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The use of within-subject experiments for 
estimating measurement effects in mixed-mode 

surveys 

Thomas Klausch, Barry Schouten and Joop Hox 
Summary: The estimation of measurement effects (MEs) of survey modes in the 
presence of selection bias poses a great problem to methodologists. In practice, unit 
nonresponse is often assumed to be ignorable (MAR) conditional on socio-
demographic auxiliary data for lack of other sample-level information. Since socio-
demographics commonly are only weakly related to target variables or selection 
mechanisms this assumption often may not hold true.  

We present a new method to estimate MEs by means of “within-subject designs”, in 
which the same sample is approached by two different modes at two subsequent 
points in time. This design allows ignoring nonresponse on repeatedly measured target 
variables implying weaker MAR assumptions, because repeated target variables 
typically are strongly related. Further assumptions of this design are discussed in detail, 
in particular (a) time-stability of target variables and response probabilities and (b) the 
independence of measurement occasions. In extensions of simple within-subject 
designs, an independent control group, to which the same mode is assigned at both 
occasions, is useful to test these assumptions and adjust for time-instability. 

The decomposition of mode effects into MEs and selection biases is illustrated for key 
statistics from the Dutch Crime Victimization Survey using data from a large-scale 
within-subject experiment conducted within Statistics Netherlands’ project Mode 
Effects in Social Surveys (abbreviated to MEPS in Dutch). 

The method presented in this paper shows similarity to the mode effect decomposition 
method proposed by Buelens et al (2012) within project MEPS. We will discuss 
differences in assumptions and estimators. 

Keywords: Missing Data; Nonresponse Adjustment; Selection Bias; Causal Inference; 
Longitudinal Surveys; Mode Effects; Measurement Effects; Mixed-Mode Surveys; 
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1. Introduction 

It is a well-known problem of mixed-mode research that measurement error of 
questions can differ across modes threatening the accuracy and comparability of data 
in mixed-mode surveys (Tourangeau, Rips & Rasinski, 2000; Krosnick, 1991, 1999; 
Dillman et al., 2009). One option to deal with this problem is to minimize any 
differences in measurement error between modes before they occur, for example by 
means of ‘unified mode questionnaires’ (de Leeuw, 2005; Dillman & Christian, 2005; 
Dillman, Smyth, & Christian, 2009, p. 326). In designing such questionnaires, estimating 
the average difference in measurement error between two modes, called the average 
‘measurement effect’ of a given question (ME), is an essential prerequisite.  
In the present paper, we suggest a new method for unbiased estimation of MEs. It is 
widely recognized that this objective is not trivial, because selection bias (i.e., bias 
caused by mode-specific unit nonresponse) represents an alternative explanation for 
MEs in mixed-mode surveys (Vannieuwenhuyze, Molenberghs, & Loosveldt, 2010; 
Jäckle, Roberts, & Lynn, 2010; Vannieuwenhuyze & Loosveldt, 2013). Available 
techniques to estimate MEs mainly rely on covariate-based adjustment, such as 
calibration weighting, regression estimation or matching (Morgan & Winship, 2007; 
Schafer & Kang, 2008), where, in practice, socio-demographics are the most common 
type of covariates that is available (Tourangeau & Smith, 1996; Schonlau et al., 2004; 
Jäckle, Roberts, & Lynn, 2010; Lugtig et al., 2011; Vannieuwenhuyze & Loosveldt, 
2013). However, since socio-demographics are often only weakly related to response 
mechanisms or target variables, it is possible that many ME estimates are still biased 
after adjustment for selection bias. Plausible adjustment therefore is the key challenge 
of ME estimation today. 

Finding stronger adjustment covariates is one potential solution to the problem. 
Buelens et al (2012) and Schouten et al (2013) proposed a ‘between-subject’ design 
where the full sample received a follow-up using face-to-face. The follow-up is 
conducted to create strongly related adjustment covariates by repeating part of the 
questions.  Buelens et al (2012) and Schouten et al (2013) propose to estimate mode 
effect components by calibrating response to the follow-up wave response on these 
repeated variables. We call this a between-subject design with follow-up. 

In this paper, we propose an alternative design based on a similar data collection; we 
address the deficiency of adjustment covariates by using ‘within-subject’ designs with 
repeated measures (Winship & Morgan, 1999). In these designs, the same sample is 
again approached at two subsequent points in time by two different modes while 
posing relevant target variables repeatedly. However, contrary to the between-subject 
design with follow-up we view the answers at the two time points as repeated 
measurements and derive measurement effect estimates directly from them. 

We note that we use the term ‘design’ to indicate the combination of data collection 
design and estimators. Although the within-subject design and between-subject design 
with follow-up are similar in their data collection design, they employ different 
estimators. In this paper, we will discuss the resulting differences in assumptions that 
are made by the two designs. We will, however, not compare differences in actual 
estimates, but reserve this for a future paper. 
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We also note that the focus of this paper is on measurement effects. For this reason, 
we do not distinguish between coverage effects and nonresponse effects, as is done in 
Buelens et al (2012) and Schouten et al (2013), but consider only the compound of the 
two effects as selection effects.  

The within-subject data collection is fielded independently of any ongoing mixed-mode 
survey. Its sole purpose is the estimation of particular types of MEs, which, as we 
demonstrate in section 2, enable survey practitioners to design unified mode 
questionnaires in two common mixed-mode scenarios: (a) single-to-single mode 
switches during longitudinal surveys and (b) introduction of sequential mixed-mode 
surveys. In the within-subject experiment, a selection of candidate modes (i.e., modes 
considered for a mixed mode design) is administered to all relevant population 
domains before design decisions are taken. This aspect can be considered a strong 
feature of the method. Earlier approaches often suppose a specific mixed-mode survey 
is readily available and MEs are to be estimated from this data only (Vanniewenhuyze 
& Loosveldt, 2013). However, in this case, alternative modes can hardly be considered, 
whereas a separate experiment enables researchers to evaluate different mixed-mode 
options before taking design decisions. 

This paper is structured as follows. We start by defining different types of MEs and 
explain how they can be applied for unimode questionnaire design. Next, we review 
the available approaches to estimation of measurement effects. Subsequently, we 
explain how to estimate MEs in within-subject designs and offer tests of the method’s 
basic assumptions. Finally, we illustrate the method using a series of practical examples 
from a large-scale within-subject data collection within the Dutch Crime Victimization 
Survey. 
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2. Definition and practical application of MEs 

Let m
tY denote a continuous or discrete random variable for the outcome on a given 

question posed under mode M at occasion t (Vannieuwenhuyze, Loosveldt, & 
Molenberghs, 2010). The distribution of differences in outcomes between two modes, 

A and B, is denoted by )( 11
ab YYP − , if Y is continuous, and ),( 11

ab YYP , if Y is discrete. 
These can be considered the distributions of ‘individual-level’ MEs. The average 
‘marginal ME’ is then defined as expected value of the continuous distribution of 
individual-level MEs 

)()( 11
ab YEYEME −= . (1) 

If Y is discrete, (1) denotes the deviation from marginal homogeneity of a category y in 

the contingency table of bY1 and aY1 .

The deviations of the mean of outcomes )( m
tYE from their ‘true mean’ can be defined 

as ‘measurement error’. Therefore, an ME of size zero indicates that a question posed 
under different modes evokes the same extent of measurement error. This idea will 
become central when applying ME estimates for unified mode design. 

First, however, we introduce the situation when a survey is administered using a 
particular mode. In this situation, the fieldwork differences between modes evoke 
specific ‘response mechanisms’, denoted by binary response variable m

tS , where ‘1’ 

indicates response and ‘0’ nonresponse. m
tS can subsume the outcome of all possible 

reasons for mode-specific non-observation against the full population, such as refusal, 
non-contact or non-coverage (Groves, 1989; Groves et al., 2010). In principle, 
measurement error might differ between respondents with higher or lower ‘response 
probability’ )( m

tSP (Fricker & Tourangeau, 2010; Kaminska, McCutcheon, & Billiet, 

2010). Therefore, it makes sense to consider MEs also conditional on m
tS , which is 

called the average ‘conditional ME’. For two modes, there are two conditional MEs for 
respondents: 

 )1|()1|( 1111 =−== aaaba
R SYESYEME (2) 

 )1|()1|( 1111 =−== babbb
R SYESYEME (3) 

and two conditional MEs for nonrespondents, not considered here. For example, a
RME  

indicates the expected difference in measurement error (answers) between modes A 
and B that can be expected from respondents in mode A. Questionnaire designers 
often try to minimize absolute measurement error of a survey design against the 
population value. Since any mode may measure Y with error, the presence of a ME 
indicates in most situations that one of the modes measures Y with more error than 
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the other. Furthermore, if it is known which mode evokes less measurement error on 
Y, questionnaires can be optimized towards this ‘benchmark mode’. One way to do so 
is by so-called unified mode questionnaires, which are designed to evoke equal 
measurement error from two given modes (de Leeuw, 2005; Dillman & Christian, 2005; 
Dillman, Smyth, & Christian, 2009, p. 326). An optimal unified mode questionnaire 
minimizes MEs and also maintains measurement error of the mode that is known to 
evoke less error.  

For designing such questionnaires ME estimates are needed. However, since different 
mixed-mode designs evoke different response mechanisms, the type of ME that has to 
be estimated differs, too. As we discuss in the following, the two conditional MEs (2) 
and (3) can be used for designing unified mode questionnaires in two different types of 
mixed-mode situations (as discussed in De Leeuw, 2005; Dillman, Smyth, & Christian, 
2009, p. 306-310; Groves et al., 2010, p. 175-177).  

First, consider the scenario when a survey in mode A is exchanged by a survey in mode 
B. There are various situations in practice, when this ‘single-to-single mode switch’ may 
be required. For example, in repeated cross-sectional surveys using mode A, cost 
constraints might necessitate switching the survey completely to (cheaper) mode B. In 
this scenario, measurement error of mode A often needs to be preserved to ensure 
comparability in time or because it is known to have smaller error. Another situation is 
represented by mixed-mode panel surveys that apply different modes in different 
survey waves (e.g., mode A for recruiting respondents and mode B for re-interviewing).  

Table 1: Hypotheses about (double-) conditional MEs to find unified mode designs  

 Measurement Error desired from (Benchmark Mode) 

Design Scenario Mode A Mode B Unified design only 

 (i.e., A or B) 

1. Single: A switched to B 0=b
RME  

(always 
provided) 0=b

RME  

2a. Sequential: B followed 
by A 0=b

RME  0,
, =ab
RNRME  00 ,

, =∧= ab
RNR

b
R MEME

2b. Sequential: A followed 
by B 

0,
, =ba
RNRME  0=a

RME  00 ,
, =∧= ba
RNR

a
R MEME

Second, consider the scenarios when a survey is conducted in mode A (or B) and the 
nonrespondents are followed up by alternative mode B (or A). This design is known as 
a ‘sequential mixed-mode’ survey. Minimizing measurement error is a problem of 
considerable concern in this design, too, because the presence of MEs implies that one 
of the modes increases total error of the survey.  
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Now, three objectives may apply: mode A is known to evoke least error and is taken as 
the benchmark mode, mode B is known to evoke least error and is taken as the 
benchmark mode, or it is unknown what mode produces least error. The three 
scenarios and the three objectives lead to nine situations (Table 1). We discuss each of 
them.  

When it is the objective to nullify MEs, zero-constraint hypotheses on different MEs are 
assessed. First, consider the single-to-single mode switch (scenario 1). Suppose it is the 
goal to optimize measurement error at the level of mode A. Then the relevant test is 

represented by 0:0 =b
RMEH indicating that 

 )1|()1|( 1111 === babb SYESYE ,

so that measurement error of respondents in the ‘new’ mode B is equal to error 

provided under mode A (first row, second column). If 0≠bRME , the question’s 
wording and format need to be reconsidered in order to find a better unified mode 
design, where, obviously, this might not always be possible in practice. Column three 
lists the second objective, when measurement error at the level of mode B is the 
benchmark. In this case, the ‘new’ survey using mode B obviously evokes measurement 
error of mode B, so that separate testing is not needed. The test in column four 
(‘unified design only’) considers the third objective. In some practical cases, the 
researcher cannot be certain about the size of measurement error in different modes. 
In this situation one has to act as if either mode A or mode B evoked least error. This 

situation thus requires testing 0=b
RME  as well. 

We consider the two sequential mixed-mode designs (scenarios 2a and 2b). Consider 
first design 2a. The mean of the outcomes provided by respondents at the first step of 

the sequential design )1|( 11 =bb SYE exhibits measurement error of mode B. If 
measurement error of mode A is desired for the mixed-mode sample (second column, 

table 1), it needs to be evaluated whether 0=b
RME , likewise argued for design 1. This 

is sufficient, because respondents at the second step of the sequential design already 
provide measurement error at the level of mode A. If measurement error of mode B is 
desired (third column), the respondents at the second occasion provide answers with 
measurement error of mode A which might differ from mode B. The mean outcome of 

this group is )1,0|( 212 == aba SSYE , where aY2 and aS2 now reflect that outcomes 
and response mechanism are observed at a later point in time (occasion two). Since 

measurement error of )1,0|( 212 == aba SSYE should not differ from mode B, we 

require 

 
0)1,0|()1,0|( 212212

,
, ===−=== abaabbab
RNR SSYESSYEME . (4) 



9

ab
RNRME ,

, is called a ‘double-conditional ME’, because it conditions on two response 

mechanisms. It is defined for a sequential mixed-mode design, which follows up 
nonrespondents in mode B by mode A. The hypotheses for design 2b follow the same 
logic as for 2a and can be taken from table 1 (last row). However, now the double 
conditional ME is defined as: 

 
)0,1|()0,1|( 122122

,
, ==−=== abaabbba
RNR SSYESSYEME (5) 

for a sequential design following up mode A by mode B at occasion two. Under the 
third objective, both the conditional and double-conditional effects need to be 
assessed simultaneously to guarantee a unified design. 

In summary, it is important to realize that marginal MEs are irrelevant in all scenarios. 
Estimation can, therefore, focus only on (double-) conditional instead of marginal MEs.
The next section discusses the available approaches and assumptions needed for 
estimating the defined quantities before section 4 presents the new method. 
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3. Estimating measurement effects in between subject 
designs 

The most common approach to estimating conditional and marginal MEs are 
experiments using so-called between-subject designs (BSD), for which separate 
independent samples are drawn and assigned to different modes (e.g., Aquilino, 1994; 
Tourangeau & Smith, 1996; Schonlau et al., 2004; Fricker et al., 2005; Kreuter, Presser, 
& Tourangeau, 2008; Heerwegh & Loosveldt, 2008; Chang & Krosnick, 2009; Dillman et 
al., 2009; Heerwegh, 2009; Jäckle, Roberts, & Lynn, 2010).  

The key problem in BSD  is the presence of missing data, of which we can distinguish 

two different types illustrated in figure 1. Depicted are the variables aY1 , bY1

introduced in section 2 and auxiliary information X. The black areas represent the 

observed part of the data (i.e., response, 11 =aS and 11 =bS ) and the grey areas 

missing data due to unit nonresponse ( 01 =aS and 01 =bS ), the first type of missing 

data. Furthermore, the moment in time m
tY has been observed under a given mode all 

outcomes in other modes are considered ‘potential’ (Rubin, 1974, 1976, 1977, 2005; 
Holland, 1986). Potential outcomes can never be observed in reality, because it is not 
possible to observe outcomes under two modes at the same point in time. Therefore, 
the potential outcomes represent the second type of missing data depicted by white 
color. Finally, the auxiliary information X is supposed to be exogenous (i.e., unaffected 
by any MEs; Imbens, 2004) and available for all units. 

 

Figure 1: Missing Data Pattern of a Between-Subject Design 

Response
Nonresponse
Potential Outcomes
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In sections 3 and 4, we introduce various assumptions. To distinguish them from other 
expressions, we label them using a prescript “A”. So the first assumption is labeled A1 . 

3.1 The naïve unadjusted ME estimator in between-subject designs 
A first approach to estimate marginal or conditional MEs is represented by the simple 
difference in means between response samples. The expected value of this ‘naïve’ 
estimator, i.e.: 

 )1|()1|()ˆ( 1111 =−== aabbnaive
R SYESYEEME (6) 

confounds measurement error with non-observation error. The naïve estimator is then 

said to suffer from selection bias. Using naive
REM̂ as an estimator for b

RME , the 

selection bias is represented by the difference in non-observation errors on aY1 :

)1|()1|()( 11111 =−== aabaa SYESYEYSE (7) 

and when using naive
REM̂ as an estimator for a

RME  it is the difference in non-

observation error on bY1 :

)1|()1|()( 11111 =−== abbbb SYESYEYSE . (8) 

The selection bias of naive
REM̂ against the marginal ME is given by the difference in 

non-observation errors on bY1 and aY1 :

))()1|(())()1|(( 111111
aaabbb YESYEYESYESE −=−−== . (9) 

In all cases, naive
REM̂ is an estimator for a ‘net effect’, confounding selection bias with 

MEs, e.g. for conditional MEs:

a
R

bb
R

anaive
R MEYSEMEYSEEME +=+= )()()ˆ( 11 . (10) 

Obviously, any technique leading to unbiased estimates of conditional or marginal MEs 
‘disentangles’ MEs from their selection biases, also referred to as ‘selection effects’ in 
this context (Vannieuwenhuyze & Loosveldt, 2013). The available approaches to 
unbiased estimation and their assumptions are discussed next. 

3.2 Missing data adjustment in between-subject designs 
Given the missing data problem illustrated in figure 1, missing data adjustment is the 
primary approach to unbiased ME estimation. Various techniques have been discussed 
in the context of the causal inference literature focusing on the estimation of potential 
outcomes (Imbens, 2004; Rubin, 2005; Kang & Schafer, 2007; Schafer & Kang, 2008) 
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and nonresponse in sample surveys focusing on the adjustment of non-observation 
error (Särndal & Lundström, 2005). Techniques include calibration weighting, (robust) 
regression estimation (Cochran, 1977; Bethlehem, 1988, 2002; Särndal & Lundström, 
2005; Kang & Schafer, 2007), matching (Rosenbaum, 2002), and multiple imputation 
(Rubin, 1988; Schafer, 1997; van Buuren, 2012). When estimating marginal MEs, all of 
these techniques are based on the assumption that nonresponse in both samples is 
missing at random (MAR) given auxiliary information X implying (Rubin, 1976; Little & 
Rubin, 2002): 

 XSY mm |11 ⊥ for { }bam ,= (A1) 

where ⊥ denotes independence of mY1 and mS1 (here condtional on X). To the 

contrary, when estimating conditional MEs, the conditional means of potential 

outcomes, i.e. )1|( 11 =ab SYE and )1|( 11 =ba SYE , are needed. It is never possible to 

observe these quantities in reality, but they can be estimated assuming MAR as: 

 1,| 111 =⊥ bab SXSY to estimate )1|( 11 =ab SYE (A2a) 

 1,| 111 =⊥ aba SXSY to estimate )1|( 11 =ba SYE . (A2b) 

The assumptions are also known as ‘unconfoundedness’ in the causal inference 
literature1 (Imbens, 2004; Kang & Schafer, 2007; Schafer & Kang, 2008). A2a/b imply 

that X explains the distributional differences between response samples on aY1 and 
bY1 . For example, assuming (A2a) one may predict the potential outcomes 

)1,|( 11 =ab SXYE from a regression model fitted on the observed data 

)1,|( 11 =bb SXYE . The mean of potential outcomes over X then serves as an unbiased 

estimate of )1|( 11 =ab SYE .

Assumptions (A1) and (A2a/b) are more likely to hold in practice, when X strongly 
relates to the response mechanism and aY1 and bY1 . Usually socio-demographic 
variables are available as auxiliary data (X) in survey research (e.g., sampling frame 
information). Socio-demographics have been applied as ‘control covariates’ in 
regression models (Tourangeau & Smith, 1996; Heerwegh & Loosveldt, 2008), as 
weighting variables (Holbrook, Green, & Krosnick, 2003; Schonlau et al., 2004; Fricker 
et al., 2005; Chang & Krosnick, 2009; Jäckle, Roberts, & Lynn, 2010; Klausch, Hox, & 
Schouten, 2013b), or for matching (Lugtig et al., 2011). Survey practice has shown, 

 
1 It can be shown that MAR assumptions, when conditioned on a second response mechanism 
as in A2a/b, are equivalent to the unconfoundedness assumption typically made in causal 
inference theory (Rubin, 1974). In this literature ‘treatment assignment’ is normally indicated 
by one selection mechanism only, say (in words, ‘response is through mode A or 
mode B’), whereas our notation resorts to more than one selection mechanism, because 
otherwise mode-specific unit nonresponse cannot be described. Unconfoundedness says that 

which is equivalent to A2a/b where and .
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however, that socio-demographics are seldom strongly related to response 
mechanisms or many survey target variables (Couper et al., 2007; Nicoletti & Peracchi, 
2005) and mode differences in socio-demographics between modes are often small 
(Klausch, Hox, & Schouten, 2013a). Adjusted survey estimates also often do not differ 
greatly from unadjusted estimates (Schonlau et al., 2009). It is, therefore, possible that 
assumptions (A1) or (A2a/b) do not hold and estimates of marginal or conditional MEs 
may still be biased when adjusting for socio-demographic differences between 
response samples. 

3.3 The between-subject design with follow-up 
An extension to the between-subject design is a design where an intensive follow-up is 
employed to the full sample to obtain strong auxiliary variables for adjustment. 
Buelens et al (2012) and Schouten et al. (2013) present a between-subject design in 
which the same sample of respondents is re-interviewed face-to-face in a second wave 
after some time has elapsed. They weight the first occasion using repeated target 
variables from the second survey as additional auxiliary data, while assuming (A2a/b) 
holds conditional on this new information. Since repeatedly measured target variables 
are correlated more strongly than target variables and socio-demographics, 
assumptions (A2a/b) are more plausible in this design. If mode A is used as the re-

interview mode, this approach estimates a
RME .

Buelens et al (2012) discuss various estimation methods to disentangle the mode 
effects given  the follow-up data in their case study on the Crime Victimisation Survey 
(CVS) within Statistics Netherlands project Mode Effects in Social Surveys (MEPS in 
Dutch). In the case study, mode-specific selection bias turned out to be relatively small 
so that the estimation methods produced very similar estimates. 

We label this design as a between-subject design with follow-up (BSFU) and will 
compare it to the within-subject designs presented in this paper. Buelens, Van der Laan 
and Schouten (2012) provide detailed mode effect estimates for Crime Victimisation 
(CVS) and Labour Force Survey (LFS) core variables based on the BSFU. 

3.4 Other approaches 
Other approaches to common missing data adjustment have recently become 
available. Vannieuwenhuyze, Loosveldt, and Molenberghs (2013) suggested that a ME 
might be explainable by a mediating factor, the so-called ‘frontdoor variable’ (e.g., 
‘survey enjoyment’). If the frontdoor variable is not affected by selection bias itself and 
fully mediates the ME between mode and target variable, conditional MEs can be 
estimated using a method described by Pearl (2009, p. 81-85; Morgan & Winship, 
2007, p. 224-230). However, currently, there is not any known set of variables that 
would plausibly fulfill the criteria required from frontdoor variables. 

As both missing data and frontdoor adjustment generally lack useful covariates in 
practice, Vannieuwenhuyze, Loosveldt, and Molenberghs (2010, 2012) suggested a 
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second alternative, which does not presuppose auxiliary data. The method supposes, 
however, that data from a mixed-mode survey are readily available. To illustrate, 
suppose that this is a sequential mixed-mode survey, where nonrespondents to a 
survey in mode B are offered to reply by alternative mode A (cf. design 2a in section 2). 
Now a ‘comparison sample’ is surveyed additionally in mode A only. Again, this design 
can be considered a between-subject design, where now one of the samples is made 

up by a sequential mixed-mode survey. To estimate the conditional b
RME  and the 

double-conditional ab
RNRME ,

, , it is then assumed that: 

 )1|()11|( 11121 ===∪= aabaa SYESSYE (A3) 

This ‘representativeness assumption’ says that error due to non-observation on aY1 is 
equivalent for the sample realized by the mixed-mode survey and the single-mode 
survey in mode A. To the contrary, mixed-mode surveys are often regarded as a 
solution to reduce non-observation error below that of single-mode designs (de Leeuw, 
2005). However, in this case (A3) would not hold. Despite the theoretical importance of 
the method, its practical applicability seems somewhat limited for this reason. 
Although it can be argued that some single mode surveys (e.g., face-to-face) achieve 
about equivalent response rates as mixed-mode surveys (e.g., a sequential design 
involving face-to-face), response rates provide insufficient indication about (A3) for any 
given target variable. Furthermore, this argument limits the number of potential 
mixed-mode designs to which the method applies (i.e., to those with equivalent 
response rates as a comparison sample). Therefore, the authors call for designs to 
collect better adjustment covariates (Vannieuwenhuyze, Loosveldt, & Molenberghs, 
2013). This suggestion was first followed by Schouten et al. (2013) presenting the 
between-subject design with follow-up. 

However, whereas all approaches in this section merely exploit information for a re-
interview as additional adjustment covariates, an alternative is estimating MEs directly 
using repeated measures data from different modes. Then the design, however, is 
changed to a ‘within-subject’ structure. There are several advantages connected to this 
approach, elaborated in the next section. Prominently, the within-subject method 
allows estimating all (double-) conditional MEs defined in section 2. 
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4. The within-subject design 

In essence, the within-subject design allows estimating conditional and double-
conditional MEs needed to take design decisions reviewed in section 2 under weaker 
MAR assumptions than earlier approaches reviewed in section 3. The new method 
does not allow estimating marginal MEs, however. As outlined in section 2, this is, 
fortunately, also not a necessity for effective unimode questionnaire design.  

The exposition of the method is structured as follows. We start by providing an outline 
of the missing data pattern encountered in within-designs and two basic assumptions 
made during estimation: first, time-stability of answer distributions as well as response 
probabilities, and second, independence of occasions (section 4.1). We then explain 
estimation under these basic assumptions (section 4.2). Subsequently, we discuss some 
of the practical circumstances under which these assumptions are rendered more 
plausible (section 4.3). Next, we compare assumption in within-subject designs to 
between-subject designs with follow-up (section 4.4). Finally, we present statistical 
tests of the basic assumptions and discuss ways to adjust for time-instability (section 
4.5). Whereas this exposition is conceptual, section 5 presents an empirical application. 

4.1 Outline and basic assumptions 
Contrary to a between-subject design (BSD), the within-subject design (WSD) requires 
surveying the full sample only by a single mode at a first occasion (assume B). After 
some time has elapsed, this sample is approached again at a second occasion, but then 
in a different mode (assume A). Any WSD leads to the missing data pattern shown in 

figure 2. The first occasion provides observations from respondents ( 11 =bS ) on bY1

(black area) and unit nonresponse (grey area, 01 =bS ).  At the second occasion the 

survey in mode A leads to observations of aY2 .

Estimation of MEs now makes the central assumption that the observed outcomes on 
aY2 and aS2 can be used as substitutes for the potential outcomes  aY1 and aS1 which 

are not observed by design at occasion one (white area, figure 2). This substitution 
defines two basic assumptions of the within-subject design. 

First, answer distributions may differ between occasions due to factors related to the 

progression of time, such as seasonal change of true-scores. In this case  aY2 is biased 

against aY1 . The means of answer distributions are called time-stable if: 

 0)( 12 =− aa YYE and   0)( 12 =− bb YYE . (A4) 

Furthermore, response mechanism aS1 may change across time, if respondents have 

different propensities to participate with respect to aY1 and bY1 . If we have: 
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0)1|()1|( 1121 ==−= aaaa SYESYE (A5a) 

 0)1|()1|( 1121 ==−= abab SYESYE (A5b) 

a change in response probabilities does not affect the means of non-observation errors 

on aY1 and bY1 , so that these errors may be called time-stable.  

 

Figure 2: Missing Data Pattern of a Within-Subject Design 

 

Second, being a respondent or a nonrespondent at occasion one might influence the 

levels of aY2 or response probabilities defined by aS2 . For example, respondents at 
both occasions might reproduce answers from the first occasion. In this situation, bias 

of unknown size would be created on aY2 . The assumption that respondents at 
occasion two answer as if the survey at occasion one had not taken place is called 
‘measurement independence’ (A6a). Similarly, the assumption that response samples 
are realized as if the survey at occasion one had not taken place is called ‘response 
independence’ (A6b).  

It is important to note that if modifications are made to the wave 1 questionnaire in 
wave 2, i.e. repeating only part of the questions or a slight rewording of the questions 
themselves, then questionnaire effects may enter and affect wave 2 answers. Absence 
of such effects would then be seen as part of measurement independence (A6a). They 
play a role when comparing the WSD to the between-subject design with follow-up 
(BSFU). 

In the next section, we outline estimation assuming both basic assumptions hold true, 
before discussing them in detail in section 4.3. 

Time

Response
Nonresponse
Potential Outcomes
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4.2 Estimating conditional and double-conditional MEs 
Likewise BSDs, WSDs also encounter unit nonresponse under both modes (grey areas, 
figure 2). To deal with this problem, estimation in within-designs considers unit 
nonresponse ignorable given the observed outcomes on repeatedly measured Y.
Formally: 

1,,| 1122 =⊥ bbaa SYXSY (Forward -directed MAR) (A7a) 

1,,| 2211 =⊥ aabb SYXSY (Backward-directed MAR). (A7b) 

These assumptions imply that observations at occasion one and two are missing at 
random (MAR) (Rubin, 1976; Little & Rubin, 2002). (A7a) is called forward-directed 
MAR, because missing data at a later point in time are ignorable on their earlier 
measurements. Similarly, (A7b) is called backward-directed MAR, because earlier 
missing data are ignorable on later observations. The assumptions are extensions of 
the ‘unconfoundedness’ assumptions in between-designs, (A2a/b), by information 

from the within-subject design. However, since the partial correlation of bY1 and aY2 is 
probably strong in most cases, (A7a/b) appear much more plausible than (A2a/b) when 
using only socio-demographics as auxiliary data.  Likewise (A2a/b), we do not assume, 
however, that (A7a/b) would hold marginally, i.e. for all individuals, because outcomes 
are not observed for the group of individuals who are nonrespondents under both 
modes. (A7a/b) therefore allow estimating (double-) conditional MEs, but not marginal 
MEs. Estimating marginal MEs would still require ignorable nonresponse on X observed 
for all respondents as stated, for example, in (A1). 

 

Figure 3: Ignorable part of missing data (dashed) in the Forward Method (left) and 
Backward Method (right) 

Time Time
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4.2.1 The forward method for estimating b
RME  

The two mean components of b
RME , )1|( 11 =bb SYE and )1|( 11 =ba SYE , are 

estimated separately. First, )1|( 11 =bb SYE is estimated directly from the data 
observed at the first occasion. Second, the mean of potential outcomes 

)1|( 11 =ba SYE is not observable by design. Since we assume that answer distributions 
are time-stable, (A4), we can employ the observations under mode A at occasion two, 
aY2 , as a surrogate to aY1 , while using only the information from respondents under 

mode B at occasion one (i.e., )1|( 12 =ba SYE ). 

Obviously, some information to estimate )1|( 12 =ba SYE is missing due to unit 
nonresponse at occasion two. This problem is illustrated in figure 3 (left), where the 
missing information is highlighted as a dashed area.  

Assuming now forward-directed MAR, (A7a), these missing data are ignorable given the 
earlier observation of bY1 . Consequently, the missing data problem can be solved using 
techniques such as regression estimation, weighting, matching or imputation. 

4.2.2 The backward method for estimating a
RME  

To estimate a
RME , again two conditional means are needed. First, the conditional 

mean )1|( 11 =aa SYE is estimated from the observed data under mode A at the 

second occasion, i.e. )1|( 22 =aa SYE . Under time-stability, (A4) and (A5a), these means 
are equal.  
Second, estimating the mean )1|( 11 =ab SYE exploits answers from respondents at 

the first occasion bY1 under mode B, but the answers of respondents to mode A are 
actually needed. However, the within-design facilitates observing the response 
mechanism A at the second occasion, so that we estimate the conditional mean 

)1|( 21 =ab SYE instead. Since we assume that non-observation error on bY1 is stable 

across time, (A5b), )1|( 21 =ab SYE equals )1|( 11 =ab SYE .

Again we face a missing data problem due to nonrespondents under mode B at 
occasion one, who are respondents at occasion two. This missing part of the data is 
illustrated by the dashed area in figure 3 (right). However, assuming data are 
backward-directed MAR (A7b), the conditional mean can be estimated. 

4.2.3 Estimating double-conditional MEs 

Double conditional MEs are defined for sequential mixed-mode designs (cf. section 2), 
and conditioned on two response mechanisms. In particular, ab

RNRME ,
, (formula 4) is 

defined for respondents to mode A at a second occasion who were nonrespondents 
under mode B (i.e., }1,0{ 21 == ab SS ). The mean )1,0|( 212 == aba SSYE is observed 
in the within-subject design. In fact, sequential mixed-mode designs can be regarded as 
a variant of within-subject designs, in which respondents at the first occasion are not 
followed up in an alternative mode. 
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Assuming time-stability we now only need to estimate )1,0|( 211 == abb SSYE , for 
which observations are missing due to nonresponse under mode B at occasion one. 
This missing part of the data is illustrated by the dashed area in figure 3 (right). 
Assuming backward-directed MAR, (A7b), this mean can be estimated, since then 

)1,1|()1,0|( 211211 ===== abbabb SSYESSYE .

The second double-conditional ba
RNRME ,

, exchanges the order of modes. Now 

nonrespondents under mode A, who are respondents under mode B are of interest. 
Since independence of occasions is assumed (A6a/b), the order in which modes are 
presented is irrelevant for ba

RNRME ,
, . Estimation is then based on the Forward Method. 

4.3 Design considerations about time-stability and independence 
Crucial to the forward and the backward method are the assumptions of time-stable 
answer distributions (A4), time-stable response probabilities (A5a/b), as well as 
measurement and response independence (A6a/b).  

On the one hand, time-stability mainly depends on exogenous factors related to the 
progression of time, such as seasonal change of true scores (A4) or survey climates in 
societies (A5a/b). The extent of change thus also depends on the type of target 
variables and populations at hand. In general, however, shorter time lags between 
occasions let time stability appear more plausible regardless of particular variables and 
populations. 

On the other hand, measurement and response independence depends more heavily 
on design inherent factors and thus might be controllable to greater extents by 
fieldwork design. For example, respondents’ ability and motivation to recall answers 
from the first occasion affects measurement independence (A6a). Cognitively salient 
questions take longer time to be forgotten and thus require longer time lags between 
occasions. More generally, measurement independence is a rather common 
assumption in social research. It is of importance in the MTMM literature (Saris, 
Satorra, & Coenders, 2004), for example, or during psychometric testing (e.g., 
intelligence, mathematical abilities), which normally assumes independence of answers 
to similar items.  

Response dependence (A6b) can be caused by heavy response burden during the first 
occasion. Several fieldwork precautions can reduce this risk, however. First, interview 
length of the first survey should be short. Second, during the recruitment of the second 
survey it should be made clear to all individuals why (repeated) participation is 
necessary (e.g., to ask additional questions on same topic). Third, if interviewers are 
employed at the second occasion, they require special training to deal with 
respondents’ questions about the first occasion. Fourth, in order not to influence 
response probabilities at the first occasion, individuals should be kept unaware at 
occasion one about the follow up survey. Finally, longer time lags between occasions 
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also turn response independence much more likely, as response probabilities can 
normalize across time. 

Curiously, time-stability is more likely to hold for shorter, whereas both independence 
assumptions are more likely for longer time lags. Hence, there is a tradeoff in terms of 
the timing of occasions. We suggest that prior knowledge about target variables and 
response probabilities (e.g., from time-series data) can give an additional indication 
about the time frame in which stability can be assumed. If time-stability can be 
assured, choosing longer time lags is always advisable to guarantee both independence 
assumptions. Another option is thorough pre-study that evaluates across which time 
periods important target variables and response probabilities can be considered time 
stable and independent. 

Not always can a thorough design reduce the risk that some basic assumptions do not 
hold. Therefore, separate testing of the assumptions offers additional reassurance. In 
the next section several tests are presented in detail. 

4.4 Differences to the between-subject design with follow-up 
The BSFU and the WSD rely differently on the variables measured in the follow-up 
wave. For the BSFU the wave 2 variables are merely adjustment covariates, while for 
the WSD they are repeated measurements and are employed also to derive estimates 
for double-conditional MEs. Contrary to WSD, BSD and BSFU are not designed to 
estimate double-conditional MEs or the single mode b

RME . The BSD and BSFU are 

designed to estimate a
RME only, where A is the follow-up mode, so that they can only 

be compared to WSD with the backward method. 

Essentially, BSFU and WSD differ only in two assumptions: the measurement 
independence assumption (A6a) and the unconfoundedness assumptions (A2a and b). 
Whereas WSD has to make the measurement independence assumption in order to 
view the follow-up wave as a repeated measurement, in BSFU this assumption does 
not have to be made. However, that does not imply that BSFU estimation is not 
affected by any measurement dependence. In WSD, the unconfoundedness 
assumptions only have to be valid for differences in answers between modes for the 
same respondent. For BSFU the unconfoundedness assumptions apply to the answers 
themselves, which is (intuitively) a stronger assumption. Any measurement 
dependence threatens the unconfoundedness assumptions as the adjustment 
covariates are likely to become less informative. This threat is anticipated to be larger 
for BSFU than for WSD. By and large, the two designs may impose similar demands on 
data collection, but as mentioned, WSD explicitly includes estimation of double-
conditional MEs  and also allows for the estimation of b

RME , which is interesting when 
redesigning a single mode face-to-face survey to a sequential design with face-to-face 
as follow-up mode. 

A real difference between BSFU and WSD, however, arises when the questionnaire is 
considerably revised or shortened for the follow-up wave. Any questionnaire effects 
are then combined with measurement dependence and it is likely that BSFU is more 
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robust. As an extreme case one may consider a follow-up wave with repeated 
measures rather than with repeated measurements, i.e. in the follow-up wave  
different items are asked that are anticipated to load strongly on the same latent 
variables as the original items; WSD would then not be possible. 

4.5 Testing and adjusting for time-instability and dependence of occasions 
Estimates from the WSD can be biased, if the time-stability (A4 and A5a/b) and 
independence assumptions (A6a/b) do not hold. In this section, we present design 
extensions that help to assess the potential for violations of the basic assumptions in 
practice. It is possible to adjust for bias due to time-instability, furthermore.  

Tests for time-stability are based on an independent, parallel sample, in which the 
mode is kept constant across occasions to avoid confounding of MEs with time-related 
change. This sample is then referred to as a control group and the resulting design is 
called a ‘within-subject control-group’ design (WSCG). Control groups represent a 
common approach to exclude time related change as an alternative explanation to a 
treatment in interrupted time-series designs (Winship & Morgan, 1999).  

If mode A is used for the control group, the missing data pattern of the resulting WSCG 
design is shown in figure 4. In this case, WSCG designs are equivalent to between-
subject designs extended for a second measurement occasion. Based on this WSCG 
design it is possible to estimate and adjust for time-related bias assuming that change 
observed in the control group is equivalent in the sample initially interviewed in mode 
B (‘treatment’). 

 

Figure 4: Missing Data Pattern of a Within-Subject Control-Group Design 
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4.5.1 Testing and adjusting time-related bias of the forward method 

The Forward Method might introduce bias if aY1 changes across time, i.e., 

 )1|()1|( 12111 =−==∆ baba SYESYE , (11) 

because observations from the second occasion are used instead of the potential 
outcomes at the first. Data from the control group design is used estimate this bias, 
assess its size, and adjust the estimator appropriately.  

However, whereas the control group design can be applied to estimate change in a
tY

for respondents in mode A, the change 1∆ is defined for respondents in mode B. It, 

therefore, needs to be assumed that change on a
tY is independent of responding in 

modes A or B. 

 )1|()1|( 12111 =−==∆ aaaa SYESYE . (A8a) 

The assumption implies that we allow for change of a
tY , but we assume that there is 

no ‘second order effect’ on the change (caused by selection bias). This can be 

considered a weaker assumption than assuming time-stability for a
tY globally (A4). Put 

differently, if a change in the control group (mode A) is insignificant, it becomes more 
likely that this also holds for the group of respondents under mode B. Still, an estimate 

of 1∆ using the control group can also be biased, if respondents in mode B change 

differently than respondents in mode A. 

Estimation of 1∆ follows the Forward Method, but now applied to the control group. 

Whereas )1|( 11 =aa SYE is directly observable from the control group at occasion one, 

)1|( 12 =aa SYE needs to be estimated in the presence of missing data from 
nonrespondents at occasion two, who are respondents at occasion one. This quantity 
can be estimated using the Forward Method assuming: 

1,,| 1122 =⊥ aaaa SYXSY (Forward-directed MAR in control group)       (A9a) 
 

4.5.2 Testing and adjusting time-related bias of the backward method 

Contrary to the Forward Method, the Backward Method can lead to two types of time-
related biases in the within-subject design. First, we have: 

 )1|()1|( 22112 =−==∆ aaaa SYESYE (12) 
 
which is caused by substituting the mean of respondents at occasion one by 
respondents at occasion two. Since )1|( 11 =aa SYE can be estimated directly from the 
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control-group at occasion one, this bias is avoided immediately (put differently, 2∆ is 
estimated without bias in the WSCG design). 
 
Second, we might introduce bias: 

 )1|()1|( 11213 =−==∆ abab SYESYE (13) 
 
which is caused by exploiting the response mechanism at the second occasion instead 
of the first. This bias is equivalent to the change in non-observation error on bY1 from 
occasion one to occasion two.  
Using the control group it is again possible to estimate this bias, when we assume that 
the change in non-observation error on bY1 is equivalent to the change on aY1 which is 
observable in the control group:  
 

)1|()1|( 11213 =−==∆ aaaa SYESYE (A8b) 
 
This assumption appears to be weaker than assuming time-stability of non-observation 
error (A5b), because when a change in non-observation error on aY1 is insignificant, it 

appears more plausible to assume this change is also small on bY1 . Put differently, we 
assume that there is no second-order effect of the mode of measurement on non-
observation error. 

Estimating 3∆ is straightforward exploiting the Backward Method to find the 

conditional mean )1|( 21 =aa SYE , assuming: 
 

1,,| 2211 =⊥ aaaa SYXSY (Backward-directed MAR in control group).       (A9b) 

4.5.3 Testing for measurement and response independence 

Our ability to test for dependence of occasions (A6a/b) based on a WSCG design is 
somewhat more limited. In a WSCG design it can be assessed, whether the assignment 
to modes A and B at the first occasion ( 1M ), which is fully random, has an impact on 

)1|( 22 =aa SYP . If: 

 0),1|(),1|( 1221224 ≠==−===∆ bMSYEaMSYE aaaa
(14) 

 
A6a/b do not hold. This test, however, is not exact, because dependence is tested as a 
compound (jointly A6a/b). Furthermore dependence can only be detected, if its effects 
on ),1|( 122 MSYE aa = vary across modes assigned at the first occasion of the WSCG 
design. If: 
 

)1|(),1|(),1|( 22122122 =≠===== aaaaaa SYEbMSYEaMSYE (15) 
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dependence remains hidden. To avoid this problem it is possible to draw an additional 
independent sample surveyed only at the second occasion in mode A. Since this sample 
is fully independent from the first occasion, assessing: 
 

),1|()1|( 122225 bMSYESYE aaaa ==−==∆ (16) 
 
is superior to assessing significance of 4∆ .

Tests for independence can also be conducted based on exogenous information X.
However, since X might often only be weakly related to survey variables, these tests 
are probably insufficient in practice. 
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5. Illustration 

In 2011, within Statistics Netherlands’ project Mode Effects in Social Surveys (MEPS in 
Dutch)  a large-scale mixed-mode experiment was conducted (Klausch et al. 2013a, 
2013b; Schouten et al., 2013). Three separate WSCG designs were administered in 
parallel with a sample size of 6,803. Mode B was represented by telephone (n=1,658), 
mail (n=1,760), and web (n=1,746), respectively. Mode A was chosen to be F2F, where 
a sample of n=1,639 served as control. The survey topic was the national Crime 
Victimization Survey (CVS). 

On average, 6 weeks lay between the first and second interview. From earlier 
implementations of the CVS, administered on yearly basis, it was known that many 
statistics only changed slowly or were stagnating, so that time-stability appeared 
plausible for this time frame. To reassure about this assumption, however, the control 
group was included. 

Additionally, several precautions were taken in advance to assure independence of 
occasions. First, no reference to the second occasion was made at the first occasion 
including no mentioning of the possibility to reply later in a F2F mode. Interviewers, 
furthermore, were only vaguely informed about the second occasion while 
administering occasion one. This avoided that some individuals did not reply at the first 
occasion, because they preferred the forthcoming F2F mode at occasion 2. Second, the 
fieldwork at occasion two could hardly be distinguished from occasion one. No 
separate advance letter was sent at occasion two and instead interviewers contacted 
all individuals directly. F2F interviewers were instructed to recruit nonrespondents 
from occasion one as for a regular F2F survey and they were trained to explain 
respondents at occasion one the need for repeated participation for answering 
additional questions from the CVS. 

Figure 5: Real-world missing data patterns of three within-subject control-group 
designs using face-to-face as a reference mode (A) 
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Figure 5 shows the missing data patterns of the three WSCG designs in analogy to the 
schematic illustration introduced in section 4.4 (Figure 4). The upper part of the three 
plots is represented by the F2F control group (mode A; the same sample in the three 
designs, respectively). The lower parts show the nonresponse and response 
proportions of telephone, mail, and web (modes B, respectively). Clearly, mail (left) and 
telephone (right) achieved higher response (n=858 and n=735, respectively) than web 
(middle, n=497). Response was highest in F2F (n=1050). 

The BSFU method has been applied to the same CVS data set by Buelens, Van der Laan 
and Schouten (2012) and Schouten et al (2013). In this paper, we limit ourselves to the 
exposition of the WSD and WSCG methods and leave comparisons to the BSFU method 
to future papers. 

5.1 A two-mode comparison 
We now illustrate estimation of (double-) conditional MEs and their selection biases (7) 
and (8) against the naïve ME estimator (6), which could be estimated in between-
subject designs. We start by comparing only two modes, mail and F2F (left missing data 
pattern in figure 5). The variable selected for this example is an index called the ‘Social 
Quality of the Neighborhood’ (variable label A-sockwal). It is based on multiple rating 
scale questions about social cohesions in the neighborhood forming a summary score 
ranging from one to ten. It is a regularly reported statistic from the CVS. 

We estimated the (double-) conditional MEs and the coefficients using generalized 
regression estimation (e.g., Imbens, 2004; Schafer & Kang, 2008). In addition to the 
target variables, eight socio-demographic indicators (X) were available2. The model was 
built using forward inclusion of those covariates that minimized the model AIC3, where 
the target variable was included in the first step. All standard errors were estimated 
using the bootstrap with 10,000 replications. At each replication a new adjustment 
model was fitted. 

Table 2 gives an overview on point estimates, confidence intervals and significance 
levels of two sided tests against zero. The left column presents estimates from the 
within-subject (i.e., pretending the control group was not available), the right column 
from the WSCG design. Consider first the within-subject design, in which time-stability 
is assumed and cannot be tested or adjusted. The naïve ME estimator specified in (6) is 
based on the response means at occasions one (mail) and two (F2F), respectively. We 
find that there is a significant naïve ME (-.771). This effect can be decomposed into 
conditional MEs -.435 and -.445 and selection biases -.336 and -.326, respectively. The 
conditional MEs are significantly smaller than the naïve estimator would suggest (by 
roughly 40%) indicated by significant selection biases. The double-conditional MEs can 
be taken from the last row of table 2 and are equal in magnitude to the conditional 

 
2 In particular: gender, age, income, civil status, nationality, household size, urbanity, and inhabitation of a large city in 
The Netherlands. 
3 Akaike Information Criterion 
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MEs. The right column presents all adjusted estimates from the WSCG design as well as 
the adjustment coefficients to estimated from the F2F control group. Only is 
significant, suggesting a small change in non-observation error from the first to the 
second occasion (formula 13). The adjusted estimate of does not differ greatly 
from the WSCG design, however, because the sign of counteracts .

Table 2: Overview on ME estimates from the within-subject and WSCG design (mode A: 
F2F, mode B: mail; Variable: ‘Social Quality Index’, A_sockwal) 

 Within-Subject Design WSCG Design 

Est. 95% CI pa (Adj.) Est. 95% CI pa

-.771 [-.929,-.611] <.001 -.731 [-.928,-.534] <.001 

-.435 [-.559,-.313] <.001 -.488 [-.679,-.296] <.001 

-.445 [-.556,-.334] <.001 -.390 [-.526,-.254] <.001 

-.336 [-.414,-.073] <.001 -.243 [-.414,-.073] .006 

-.326 [-.546,-.138] <.001 -.341 [-.546,-.138] .001 

- - - -.055 [-.135,.023] .175 

- - - -.040 [-.203,.125] .634 

- - - .094 [.009,.181] .032 

- - - -.083 [-.241,.075] .291 

-.414 [-.588,-.252] <.001 -.414 [-.588,-.252] <.001 

-.465 [-.609,-.319] <.001 -.465 [-.609,-.319] <.001 

a: bootstrapped p-value (104 draws) of a two-sided test against zero 

Furthermore, an approximate test for independence is available ( , formula 15). We 
find an insignificant suggesting that the type of mode offered at occasion one (mail 
or F2F) did not have any impact on the conditional distribution of the Social Quality 
index at occasion 2. This is reassuring about the independence of occasions. We advise 
to only report ME estimates from WSCG designs when independence tests are 
insignificant. Note that (16) cannot be calculated in this design, because an 
independent sample at the second occasion is not available.  

The conditional ME estimates suggest that respondents under mail and F2F answer 
with differing extents of measurement error. In the CVS, F2F was the standard mode of 
administration for a long time. In the hypothetical situation that the design would be 
switched completely to mail, for example, a break in this time series could be expected. 
If F2F is assumed to produce less measurement error, furthermore, the mail mode 
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would evoke higher extents of error. A sequential design combining mail and F2F is not 
advisable, because the (double-) conditional MEs imply that respondents under both 
modes provide different answers. Further research could evaluate, whether a unified 
mode design of the questions underlying the Social Quality Index makes it possible to 
reduce the (double-) conditional MEs.

5.2 Visualization of measurement effects 
Another option to interpret the decomposition of naïve MEs into conditional MEs and 
selection bias is plotting all conditional means in an interaction diagram, as illustrated 
for three examples in figure 6.  

The first example (upper plot) is based on the (adjusted) estimates presented in table 
2. Each line represents a group of respondents in mode A or B. The estimates on the 
left side, furthermore, represent the conditional means of answers under mode A ( ), 
and the estimates on the right side the means of answers under mode B ( ). Now, the 
‘slope’ of the two lines provides the conditional MEs, respectively, whereas the vertical 
distance between lines represents the selection bias. Selection bias and conditional 
MEs add up to the naive ME, respectively. All effects are indicated by labeled arrows.  

An advantage of interaction plots is that the scale of all variables can be taken from the 
ordinate, whereas it cannot be taken from table 2. Interaction plots also give a quick 
overview on the size and type of conditional MEs. We illustrate this idea using two 
further variables. In the middle plot another index, the extent of ‘neighborhood 
problems’, is presented. Mode B is the web mode in this example. It can be seen that 
the naïve ME is very small (and testing demonstrates it is insignificant). However, 
adjusting for selection bias, conditional MEs are uncovered (significant), which are 
suppressed by counter directional selection biases (‘suppression effect’). 

In the last example, the variable ‘safety perception of the neighborhood’ is presented. 
It is measured on dichotomous level (yes/no), so that proportion estimates are 
depicted here. Contrary to the two previous plots, the two lines slightly intersect. This 
is the situation of an ‘interaction effect’ between MEs and selection mechanisms, 
which causes the conditional MEs to be unequal (whereas is negligible in the plot, 

is more substantial). In this case, conclusions drawn from and would 
differ. 
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Figure 6: Example of three different types of MEs (based on within-subject control-
group designs) visualized by interaction diagrams (different variables and modes 
indicated in the figures). Variables depicted are “A_sockwal”,” overlast” and “onveilig”. 
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5.3 A multi-mode comparison 
Comparisons of conditional MEs across multiple modes are useful to assess the 
feasibility of different mode combinations in mixed-mode designs. Figure 7 presents 
interaction plots for all modes included in the experiment, where F2F serves as a 
reference mode (mode A), respectively. Since the reference mode does not change 
across figures, relative comparisons of MEs between all modes are possible. The 
variable used for the plots is again the ‘Social Quality Index’. Therefore, the first (left) 
plot is identical to the upper plot in figure 6 and estimates in table 2. Furthermore, the 
middle plot illustrates the comparison of web and F2F, and the right plot telephone 
and F2F. 

Clearly, the three plots differ. Comparing the plots of web and mail it can be noticed 
that the adjusted conditional MEs against F2F are equal in size. However, for the web 
mode no selection bias against the naïve ME estimate is identified, whereas for mail it 
is significant (cf. table 2). Concluding only on the basis of the naïve ME, a researcher 
would thus have incorrectly assumed that the mail mode evokes stronger MEs than the 
web mode when compared against F2F. However, there are no MEs between web and 
mail (the MEs against F2F are equal). Considering now the comparison of telephone 
and F2F (right plot) we find a ‘collapsed’ graph suggesting that no conditional MEs are 
present. 

In summary, these graphs show a typical situation, in which interviewer and self-
administered modes exhibit significant MEs, but telephone and F2F as well as mail and 
web, respectively, produce virtually no differences in measurement error (e.g., de 
Leeuw, 1992). Sequential mixed-mode designs and single-to-single mode switches 
involving only interviewer modes or only self-administered modes therefore seem 
feasible using the current questionnaire design, but an interview mode should not be 
combined with a self-administered mode. Frankly, these conclusions are based on a 
single variable and should be reproduced for others before taking design decisions. 

 

Figure 7: Multi-mode comparison of mail, web, and telephone (mode B, respectively) 
against F2F (reference mode A) for the ‘Social Quality Index’ from the Crime 
Victimization Survey (estimates based on within-subject control-group designs) 
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6. Discussion 

We presented a new approach to estimate conditional and double-conditional MEs 
using within-subject designs. A key advantage of our method is its grounding on 
weaker MAR assumptions than earlier approaches commonly make in practice. In 
particular, we argued that it is more plausible to ignore nonresponse conditional on 
repeatedly measured target variables than ignoring it on socio-demographic variables 
only, which is common practice in lack of other exogenous covariates or useful 
frontdoor variables (Vannieuwenhuyze, Loosveldt, & Molenberghs, 2013). 
Furthermore, we argued that the representativeness assumption of the instrumental 
variable method probably does not hold for many mixed-mode designs 
(Vannieuwenhuyze, Loosveldt, & Molenberghs, 2010, 2012). It also always requires a 
mixed-mode design to be administered before MEs are known. To the contrary, the 
within-subject method allows estimating MEs before designing a sequential mixed-
mode survey or deciding about a single-to-single mode switch. 

However, our approach entails two new types of assumptions: time stability and 
independence of occasions. Fortunately, both assumptions can be tested using control 
group extensions of the within-subject design. Time instability can even be adjusted in 
the WSCG design. Regardless of these tests, within-subject experiments should always 
be designed to render time-stability and independence most likely. Careful fieldwork 
design, prior knowledge about target variables, and advance testing are important 
aspects of this process as discussed in detail in section 4.3 and illustrated by an 
empirical application in section 5. Future research needs to assess in more general 
terms, which design aspects can render independence more likely in order to guide the 
design of within-subject experiments. Importantly, it needs to be evaluated which time 
lags vis-à-vis salience and centrality of questions are required for measurement and 
response independence. 

The WSD and WSCG designs presented in this paper have a resemblance to the design 
proposed by Buelens et al (2012) and Schouten et al (2013), that we termed a 
between-subject design with follow-up. The difference lies in the estimators used and 
the corresponding assumptions that are made, but, they essentially rely on the same 
data collection. In future papers, we will compare estimates which are anticipated to 
be very similar in many cases. 

The MEs that can be estimated using the new method are useful to take decisions 
about changes in measurement error caused by single-to-single mode switches as well 
as in sequential mixed-mode designs (section 2). In this respect, we note an important 
difference of our approach and earlier definitions suggested by Vannieuwenhuyze & 
Loosveldt (2013). The authors suggest design-specific ME estimands and assume that 
effects are to be estimated from data provided by an ongoing mixed-mode survey. To 
the contrary, we defined MEs more generally and demonstrated their applicability to 
two specific mixed-mode scenarios. However, our estimation method is based on an 
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experiment that is conducted independently of any mixed-mode survey and thus can 
include any number of candidate modes, before deciding on the final mixed-mode 
design. The fieldwork design of the modes used in the experiment (e.g., advance 
letters, interviewer training and questionnaires) should therefore be kept as similar as 
possible to the design of the final mixed-mode survey to allow valid conclusions. While 
the sequential mixed-mode designs and single-to-single mode switches are common 
(re-) design options, conclusions about other types of designs, such as ‘concurrent 
mixed-mode’ or complex sequential designs involving more than two modes cannot be 
drawn, yet. Extensions could be developed in future research, however. 

Another important design aspect is represented by a tradeoff between costs, sample 
size and related power. Clearly, a within-subject design yields approximately equivalent 
costs as a between-subject design. However, the control group added in the WSCG 
design can strongly increase costs, especially if based on an expensive mode as chosen 
in the illustration (F2F). Furthermore, an exact test of independence requires an 
additional independent sample at the second occasion (cf. formula 16), which increases 
costs further. In the illustration, a sample size of approx. 1,700 units in the treatment 
and control conditions, respectively, lead to rather large standard errors relative to the 
size of MEs (see, e.g., table 2). It is therefore important to assess the necessary sample 
size for acceptable detection power of MEs vis-à-vis acceptable costs. 

Standard errors of estimates are also influenced by the efficiency of the estimation 
method. Under correct MAR assumptions any of the major techniques, such as 
regression estimation, weighting, or imputation yields unbiased estimates, but variance 
of estimates may differ. Currently, there is ongoing debate beyond this discussion, on 
the ‘best’ estimation method for parameters and their standard errors when 
observations are missing at random (e.g., Little & Rubin, 2002; Imbens, 2004; Schafer & 
Kang, 2007; Kang & Schafer, 2008). 

The new approach suggested in the present paper implies two further important paths 
for applications and methodological development. First, based on our framework a 
correction method for MEs can be developed. A method could predict or impute 
plausible values for potential outcomes not observed in a mixed-mode design. As long 
as it is possible to collect repeated measurements a correct model for individual-level 
MEs can form the basis of adjustments. In any mixed-mode design, repeated 
measurements could be administered at least for a sub-sample, for example. This path 
urgently needs to be followed in the future. Second, the method naturally relates to 
more complex data structures known from panel surveys. Mixed-mode panels combine 
different modes, often by switching modes between panel waves. Our method then 
can be applied repeatedly to estimate and adjust MEs across waves. Frankly, 
plausibility of the basic assumptions will remain pivotal in these applications. 
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