error are carried forward into the 

predictions  ̂  which in turn give rise to an error in the estimated quantity of interest,  ̂ . For 

some specific methods—typically those stemming from sample survey theory—it may be 

possible to calculate MSE estimates by means of analytical formulae. The accuracy of the 

population parameter estimated using algorithmic methods typically does not have an 

analytical expression. Fortunately, the total error can also be quantified through a bootstrap 

approach. 

 

A bootstrap sample is drawn from the original sample through simple random sampling with 

replacement, giving rise to estimates  ̂   ,  ̂ 
   

 and  ̂ 
   

. Repeating this B times, the bootstrap 

Mean Square Error is defined as 
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    , 

which can be decomposed as 

     ̂          ̂  
       ̂  , 

with 

      ̂    ̂ 
    , 

     ̂   
 

 
∑   ̂ 

   
  ̂ 

    
   , 

and 

 ̂ 
  

 

 
∑  ̂ 

    
   . 

Assessment of the results presented in this study is conducted using relative root mean square 

error (RRMSE),  

     ( ̂ )  
√     ̂  

 ̂ 
. 

In practice,    is unknown and the bias cannot be obtained. In simulation studies like the one 

presented in this article,    is known and the (RR)MSE, bias and variance are easily obtained 

and can be used as indicators of the performance of different methods of predictive inference.  

   

The methods considered in this article are described below. For each method an abbreviation is 

given in parentheses in the section titles, and will be used in subsequent chapters. 

 

3.2 Sample mean (SAM) 

While a sample at hand may not have been obtained through some sampling design—or the 

design is unknown to the analyst—it can be regarded as the result of a simple random sampling 

design, where units have equal inclusion probabilities. This is a simple but naïve approach which 

can always be conducted. In a predictive inference context, predictions for unobserved units are 

equal to the mean of the observed units, 

 ̂   ̅  
 

 
∑      , 

for all units     and   the number of elements in  . The SAM approach is the only method 

considered here that does not make use of auxiliary auxiliary variables  . When one or more   

variables are available, more sophisticated methods can be applied. These are discussed in the 

sections below. 

 

3.3 Pseudo-design-based estimation (PDB) 

Methods proceeding as if the sample is obtained through some complex sampling design while 

that is not the case are known as pseudo-design-based methods (Elliott 2009, Baker et al. 2013). 

The SAM approach discussed above is a special case of PDB where the design is simple random 

sampling and no auxiliary variables   are utilised. In this article the term PDB is used only for 

situations in which at least one auxiliary variable is available. The auxiliary characteristics   are 

used to form strata as is commonly done for post-stratification in survey sampling settings. 

 

For a given data set, the initial optimization consists of defining the post-strata based on the 

available auxiliary characteristics  . A balance is sought in which the strata differentiate 

between subgroups and at the same time contain sufficiently large numbers of sample units. 
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In the predictive inference framework given above, the model fitting or learning phase consists 

of calculating strata means for the sample: 

 ̅  
 

  
∑        , 

with    the number of observed units in stratum  . With the strata sample means available, the 

  values for the unobserved units are predicted by their strata means, 

 ̂   ̅        . 

 

For the specific case of    defined as the total of  , the pseudo-design-based prediction 

estimator is equal to the sum of the observed and the predicted values, 

 ̂  ∑( ∑   

     

 ∑  ̂ 

     

)

 

 ∑    ̅          ̅  

 

 ∑   ̅ 

 

 

with    the number of population units in stratum  . This expression can be written as 

 ̂  ∑        , 

with weights    given by 

   
  

  
       . 

Estimating the total of   by the weighted sum of the observed values with stratum weights as 

defined above is exactly the expression of a design-based post stratification estimator for 

simple random sampling designs. Hence the name, pseudo-design-based estimator. 

 

3.4 Generalised linear models (GLM) 

A generalised linear model expresses a function of the dependent variable   as a linear 

combination of predictors  . In the present setting, the auxiliary characteristics or features 

provide the predictors, 

            , 

where the function   is known as the link function. If   is the identity function, the model is said 

to be linear. Common choices for   include the inverse, logarithmic and logistic functions. Texts 

on generalised linear models are plentiful; Gelman and Hill (2006) is an example. 

 

Optimising this approach for a given data set boils down to establishing the exact model terms 

to be included in the model specification, and a choice for  . For example, interaction terms or 

higher order terms may or may not be included. 

 

In the model fitting phase, the coefficients   are estimated from the sample through a standard 

method such as Ordinary Least Squares (OLS) or Maximum Likelihood (ML). The estimated 

coefficients allow for prediction of   values for unobserved units, 

 ̂       ̂   . 
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3.5 K-nearest neighbours (KNN) 

The k-nearest neighbour method (Hastie et al. 2009) predicts the   value of unseen units by 

averaging the   nearest observed   values. This requires some distance function or metric for 

population units. Typically the   space is used for this purpose with a common distance 

function such as the (weighted) Euclidean distance. 

 

Optimisation in this case encompasses the choice of  , an appropriate distance metric, and the 

choice of  . In the learning phase distances are calculated between each unseen unit and all 

observed sample units. The algorithm proceeds by finding the set    of size   for each 

unobserved unit  , such that    contains the   nearest neighbours of   obtained from the 

sample  . The prediction for the   value for the unobserved units equals the mean of the 

observed   nearest neighbours,  

 ̂  
 

 
∑       

. 

 

3.6 Artificial neural networks (ANN) 

An artificial neural network, or neural network in short, is an algorithmic method supposedly 

mimicking the working of the human brain in a simplified manner. It arrives at a prediction of 

some variable   by propagating inputs—in this case the predictors  —through a network of 

artificial neurons (nodes) laid out in a layered network structure. Each node in the network 

applies a multiplicative weight to all its input and a so-called activation function to the weighted 

sum. The output of a node in one layer serves as input to the nodes in the next layer. This is 

known as a feed-forward neural network. Hastie et al. (2009) provide an overview of neural 

network methods. 

 

In the present article neural networks with a single hidden layer are considered as these are 

among the simplest types of networks. The number of nodes in the input layer is determined by 

the dimension of the feature space  , and that of the output layer by the dimension of the 

variable  , which is one in the case of regression. In an initial optimisation routine, the 

appropriate number of hidden nodes is established and an activation function is chosen. 

 

Learning or training involves establishing the weights and any parameters that may occur in the 

activation functions in the nodes. Standard back propagation (Hastie et al. 2009) is used as the 

learning method. The weights and any other parameters are repeatedly adjusted in small steps 

so as to minimize the networks prediction error. 

 

Finally, the neural network prediction is obtained algorithmically by propagating the   values of 

some unit j with unknown Y value through the trained network, arriving at a predicted value 

 ̂          ̂ , 

where the vector  ̂ includes all parameters that need to be established during the learning 

phase. 
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3.7 Regression trees (RTR) 

Originally developed for classification, tree-based algorithms can be used for regression too 

(Breiman et al. 1984; Hastie et al. 2009). A binary tree splits the data in two subsets at each 

node according to some criterion typically maximizing the variance between the two groups. 

Starting from a single root node, a data set is split into two parts which are taken down 

branches of the tree to two other nodes, which in turn split the data again. Some stopping 

criterion is applied to decide whether data at a particular node get split—if not, the node is said 

to be a leaf node.  

 

An initial optimisation routine is conducted to establish an appropriate value for the stopping 

criterion, expressed as a percentage of improvement that is required for the total prediction 

error. If a split does not improve the total error by this percentage, the node is not split further. 

In addition, one may choose to specify a minimum number of data points required at leaf 

nodes. 

 

The sample is used in the learning phase to construct the regression tree. The result is a 

particular layout of nodes and branches, and at each node the splitting rule expressing how to 

split a data set arriving at that node.  

 

A regression tree prediction is obtained for a unit with unknown   value by taking it down the 

tree to a leaf node. The predicted value for that unit is the mean of the sample units in that 

node with known   values,  

 ̂     (    ̂)  
 

  
∑        , 

with  ̂ the parameters characterising the regression tree,   the leaf node to which unit   is 

assigned,    the number of sample units from   that are assigned to node  . 

 

While history and background are very different, the regression tree approach and the pseudo-

design-based methods are similar to some extent. This is easily seen by considering the 

collection of leaf nodes of a regression tree as a stratification. While strata are defined manually 

by the analyst using the pseudo-design-based method, they are constructed algorithmically 

when using the regression tree approach. In both cases the predicted values are the known 

sample means of the strata or leaf nodes respectively. 

 

3.8 Support vector machines (SVM) 

A support vector machine is an algorithm projecting input data into a higher dimensional space, 

and applying linear—hence simple—algorithms there (Vapnik 1996; Hastie et al. 2009). In the 

original space, the SVM can predict non-linear behaviour. Originally, support vector machines 

were developed for classification tasks. Using support vector machines for regression is referred 

to as support vector regression. When an input vector   is projected into another space—

typically of higher dimension—a vector machine seeks to approximate the target variable   

through a linear function in the projected space, 

          , 

with      the projection of  , and   and   parameters to be estimated from the data. The 

second term in this expression is the dot-product of the vectors   and     . 
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For a particular choice of  , optimal values for   and   are determined through a procedure 

known as  -insensitive loss optimization, essentially developed to reduce computation time for 

very large data sets: data points that are less than a distance   away from the regression line 

are ignored. The other data points do contribute—loosely speaking in an OLS-type of 

approach—to the estimation of   and  . When the optimization problem is infeasible, 

deviations larger than   are tolerated. Smola and Scholkopf (2004) provide details of the 

estimation method. 

 

Centring the data prior to conducting SVM removes the need for the parameter  . It has been 

shown (Smola and Scholkopf, 2004) that the solution of SVM regression can then be written as 

 ̂   ̂      ∑  ̂              , 

where summation is over all data points contributing to the estimate of  ̂, also known as the 

support vectors, and  ̂  scalars. From this formula it is seen that the projection as such does not 

need to be performed to arrive at predicted values  ̂, as the only quantity needed is the 

product of the vector      with each of the      . Furthermore, the  ̂  too are obtained from 

pairwise products of projected input data points. Hence, the explicit projections are not 

needed, only their product with other projected points is ever required. To this end, the product 

of the projected vectors is defined as a dedicated function, called the kernel function  , 

 (     )               , 

with   a function that must fulfil certain regularity conditions (Smola and Scholkopf, 2004). 

 

The choice of the kernel is an optimisation that needs to happen prior to applying the support 

vector machine. Typical kernel functions include Gaussian, polynomial and sigmoid functions. If 

the kernel is the identity function, the support vector machine is linear, in other cases it is non-

linear. 

 

Once learned, the support vector machine produces predictions for given    values,  

 ̂  ∑  ̂  (     ) , 

which requires evaluation of the kernel function at each combination of the input    and all 

support vectors   .  
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4. Simulation 

4.1 General setup 
A major concern of non-probability samples is that they cover only a selective portion of the 

target population and that the selection mechanism is unknown. This can lead to biased 

estimates if methods of inference fail to correct for the selectivity in an appropriate manner.  

 

To test the performance of the inference methods described in the previous section, several 

non-probability samples are constructed from a data set from the Online Kilometer Registration 

(see Section 4.2). Different selection mechanisms are implemented, each depending on one or 

more variables and resulting in data sets that mimic non-probability samples with selective 

coverage (Section 4.3). Different scenarios are simulated in which certain auxiliary variables are 

or are not available (Section 4.4). After optimizing the methods of predictive inference (Section 

4.5), they are applied to all samples under the different scenarios (Section 4.5). 

 

This setup mimics real-world situations that are encountered where data sets are available but 

their data generating mechanisms are unknown. The results of the simulation and the 

performance of the various methods are discussed in Section 5. 

 

4.2 The Online Kilometer Registration 
For our simulation we consider vehicles in the Online Kilometer Registration (OKR) as our target 

population. The OKR is a facility provided by the government Agency for Road Transport (ART) 

and allows entry of vehicle odometer readings into a central database. When visiting a service 

station or motor vehicle test center, the car’s registration number and odometer reading are 

entered into OKR together with the date. While primarily aimed at detecting odometer fraud 

through reversing the meter, the OKR database is also used for statistical purposes. From the 

odometer readings annual mileages are derived, which are used to estimate the total mileage 

for all vehicles registered in the Netherlands. The register of all vehicles is maintained by the 

ART and also contains auxiliary characteristics, such as registration year, vehicle weight, fuel 

type, and name and address of the owner, which can be a company or a private person. For 

privately owned vehicles the date of birth of the owner is available as well. 

 

From the reported odometer readings, daily mileages are computed in a straightforward 

manner by distributing the total mileage between two readings evenly over the days in 

between. Annual mileages are obtained by aggregation of the daily mileages of all the days in a 

year. For the purpose of this study, annual mileages of the year 2012 are used. The mileage is 

taken to be the target variable  . 

 

Annual mileages cannot be computed for vehicles for which no suitable set of odometer 

readings is available. Circumstances in which this can occur include: the last reported reading is 

before the end of the year of interest; missing or erroneous readings due to technical problems 

of the OKR system; missing or erroneous readings due to human factors such as failing to enter 

a reading into the system or making a typing mistake when doing so. 
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In reality, annual mileages for vehicles for which they are not available must be estimated. For 

the purpose of the simulation study only those vehicles are used that have a valid 2012 mileage. 

This subset is called the population in the present article. 

 

4.3 Generating non-probability samples 
Both qualitative and quantitative features correlating with the target variable (mileage) are 

used to create selective non-probability samples (see Supplementary Fig. S1 for an example of 

the correlation between an auxiliary variable and the target variable).  

 

The qualitative or categorical features include:  

 registration year: year in which vehicle was first registered; eight 1-year bins for the 

most recent vehicles, three 2-year bins for older vehicles, and one bin for vehicles 

registered in or before 1998 

 legal form: privately owned or company car 

 vehicle weight: four weight categories 

 fuel: petrol, diesel or other (including electricity and gas) 

The quantitative or numeric features include: 

 registration year: year in which vehicle was first registered; not grouped; considered a 

numeric variable 

 owner age: the age of the vehicle owner in 2012 

 

Selectivity with respect to qualitative variables is studied in a population data set A, consisting 

of 7.6 million vehicles for which all four qualitative variables are available and which have valid 

2012 annual mileages obtained from the OKR (Table 1: population A).  

 

Typically a non-probability sample starts recording at a certain point in time but does not 

contain any information about past events. We hypothesized that numerical features are more 

powerful to estimate beyond the observed range of values than categorical features. To test 

this, we created a subpopulation of population A containing two numerical features: 

registration year and age of owner (Table 1: population B). Since the age of the owner of the 

vehicle only applies to privately owned cars, this population consists of 6.7 million privately 

owned vehicles for which the age of the vehicle owner is known. Population B is used to 

generate cut-off samples that are selective with respect to the continuous variables, which are 

only observed over a certain range. 

 

Selective samples are generated according to the following scheme: 

 Population A: All vehicles (N=7,582,065) 

o 1: young vehicles overrepresented 

o 2: vehicles of juridical persons overrepresented 

o 3: heavy vehicles overrepresented 

o 4: young, heavy vehicles of juridical persons overrepresented 

o 5: high-mileage vehicles overrepresented  

o 6: low-mileage vehicles overrepresented  

 Population B: Vehicles of natural persons with known age (N=6,670,509) 

o 7: representative sample of young (2003–2012) vehicles of owners aged 17–

64, i.e. excluding elderly people and older vehicles 
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o 8: representative sample of high-mileage (≥ 10000 km) vehicles only  

o 9: representative sample of young (2003–2012) vehicles only 

o 10: representative sample of owners aged 17–64, i.e. excluding the elderly 

 

In sample 1, younger vehicles are overrepresented by increasing the inclusion probability with 

registration year (compare the probability mass functions in Supplementary Fig. S2). In the next 

three samples, we overrepresent vehicles of juridical persons (sample 2), heavier vehicles 

(sample 3) or younger and heavier vehicles of juridical persons (sample 4). In sample 5, vehicles 

with high annual mileage were overrepresented by increasing the inclusion probability with 

annual mileage. Here the data are missing not at random, because the propensity for a data 

point to be missing depends directly on its value. In sample 6, vehicles with low annual mileage 

were overrepresented. This sample was introduced to distinguish bias correction from 

underestimation. 

 

Samples 7–10 are generated from population B. In sample 7, a representative sample was 

drawn but exclusively of vehicles up to ten years old, owned by persons under 65 

(Supplementary Figs. S3 and S4). In the remaining samples a representative sample was drawn 

but exclusively of vehicles with an annual mileage of 10,000 km or more (sample 8), of vehicles 

up to ten years old (sample 9) or of vehicles owned by persons under 65 (sample 10). 

 

4.4 Scenarios 
The scenarios simulate which auxiliary information is available to make inference about the 

target population, given a non-probability sample (Table 1). In the simplest case, the 

information causing the missingness is also available as auxiliary variables (complete: scenarios 

1a, 2a, 3a, 4a, 7a, 9a, 10a). For example, in scenario 1a the missingness is caused by registration 

year, and registration year is also available to compare its distribution between the sample and 

the population. The data are thus missing at random. More realistically, we only have indirect 

information that correlates with the target variable (scenarios 1b, 2b, 3b, 4e, 5a, 6a, 8a, 9b, 

10b). For example, in scenario 1b the missingness is caused by registration year, but only legal 

form, vehicle weight and fuel type are available to compare their distribution between the 

sample and the population. The data are thus missing not at random. 

 

In Supplement 8.3, we additionally discuss cases where we have some but not all information 

causing the missingness (partial: scenarios 4b–d). For example, in scenario 4b young, heavy 

company cars are overrepresented, but only registration year is available to model the 

missingness while no information is available on legal form or vehicle weight. In the same 

Supplement we also discuss cases where we have extra information in addition to the 

information causing the missingness (scenarios 9c, 10c). For example, in scenario 9c the 

missingness is only caused by registration year, but both registration year and the age of the 

vehicle owner are available as auxiliary information. 

 

Some methods, such as KNN, ANN and SVM, are developed for numerical variables. In case 

categorical variables were available as covariates, these were transformed to a numerical scale 

by numbering the categories. To make variables with different number of categories 

comparable, each variable was scaled between 0 and 1 by subtracting the smallest number and 

dividing by the difference between the largest and smallest number. For example, vehicle 
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weight classes {0–850 kg, 851–1150 kg, 1151–1500 kg, 1501+ kg} would be transformed to 

{   
 
  
 
  }. 

Conversely, continuous numerical variables are made categorical by binning: the range of values 

is split into a limited number of intervals, and each interval is considered a category. This is 

required for the PDB method.   

 

4.5 Optimization  
Each inference method requires choices about its properties (see Section 3). These properties 

were chosen through the following optimization procedure. A sample was drawn with 

replacement from the original non-probability sample. This bootstrap sample was randomly 

split into a training set (70%) and a test set. For a range of likely input parameter values, a 

model was trained using the training set, model predictions were made using the auxiliary 

information in the test set, and the mean square error (MSE) was calculated by comparing the 

predicted values with the observed values in the test set. This was repeated for ten bootstrap 

replicates. For each input parameter value, the MSE was averaged over the ten bootstrap 

replicates. The input parameter value that gave the lowest average MSE was chosen to train the 

model using the entire non-probability sample and to predict the annual mileage of the vehicles 

in the remainder of the population. An example is given in Supplementary Fig. S5. 

 

The input parameters that need optimization take different forms depending on the inference 

method. For the SAM and PDB methods there is nothing to optimize. For the GLM, we 

optimized the model by comparing the average MSE between candidate models including all 

possible interactions and—in case of numerical variables—quadratic terms. For the KNN, we 

optimized the number of neighbours  , where   was varied by powers of two. For ANN, we 

optimized the number of nodes in the (single) hidden layer. For the RTR, we optimized the 

complexity parameter: the data in a node are split until the model fit is not improved by a factor 

of this parameter. For the SVM, we optimized the kernel function, where we tried linear, 

polynomial, radial and sigmoid functions. For each scenario, the resulting optimal input values 

for the five models are given in Table S1 in Supplement 8.1. 

 

4.6 Predictive inference 
The methods presented in Section 3 are applied in all scenarios. While the samples are split to 

determine the optimal parameters and settings of the methods, they are used entirely to train 

the models for inferential purposes. Inference is made for the non-sample part of the 

population as if it is unknown. In this simulation study the non-sample part is known and is used 

to assess the bias and variance of the predictions, as discussed in Section 3. Variance estimates 

are obtained through bootstrapping by sampling with replacement from the original sample. In 

the present study we conducted 100 bootstraps, which was sufficient to discern substantial 

differences between the methods In real-world applications convergence of the bootstrap 

distribution should be monitored and stopping criteria defined. 

 

4.7 Implementation 
This simulation study is implemented in the statistical computing environment R (R Core Team, 

2014). The packages ff (Adler et al. 2014) and ffbase (de Jonge et al. 2014) are used to handle 

big data files. The figures are produced using the ggplot2 package (Wickham 2009). A number 

of packages are used for the estimation methods: survey (Lumley 2004) for PDB, FNN 
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(Beygelzimer et al. 2013) for KNN, nnet (Venables and Ripley 2002) for ANN, rpart (Therneau et 

al. 2014) for RTR and e1071 (Meyer et al. 2014) for SVM. 

 



 

Predictive inference for non-probability samples: a simulation study  19 

Table 1 Population A: all vehicles (N=7,582,065), categorical features 

Sample Scenario Sample size  Registration year Legal form Vehicle weight Fuel type Annual mileage 

    eerste_toel_dat_1 srt_ref afl_gewkl afl_brankl jaarkm_A 

    Ordinal Nominal Ordinal Nominal Ratio 

1  137,351 Selectivity      

 a  Availability (complete)      

 b  Availability (indirect)      

2  15,477 Selectivity      

 a  Availability (complete)      

 b  Availability (indirect)      

3  40,368 Selectivity      

 a  Availability (complete)      

 b  Availability (indirect)      

4  48,288 Selectivity      

 a  Availability (complete)      

 b  Availability (partial)      

 c  Availability (partial)      

 d  Availability (partial)      

 e  Availability (indirect)      

5  25,467 Selectivity      (high) 

 a  Availability (indirect)      

6  151,248 Selectivity      (low) 

 a  Availability (indirect)      
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Table 1 (continued) Population B: vehicles of natural persons with known age (N=6,670,509); numerical features 

Sample Scenario Sample size  Registration year Age of vehicle owner Annual mileage 

    eerste_toel_dat_1 leeftijd jaarkm_A 

    Ratio Ratio Ratio 

7  26,394 Selectivity  (cut-off)  (cut-off)  

 a  Availability (complete)    

8  34,982 Selectivity    (cut-off) 

 a  Availability (indirect)    

9  34,066 Selectivity  (cut-off)   

 a  Availability (complete)    

 b  Availability (indirect)    

 c  Availability (extra)    

10  53,809 Selectivity   (cut-off)  

 a  Availability (complete)    

 b  Availability (indirect)    

 c  Availability (extra)    
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5. Results 
In this section the results of the study are presented. A discussion and interpretation follow in 

Section 6. The simulation results are separated into two parts depending on the type of auxiliary 

variables available. For samples 1 through 6 the auxiliary variables are categorical, for samples 7 

through 10 they are numerical. The main results are included here, Supplement 8.2 contains 

additional outcomes.  

 

5.1 Categorical auxiliary variables 
The results of the simulation are presented graphically in Figures 1 and 2 for sample 1. Similar 

plots for samples 2 through 6 are included in Supplement 8.2 (Figs. S6–10). 

 

In Fig. 1 the bootstrap results for sample 1 are given using boxplots. The known population level 

is indicated by the solid horizontal line: 13,109 km. Thus, the difference between the boxplot 

median and the horizontal line is an indication of the bias, and the boxplot height an indication 

of the variance (the exact definitions of bias and variance are given in Section 3.1). The left 

panel shows the results for the scenario in which the variable explaining the selectivity—in this 

case registration year—is also available, and is used as a covariate in the models. The right 

panel shows the results for the scenario in which the variable explaining the selectivity—

registration year—is not available, but other variables—legal form, vehicle weight and fuel 

type—are available and used as covariates (see Table 1 for the scenario definitions). 

 

It is clearly seen in Fig. 1 that the sample mean (SAM) is biased. All other methods, aimed at 

correcting the bias, are successful and perform roughly equally well, apart from SVM, which is 

less successful at removing all bias in this case. In the scenario where the covariate explaining 

selectivity is used (left panel), all bias can be removed. In the other scenario bias can be 

removed to some degree, but not completely. The extent to which they are successful depends 

on the correlation between the indirect variables and that explaining the bias.  

 

Fig. 2 shows the root relative mean squared error (RRMSE) associated with the results in Fig. 1. 

Since the bootstrap variance is comparable for all methods it is the bias that dominates the 

RRMSE. Of the methods capable of removing bias—PDB, GLM, KNN, ANN and RTR—PDB and 

RTR have the smallest RRMSE in the scenario with covariates explaining the selectivity available 

(left panel). When only indirect covariates are available (right panel), RTR compares slightly 

favorably to the other methods. Nevertheless, the scenario (complete versus indirect 

information) determines the accuracy more than the inference method. 

 

The results for the other samples with categorical variables (2 through 6) are very similar as for 

sample 1 and lead to the same conclusions (Figs. S6–S10 in Supplement 8.2). Note that all 

methods also remove bias when vehicles with low rather than high annual mileage are 

overrepresented (Fig. S10), suggesting that they do not simply lower the population parameter 

estimate. 

 

Only the PDB, GLM and RTR methods are naturally appropriate for categorical data. The KNN, 

ANN and SVM methods are in fact developed for continuous variables. The latter methods are 

based on an appropriate metric in the covariate space allowing for measuring distances 

between data points. Applying these methods to categorical data is awkward and counter 

intuitive. Nevertheless, they still perform rather well, apart from the SVM. 
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As mentioned in Section 2, the RTR method can be seen as a flexible form of the PDB method. 

In the simulations here they both perform well for categorical variables.  

 

The recommendation based on these findings is to use the RTR method for the data at hand. It 

has the advantage of resulting in a stratification—meaning a subdivision of the data set in cells 

defined by categorical auxiliary variables—that is optimal in the sense that the between-strata 

variance is maximized. This will generally lead to estimates with lower variance than using an 

ad-hoc and potentially suboptimal stratification in the PDB method. Furthermore, stratifications 

that can be achieved naturally using RTR are sometimes awkward to implement in a PDB 

context, for example complex cross-classifications and interactions of multiple categorical 

variables. 

 

An approach sometimes followed with continuous variables is to create categorical variables 

based upon them, by binning the values into a limited number of bins or cells, using for example 

quantiles of the distribution to define bin boundaries. Regression trees can also be used as a 

means to define optimal boundaries between such bins. Bins defined in this way provide an 

optimal categorization of a continuous variable. 

 

 
Figure 1 Effect of inference method on predicted mean annual mileage (boxplot of 100 

bootstrapped predictions), given sample 1 (young vehicles overrepresented) and (Left) 

complete information (registration year) or (Right) indirect information (legal form, vehicle 

weight and fuel type) available for prediction. Horizontal line is true population level. Note that 

the y-axis does not start at 0. 
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Figure 2 Effect of inference method on relative root mean square error, given sample 1 (young 

vehicles overrepresented) and (Left) complete information (registration year) or (Right) indirect 

information (legal form, vehicle weight and fuel type) available for prediction. 

5.2 Continuous auxiliary variables 
For the cut-off samples 7 through 10 we use continuous variables as covariates. Here sample 9 

is discussed in detail, since it is selective in one (registration year) but not the other (age of 

owner) variable and hence provides a relevant example. Figures 3 and 4 show the results for 

sample 9. Supplement 8.2 (Figs. S11–S13) contains similar plots for the other samples. Note that 

the true population level (11,735 km) is lower than in the previous section because population B 

only contains privately owned vehicles, for which the age of the owner is known.  

 

The left panel of Fig. 3 shows the results for sample 9 when the variable explaining selectivity is 

available, in this case registration year. Three methods perform better than the others in terms 

of removing bias: GLM, ANN and SVM. The PDB approach results in estimates comparable to 

the sample mean (SAM) and is essentially unable to remove bias. The KNN and RTR methods are 

not very successful either. From the height of the boxes it is clear that in terms of variance the 

ANN method stands out as having the largest variance. Despite this, the RRMSE of the ANN 

method is still lower than that of the KNN and RTR methods, which in turn are lower than the 

SAM and PDB approaches; see left panel of Fig. 4. The GLM and SVM have the lowest, and 

almost equal, RRMSEs. 

 

The right panels of Figs. 3 and 4 show the results of the scenario in which variables are available 

that only indirectly explain the selectivity. None of the methods perform well. Even the SAM 

approach is not worse than the other methods, in this case. This is due to the weak correlation 

between the available variable (age of owner) and the variable explaining selectivity 

(registration year). It could be expected that with stronger correlating variables the results 

would resemble those presented in the previous section. 

 

Fig. 5 shows the predicted values for sample 9 in the scenario where the variable explaining 

selectivity is available (registration year). Fig. 5 corresponds to the results in Fig. 3 but now 

shows the predictions at the level of registration year rather than for the population as a whole. 

The black line indicates the average mileages in the population; the solid line marks the sample, 
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the dotted line the missing part, which is the target of inference. Predictions using the various 

methods are shown by solid colored lines.   

 

Two methods that perform well for categorical variables—PDB and RTR (Figs. 1 and 2)—do not 

perform well for continuous variables, even when variables explaining the selectivity are 

available (left panels of Figs. 3 and 4; Fig. 5). The advantage of the GLM, ANN and SVM methods 

for continuous variables is their capacity to produce predictions outside the range of the values 

observed in the training data set, as seen in Fig. 5. The SAM, PDB, KNN and RTR methods use 

(weighted) averages of available observations and are incapable of producing predictions that 

are very different from available observations. On the other hand, the GLM, ANN and SVM 

methods can extrapolate outside the range of available observations and are therefore more 

powerful in predicting missing values for strongly selective data sets. In the samples at hand, 

entire parts of the population range of values are missing, and prediction outside the range of 

the sample is necessary to obtain unbiased results. The success of such approaches depends on 

the models or algorithms fitted to the data at hand to be applicable to unseen data too. In real-

world situations this assumption must be made. 

 

While GLM, ANN and SVM all produce lower estimates for the unknown part of the population 

than the other methods, none of the three are very precise. Some details in particular are 

impossible to predict, such as the bump around registration year 1987 (Fig. 5). This is caused by 

vehicles aged 25+, considered as old-timers under Dutch law, to which beneficial taxation rules 

apply. As a side effect of this, some people deliberately use such old cars even though they 

drive considerable distances. Hence, while there is an explanation for the bump, it is not 

possible to predict it without variables that would explain its presence. 

 

The results for samples 7, 8 and 10 are given in Figs. S11–S13 of Supplement 8.2. When the 

sample contains only vehicles up to ten years old owned by persons under 65, but both 

registration year and age of owner are available as covariates (Fig. S11), GLM and SVM still 

outperform the other methods. Although ANN also effectively removes the bias, its variance is 

exceptionally large. When the sample contains only vehicles owned by persons under 65, but 

age of owner is available as a covariate (Fig. S13, left panel), GLM and ANN outperform the 

other methods. In this scenario, SVM is less effective in removing the bias. With extra 

information available for prediction, the performance of ANN declines, whereas the 

performance of SVM improves and may even outperform GLM (compare Figs. 4 and S15, and 

Figs. S13 and S16). ANN is possibly more sensitive to overfitting than SVM. 

 

GLMs perform well and are recommended in situations in which model evaluations can be 

conducted to establish validity of the assumed models. ANN and SVM techniques are more 

flexible and less restrictive in their assumptions, which may be beneficial in certain 

circumstances when the more rigid models underpinning the GLM approach do not hold. In the 

present simulation, it was found that quadratic terms were necessary for the GLM to produce 

unbiased results. In general, model and algorithm selection needs to be conducted to establish 

the most suitable method of inference.  

 



 

Predictive inference for non-probability samples: a simulation study  25 

 
Figure 3 Effect of inference method on predicted mean annual mileage (boxplot of 100 

bootstrapped predictions), given sample 9 (only vehicles up to ten years old) and (Left) 

complete information (registration year) or (Right) indirect information (age of owner) available 

for prediction. Horizontal line is true population level. Note that the y-axis does not start at 0. 

 

 
Figure 4 Effect of inference method on relative root mean square error, given sample 9 (only 

vehicles up to ten years old) and (Left) complete information (registration year) or (Right) 

indirect information (age of owner) available for prediction. 
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Figure 5 Mean annual mileage in population B (black) and predicted (color) by inference 

method based on sample 9 (only vehicles up to ten years old; solid black line) and complete 

information (registration year) available for prediction. The dotted line is the target for 

inference. 

 

5.3 Consequences for official publications 
While the OKR data are used here as the basis for simulation and comparative study of selection 

mechanisms and inference procedures, it is worthwhile to briefly discuss consequences of the 

results of this study for OKR-based statistics routinely produced at Statistics Netherlands. The 

official statistics based on OKR are totals and means of annual mileages of vehicles, by vehicle 

type, registration year, legal form of ownership, weight class and fuel type.  
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In the simulation study the population is defined as the passenger cars for which 2012 mileages 

are available. In reality, mileages are missing for approximately 10%-15% of the true population 

of cars. Mileages are missing when the available odometer readings are not sufficient to 

calculate an annual mileage. This is the case for new cars which do not have an odometer 

reading yet (other than zero when they are first registered); for old-timers (cars aged 25+) 

which are not required to have annual motor vehicle tests; for errors made when entering the 

odometer readings in the OKR system—either accidentally or fraudulently: implausible 

sequences of odometer readings are not used for statistics production.   

 

At present, inference proceeds using the PDB method using a stratification defined by the 

publication variables, which are the four covariates in Table 1. The results of section 5.1 suggest 

that this as an acceptable approach. However, the data generating mechanism and the 

variables determining the missingness for the real data are unknown and may be different from 

the simulated regimes. From the possible reasons for missing mileages mentioned above, it is 

seen that mileages are missing in particular for very new cars, for old-timers and for cars that 

have been subject of fraud. It could be the case that the mileages that are available for these 

groups are selective and that this selectivity is not fully explained by the four covariates under 

consideration.   

 

Since the share of cars with unknown mileages is relatively small it can be expected that the use 

of methods of inference other than PDB, or additional covariates, will not substantially affect 

the current estimates of means and totals for the whole population. Nevertheless, it would be 

valuable to conduct further analyses for the real situation, investigating the effect additional 

covariates might have on the predictions, in particular for the specific subpopulations 

mentioned. Many additional covariates can be obtained by linking the OKR data base to other 

administrative registers maintained at Statistics Netherlands, from which extra variables can be 

sourced with respect to the owner of the car including employment position, income, 

household size, value of house, etc. Such analyses may prove beneficial especially if statistics 

about subpopulations with large proportions of missing mileages are required.   

 

Another approach to improving mileage statistics is a reconsideration of the derivation of 

annual mileages from the odometer readings. In the present study the annual mileages are 

assumed fixed, known, and without error. However, this derivation must be subject to error or 

uncertainty as well, as various assumptions are made. This perspective is not addressed in the 

present study but may warrant further research. 
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6. Conclusions 
When considering non-probability samples for use in official statistics, the methods used for 

inference should be adapted to this setting. In this article a range of prediction methods are 

proposed that may fit this purpose. A simulation study is conducted using real-world data for 

which non-random selection regimes are simulated, mimicking data generating mechanisms 

often encountered in the context of big data sources. Pseudo-design-based, model-based, and 

machine-learning methods for predictive inference are studied and evaluated. 

 

A key element determining the success of these methods in removing bias incurred by the 

selection mechanism of the data generating process is the availability of auxiliary characteristics 

explaining the selectivity of the data at hand. If these variables are categorical, the regression 

tree is found to be a suitable method with advantages compared to the simpler pseudo-design-

based approach, in that it offers more flexibility while at the same time maximizing the 

between-variance of the data. When only certain ranges of auxiliary variables are observed but 

numerical auxiliary variables are available, (generalized) linear models, neural networks and 

support vector machines are more appropriate for the data considered in the simulation. These 

methods can generalize outside the domain of the available data and are capable of better 

predictions for new, unseen data. When a suitable explicit statistical model can be found for the 

data, that model can be used as the basis for predictive inference. In other situations neural 

networks and support vector machines may be better choices as they offer more flexibility and 

do not require a statistical model to be specified. 

 

Formulating inference for non-probability sampling as a prediction problem creates a 

framework in which a wide range of methods can be applied. The tendency sometimes seen at 

NSIs to stay on familiar ground and use pseudo-design-based methods is too restrictive and will 

often not be sufficient to remove selection bias from data sets with non-random data 

generating mechanisms. While a range of methods are considered in the present study, there 

are many more that one could consider; for example random forests (Breiman 2001), and 

neural networks with different architectures (Bishop 1996). 

 

An issue not exhaustively addressed in the present study is that of model selection. Given a data 

set including auxiliary variables, which of the various inference methods should one use, and 

which auxiliary variables? The classic approach taken in machine learning is to use predictive 

accuracy as a basis for choosing a method (Hastie et al. 2009). One would split the available 

data into two subsets—one for training and one for testing—and predict values for the units in 

the test set. Minimization of the prediction error for the test set can be used as a criterion for 

model selection. 

 

Since the availability of auxiliary variables explaining the data generating mechanism is crucially 

important, research on big data specifically and on non-probability samples in general should 

include efforts on the collection or derivation of auxiliary variables. Typical sources of common 

auxiliary variables are administrative registers. Recently, process variables have been shown to 

be a promising type of auxiliary variables; in survey sampling contexts these are sometimes 

referred to as para-data (Kreuter 2013). Finally, attempts to recover auxiliary variables from the 

data—a procedure also known as profiling—could be valuable in big data settings; see Nguyen 

et al. (2014) for an example. 
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A set of variables explaining the selection mechanism of the data generating procedure and an 

appropriate predictive inference method are essential ingredients for successfully employing 

non-probability samples and big data in official statistics. 
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7. Supplement 

7.1 Population and sample documentation 

 
Figure S1 Correlation between auxiliary variable registration year and target variable annual 

mileage in (a random sample of) the Online Kilometer Registration. Vehicles older than 25 years 

have a relatively high annual mileage due to tax benefits for old-timers. The most recent 

vehicles have a relatively low mileage because they are introduced during the year. 

 

 
Figure S2 Probability mass function of registration year in population A (grey bars) and sample 1 

in which younger vehicles are overrepresented (red lines). 
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Figure S3 Correlation between registration year, age of vehicle owner, and annual mileage in (a 

random sample of) population B. 

 

 
Figure S4 Probability density function of registration year by age of vehicle owner in (left) 

population B and (right) sample 7. 
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Figure S5 Example of model optimization: choosing the optimum number of nearest neighbors 

for the KNN model, given sample 9 (only vehicles up to ten years old) and complete information 

(registration year) available for prediction. The model was trained and tested on ten bootstrap 

resamples (black lines). The optimum   is indicated by the vertical line where the average MSE 

(red line) is smallest. 

 

Table S1 Optimal input values for each model by scenario. 

Sample Scenario GLM KNN ANN RTR SVM 

  model∗   node size stopping 

criterion 

kernel 

1 a     512 10      linear 

 b                      512 6      polynomial 

2 a     4096 6      sigmoid 

 b                  128 5      polynomial 

3 a     2048 7      radial 

 b                      128 4      polynomial 

4 a               512 3      polynomial 

 b     64 8      polynomial 

 c     8 4      sigmoid 

 d     256 5      polynomial 

 e     256 8      polynomial 

5 a                  128 4      polynomial 

6 a                      256 5      radial 

7 a                256 7      radial 

8 a                    1024 6      radial 

9 a        1024 8      radial 

 b        2048 7      radial 

 c                    256 8      radial 

10 a        1024 6      radial 

 b        512 6      radial 

 c                        512 10      radial 
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∗  = registration period (categorical),   = registration year (numerical);   = legal form;   = 

vehicle weight;   = fuel;   = age of vehicle owner 

7.2 Additional results 

 

 
Figure S6 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 2 (company vehicles overrepresented) and (Left) complete information (legal 

form) or (Right) indirect information (registration year, vehicle weight and fuel type) available 

for prediction. In upper panels, horizontal line is true population level; note that y-axis does not 

start at 0. 
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Figure S7 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 3 (heavy vehicles overrepresented) and (Left) complete information (vehicle 

weight) or (Right) indirect information (registration year, legal form and fuel type) available for 

prediction. In upper panels, horizontal line is true population level; note that y-axis does not 

start at 0. 
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Figure S8 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 4 (young, heavy company vehicles overrepresented) and (Left) complete 

information (registration year, legal form and vehicle weight) or (Right) indirect information 

(fuel type) available for prediction. In upper panels, horizontal line is true population level; note 

that y-axis does not start at 0. 
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Figure S9 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 5 (high-mileage vehicles overrepresented) and indirect information (registration 

year, legal form and vehicle weight) available for prediction. In upper panels, horizontal line is 

true population level; note that y-axis does not start at 0. 

 



 

Predictive inference for non-probability samples: a simulation study  39 

 

 
Figure S10 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 6 (low-mileage vehicles overrepresented) and indirect information (registration 

year, legal form and vehicle weight) available for prediction. In upper panels, horizontal line is 

true population level; note that y-axis does not start at 0. The RRMSE of the GLM is outside the 

plotted range due to one extreme bootstrap prediction. 
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Figure S11 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 7 (only vehicles up to ten years old, owned by persons under 65) and complete 

information (registration year and age of owner) available for prediction. In upper panels, 

horizontal line is true population level. 
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Figure S12 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 8 (only vehicles with an annual mileage of 10,000 km or more) and indirect 

information (registration year and age of owner) available for prediction. In upper panels, 

horizontal line is true population level; note that y-axis does not start at 0. 
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Figure S13 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 10 (only vehicles owned by persons under 65) and complete information (age of 

owner) or indirect information (registration year) available for prediction. In upper panels, 

horizontal line is true population level; note that y-axis does not start at 0. 
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7.3 Extra scenarios 

 

 
Figure S14 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 4 (young, heavy company vehicles overrepresented) and partial information 

(registration year, legal form or vehicle weight) available for prediction. In upper panels, 

horizontal line is true population level; note that y-axis does not start at 0. 
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Figure S15 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 9 (only vehicles up to ten years old) and extra information (registration year and 

age of owner) available for prediction. In upper panels, horizontal line is true population level; 

note that y-axis does not start at 0. 
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Figure S16 Effect of inference method on (Upper panels) predicted mean annual mileage 

(boxplot of 100 bootstrapped predictions) and (Lower panels) relative root mean square error, 

given sample 10 (only vehicles owned by persons under 65) and extra information (registration 

year and age of owner) available for prediction. In upper panels, horizontal line is true 

population level; note that y-axis does not start at 0. 
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Explanation of symbols

 Empty cell Figure not applicable
 . Figure is unknown, insufficiently reliable or confidential
 * Provisional figure
 ** Revised provisional figure
 2014–2015 2014 to 2015 inclusive
 2014/2015 Average for 2014 to 2015 inclusive
 2014/’15 Crop year, financial year, school year, etc., beginning in 2014 and ending in 2015
 2012/’13–2014/’15 Crop year, financial year, etc., 2012/’13 to 2014/’15 inclusive
 
  Due to rounding, some totals may not correspond to the sum of the separate figures.
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