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Intervention analysis with state-space models to estimate 
discontinuities due to a survey redesign 

Jan van den Brakel and Joeri Roels 

Summary: An important quality aspect of official statistics produced by national 
statistical institutes is comparability over time. To maintain uninterrupted time 
series, surveys conducted by national statistical institutes are often kept unchanged 
as long as possible. To improve the quality or efficiency of a survey process, 
however, it remains inevitable to adjust methods or redesign this process from time 
to time. Adjustments in the survey process generally affect survey characteristics 
such as response bias and therefore have a systematic effect on the parameter 
estimates of a sample survey. Therefore it is important that the effects of a survey 
redesign on the estimated series are explained and quantified. In this paper a 
structural time series model is applied to estimate discontinuities in series of the 
Dutch survey on social participation and environmental consciousness due to a 
redesign of the underlying survey process.  

 

Keywords: intervention analysis, response bias, structural time series models, 
survey sampling 

1. Introduction 

Surveys conducted by national statistical institutes are generally conducted 
continuously or repeatedly in time with the purpose to produce consistent series. 
Quality of official statistics is based on various dimensions; see Brackstone (1999) 
for a discussion. One important quality aspect is comparability over time. To 
produce consistent series, national statistical institutes generally keep their survey 
processes unchanged as long as possible. It remains inevitable, however, to redesign 
survey processes from time to time to improve the quality or the efficiency of the 
underlying survey process. In an ideal survey transition process, the systematic 
effects of the redesign are explained and quantified in order to keep series consistent 
and preserve comparability of the outcomes over time. There are various 
possibilities to quantify the effect of a survey redesign, see Van den Brakel, Smith 
and Compton (2008) for an overview. If the redesign affects the data collection 
phase, then a parallel run is a reliable approach to avoid the confounding of real 
changes in the underlying phenomenon of interest with the systematic effect of the 
redesign. Therefore the redesign of long-standing surveys like e.g. the US Current 
Population Survey and the US National Crime Victimization Survey are 
accompanied with a parallel run, Dippo et al. (1994) and Kindermann and Lynch 
(1997).  

Significance and power constraints necessary to establish the prespecified treatment 
effects, generally require large sample sizes for both the regular and the new survey 
in the parallel run. This is not always tenable due to budget constraints. The National 
Health Interview Survey (NHIS), established in 1956, is another example of a long 
standing survey. This survey is radically redesigned in 1997, Fowler (1996). The 
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absence of a parallel run obstructed the analysis of trends in different key variables 
of the NHIS. Akinbami et al. (2002, 2003) reported that trends in estimates of 
childhood asthma prevalence are disrupted due to changes in the NHIS design in 
1997, which created the impression that childhood asthma prevalence declined in 
this period. Caban et al. (2005) used NHIS data to study trends in prevalence rates of 
obesity among working adults. Data were analyzed separately for NHIS periods 
1986 until 1995 and 1997 until 2002 because of the major redesign of the NHIS in 
1997.  These examples illustrate that in situations were no parallel run is available 
alternative methods, which are based on explicit statistical models, should be 
considered to quantify the effect of a redesign. In this paper an intervention analysis 
using structural time series models is proposed as an alternative for conducting large 
scale field experiments and applied to a real life example at Statistics Netherlands. 
This is a direct application of the intervention approach proposed by Harvey and 
Durbin (1986) to estimate the effect of seat belt legislation on British road 
casualties. 

In survey methodology, time series models are frequently applied to develop 
estimates for periodic surveys. Blight and Scott (1973) and Scott and Smith (1974) 
proposed to regard the unknown population parameters as a realization of a 
stochastic process that can be described with a time series model. This introduces 
relationships between the estimated population parameters at different time points in 
the case of non-overlapping as well as overlapping samples. The explicit modelling 
of this relationship between these survey estimates with a time series model can be 
used to combine sample information observed in the past to improve the precision of 
estimates obtained with periodic surveys. This approach is frequently applied in the 
context of small area estimation. Some key references to authors that applied the 
time series approach to repeated survey data to improve the efficiency of survey 
estimates are Scott et al. (1977), Tam (1987), Binder and Dick (1989, 1990), Bell 
and Hillmer (1990), Tiller (1992), Rao and Yu (1994), Pfeffermann and Burck 
(1990), Pfeffermann (1991), Pfeffermann and Bleuer (1993), Pfeffermann et al. 
(1998), Pfeffermann and Tiller (2006), Harvey and Chung (2000), Feder (2001), and 
Lind (2005). 

In 1997 Statistics Netherlands started the Permanent Survey on Living Conditions 
(PSLC). This is a module-based integrated survey combining various themes 
concerning living conditions and quality of life. Two modules of the PSLC, the 
Module Justice and Environment and the Module Justice and Participation, are used 
to publish figures about justice and crime victimisation. The first module is also 
used to publish figures about environmental consciousness. The second module is 
used additionally to publish information about social participation. To realize 
expenditure cuts, the PSLC stopped at the end of 2004. From that moment on, 
figures about social participation and environmental consciousness are based on a 
separate survey, called the Dutch Survey on Social Participation and Environmental 
Consciousness (SSPEC). 

In this survey transition the data collection mode, the questionnaire, the context of 
the survey and the fieldwork period changed, which resulted in systematic effects in 
the outcomes of the survey. Since the redesign mainly affects the data collection 
process in this application, a large scale field experiment is very appropriate to test 
the effect on the parameter estimates of the survey, see e.g. Van den Brakel (2008). 
An experimental approach might, however, be hampered due to budget and other 
practical constraints, which was the case for the Dutch SSPEC. Therefore, an 
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intervention analysis using a structural time series model is used as an alternative to 
quantify the effect of the redesign on the main series of the sample survey.  

All target variables of the PSLC and the SSPEC have multinomial responses which 
are transformed to proportions of units classified in 2≥K categories. The survey 
estimates of these proportions are observed on a K-1 dimensional simplex and 
comprise a composition. Aitchison (1986) developed statistical methods for the 
analysis of compositional data, using additive logratio and central logratio 
transformations. Brunsdon and Smith (1998) developed VARMA models for 
logratio transformed compositional time series. Silva and Smith (2001) applied the 
structural time series modelling approach to logratio transformed compositional time 
series. In this paper the intervention approach proposed by Harvey and Durbin 
(1986) is applied to estimate the effect of a survey redesign on compositional time 
series obtained with periodic surveys.  

In section 2 the PSLC and the SSPEC are described. The systematic effects due to 
the redesign are discussed in section 3. A time series model to quantify these 
discontinuities is developed in section 4. Results for the most important indicators 
for four different models are given in section 5. The performance of these models 
are investigated in a simulation study, which is also described in section 5. The 
paper concludes with a discussion in section 6. 

2. Survey designs 

2.1 Permanent Survey on Living Conditions 

The PSLC was conducted as a repeatedly cross sectional survey, which implies that 
there is no sample overlap in time. The Module Justice and Environment and the 
Module Justice and Participation of the PSLC use persons aged 15 years or older as 
the target population. The PSLC was a continuously conducted survey. Each month 
a self-weighted stratified two-stage sample of persons was drawn from a sample 
frame derived from the municipal basic registration of population data. Strata are 
formed by geographical regions. Municipalities are considered as primary sampling 
units and persons as secondary sampling units. The monthly sample size averaged 
between 550 and 700 persons for both modules. With response rates varying around 
a level of 60%, this resulted in a yearly net response of about 4000 to 5000 persons 
for both modules. 

Interviewers visited all the sampled persons at home and administered the 
questionnaire in a face-to-face interview. This is generally referred to as computer 
assisted personal interviewing (CAPI). The estimation procedure used to compile 
official statistics is based on the generalised regression estimator (Särndal et al. 
1992, chapter 6) using a weighting scheme that is based on different 
sociodemographic categorical variables.  

 

2.2 Survey on Social Participation and Environmental Consciousness 

The PSLC stopped at the end of 2004. From that moment figures about social 
participation and environmental consciousness are based on the SSPEC. This survey 
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is also conducted as a repeatedly cross sectional survey and is based on a self-
weighted stratified two-stage sample design of persons aged 15 years and older 
residing in the Netherlands. Data are collected by computer assisted telephone 
interviewing (CATI). As a result the subpopulation aged 15 years and older with an 
unlisted telephone number or cell-phone number is not observed. The data collection 
of the SSPEC is conducted in the months September, October and November with a 
monthly sample size of about 2500 persons. The estimation procedure is, like the 
PSLC, based on the generalised regression estimator. The response rates in the 
SSPEC varied around 65%. As a result about 4500 respondents are observed in the 
yearly samples. 

Since 2005, figures about justice and crime victimisation are based on the Dutch 
Security Monitor. See Van den Brakel, Smith and Compton (2008) for more details 
about this redesign and the effects on the main series of this survey. 

2.3 Target parameters 

All target variables about environmental consciousness and social participation are 
based on closed questions where the respondent can choose one out of K answer 
categories to specify his opinion or behaviour on an ordinal scale. The target 
parameters are the estimated proportions that specify the distribution over these K
categories for the entire population or subpopulations. In this paper the series of two 
variables are used for illustrative purposes. The first variable, Separating chemical 
waste, is an example of environmental consciousness. This variable contains five 
answer categories: 1) always, 2) often, 3) sometimes, 4) rarely, and 5) never. The 
second variable, Contact frequency with neighbours, is an example of social 
participation. This variable contains four answer categories: 1) at least once a week, 
2) once within two weeks, 3) less than once within two weeks, 4) never.  

3. Factors responsible for discontinuities 

The redesign from the PSLC to the SSPEC resulted in discontinuities in most of the 
parameters about social participation and environmental consciousness. As an 
example the series with the annual figures of the parameters “Separating chemical 
waste” and “Contact frequency with neighbours” are shown in Figures 1 and 2 
respectively. For both variables it appears that there are significant discontinuities in 
two or more of the underlying categories. The observed differences between the last 
year of the PSLC in 2004 and the first year of the SSPEC in 2005 are summarized in 
Table 1. The observed differences between the year before and the year after the 
change-over for other variables about environmental consciousness and social 
participation are described in Van den Brakel and Roels (2008).  
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Figure 1: Separating chemical waste 
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Figure 2: Contact frequency with neighbours 
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Solid line: observed series under the PSLC, dashed line: observed series under the 
SSPEC, dotted line: 95% confidence interval. 

Table 1: Observed differences between the year before and the year after the 
change-over for “Separating chemical waste” and “Contact frequency with 
neighbours” 

Variable Category 
1 2 3 4 5

Freq. cont. neighb. 4.38** (0.90) 0.46 (0.62) -2.99** (0.63 -1.84** (0.47)   
Sep. chemical waste 2.26** (0.89) -5.25** (0.50) 0.79 (0.53) 2.54** (0.39) -0.33 (0.54) 

Standard errors in brackets;  *: p-value <0.05; **:p-value<0.01.  
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The observed differences are the results of the factors that changed simultaneously 
in the survey redesign, real developments of the parameter and sampling errors. The 
most important factors that changed in the survey redesign are: 

• Differences between sampled target populations. The SSPEC is based on a 
sample of persons aged 15 years and older with a listed telephone number or 
cell-phone number. The PSLC is based on a sample of persons aged 15 
years and older. The SSPEC does not observe the subpopulation without a 
listed telephone number or cell-phone number. Additional analyses showed 
that this results in an under-representation of young people and ethnic 
minorities. This explains a substantial part of the discontinuities. 

• Differences in data collection modes. The SSPEC is a telephone based 
survey, while in the PSLC data are collected in face-to-face interviews 
conducted at the respondents’ homes. Many references in the literature 
emphasize that different collection modes have systematic effects on the 
responses, see for example De Leeuw (2005) and Dillman and Christian 
(2005). These so-called model effects arise for different reasons. Generally 
the interview speed in a face-to-face interview is lower compared to an 
interview conducted by telephone. Furthermore, respondents are more 
engaged with the interview and are more likely to exert the required 
cognitive effort to answer questions carefully in a face-to-face interview. 
Also fewer socially desirable answers are obtained under the CAPI mode 
due to the personal contact with the interviewer. As a result, fewer 
measurement errors are expected under the CAPI mode (Holbrook et al., 
2003, and Roberts, 2007). 

• Differences between data collection periods. The data collection for the 
SSPEC is conducted in September through November, while the PSLC is 
conducted continuously throughout the year. In the series of the quarterly 
figures observed under the PSLC, seasonal effects are observed in several 
parameters, which partially explain the discontinuities.  

• Differences between questionnaire designs. Under the PSLC, questions 
about social participation and environmental consciousness were combined 
with questions about justice and crime victimisation in two different 
modules. Under the SSPEC, the questions about social participation and 
environmental consciousness are delineated in a new survey, which might 
have systematic effects on the outcomes of these surveys (Kalton and 
Schuman, 1982 and Dillman and Christian, 2005). 

• Differences between the contexts of the surveys. The SSPEC is introduced 
as a survey that is focussed on topics about social participation and 
environmental consciousness. The PSLC is introduced as a more general 
survey on living conditions. Subsequently the survey focuses on topics 
about justice, crime victimisation, social participation or environmental 
consciousness. This might have a systematic selection effect on the 
respondents who decide to participate in the survey. Furthermore, in the 
SSPEC the attention of the respondent is completely focussed on one topic, 
contrary to the PSLC, which also may have systematic effects on the answer 
patterns of the respondents. 

It is not immediately clear to what extent the differences summarized in Table 1 are 
the result of a real change in the underlying phenomenon of interest or are induced 
by the redesign of the survey. Even if no significant difference is observed, it is still 
possible that a real development could be nullified by an opposite redesign effect.  
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A general way to avoid confounding the autonomous development with redesign 
effects is to conduct an experiment embedded in the ongoing survey. If the effect of 
the separate factors that has changed in the survey process should be quantified, then 
a factorial design should be considered. Factorial designs or fractional factorial 
designs are generally hard to combine with the fieldwork restrictions encountered in 
the daily practice of survey sampling. Therefore it is generally necessary to combine 
the factors that changed in the redesign of the survey into one treatment and test the 
total effect of all factors that changed simultaneously in the redesign against the 
regular approach in a two-treatment experiment. See Van den Brakel (2008) and 
Van den Brakel, Smith and Compton (2008) for a detailed discussion and alternative 
approaches to quantify the effect of a survey redesign. 

Since an experimental approach is not applied in this application, a time series 
model is developed in the next section to quantify the total effect of all factors that 
are modified in the survey redesign with the purpose to avoid confounding with real 
developments of the respective parameter. Some insight into the effect for some of 
the factors that have changed in the survey redesign can be obtained by conducting 
additional calculation on the existing data. The selection effect of surveying the 
subpopulation that can be contacted by telephone can be estimated with standard 
sampling theory for domain estimators from the data obtained with the PSLC since 
this survey approaches the entire population face-to-face. The effect of changing the 
period of data collection can also be quantified by making, for example, quarterly 
series for the PSLC and estimating the seasonal pattern. Due to the relatively small 
sample sizes and the limited length of the series, it turned out to be hard to establish 
significant seasonal effects. 

4. Structural times series models 

In this section structural time series models are developed to estimate the 
discontinuities in the series of a survey due to the redesign of the underlying survey 
process. With a structural time series model, a series is decomposed in a trend 
component, seasonal component, other cyclic components, regression component 
and an irregular component. For each component a stochastic model is assumed. 
This allows the trend, seasonal, and cyclic component but also the regression 
coefficients to be time dependent. If necessary ARMA components can be added to 
capture the autocorrelation in the series beyond these structural components. See 
Harvey (1989) or Durbin and Koopman (2001) for details about structural time 
series modelling. 

4.1 Intervention analysis for time series obtained with periodic surveys 

The variables of the PSLC and the SSPEC are defined as categorical variables 
measured on an ordinal scale and the population values of interest are the 
distributions in the population over the K categories of these variables. For each 
variable a K-dimensional vector )...,( ,1, Kttt yy=y is defined where the elements of 

ty specify the proportions over the K categories. Based on the data observed under 
the PSLC and the SSPEC, direct estimates for the unknown population values are 
obtained with the generalized regression estimator. As a result, for each variable K
series are observed that specify the estimated proportions over K categories and are 
collected in the K-dimensional vector )ˆ...,ˆ(ˆ ,1, Kttt yy=y , t = 1, …, T.
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Developing a time series model for survey estimates observed with a periodic survey 
starts with a model, which states that the survey estimate can be decomposed in the 
value of the population variable and a sampling error: ktktkt eyy ,,,ˆ += , with kte ,
the sampling error. Scott and Smith (1974) proposed to consider the true population 
value kty , as the realisation of a stochastic process that can be properly described 
with a time series model. This approach is applied to the series observed with the 
PSLC and the SSPEC using the framework of structural time series modelling. 

In classical sampling theory, it is generally assumed that the observations obtained 
in the sample are true fixed values observed without error, see e.g. Cochran (1977). 
This assumption is not tenable if systematic differences are expected due to a 
redesign of the survey process. Van den Brakel and Renssen (2005) proposed a 
measurement error model for experiments embedded in sample surveys that links 
systematic differences between a finite population variable observed under different 
survey implementations. They consider the observed population value obtained 
under a complete enumeration under two or more different implementations of the 
survey process as the sum of a true intrinsic value that is biased with a systematic 
effect induced by the survey design, i.e. lkktlkt buy ,,,, += . Here lkty ,, is the 
population value of the k-th parameter at time t observed under the l-th survey 
approach, ktu , the true population value of this parameter and lkb , the measurement 
bias induced by the l-th survey process used to measure ktu , . The systematic 
difference between two survey approaches is obtained by the contrast 

klklklktlkt bbyy β≡−=− ',,',,,, . In the case of embedded experiments, the 
systematic difference between two or more survey approaches is estimated as the 
contrast between estimates obtained from subsamples assigned to the different 
survey approaches. In the time series approach, these differences are estimated using 
an appropriate intervention variable. This allows for time dependent differences. For 
notational convenience, the subscript l will be omitted in lkty ,, , since the survey 
approach will be indicated with the time period. 

In the case of the PSLC and the SSPEC a relatively short series for annual data is 
considered. Therefore, the autonomous development of the indicator that is 
described by the series is modelled with a stochastic trend, a regression component 
and an irregular component. The regression component consists of an intervention 
variable with a time independent regression coefficient that describes the effect of 
the survey transition. This approach is initially proposed by Harvey and Durbin 
(1986). Seasonal, cyclic, ARMA, and other auxiliary regression components can be 
included in the model for example in the case of longer series or monthly or 
quarterly data.  

Based on the preceding considerations, the univariate structural time series model 
for the k-th component of tŷ is defined as: 

 ktkttkktkt eLy ,,,,ˆ +++= νδβ , (1) 

with ktL , a stochastic trend, tδ an intervention variable that describes under which 
survey the observations are obtained at period t, kβ the time independent regression 
coefficient for the intervention variable, kt ,ν an irregular component for the time 
series model of the population values kty , and kte , the sampling error. It is assumed 
that the irregular component is normally and independently distributed: 

),0( 2
, νσν Nkt ≅ .

Surveys are often based on a rotating panel design. Such designs result in partially 
overlapping samples with correlated sampling errors. Particularly in these cases a 
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separate component for the sampling error in the time series model might be 
required to capture this serial correlation. Through this component the estimated 
variances for the kty ,ˆ , which are generally available from the survey, can be 
included in the time series model as prior information. Binder and Dick (1990) 
proposed the following general form for the sampling error model to allow for non 
homogeneous variance in the sampling errors:  

ktktkt ee ,,,
~ω= , (2) 

where kt ,ω is the standard error of kty ,ˆ and kte ,
~ an ARMA process that models the 

serial correlation between the sampling errors. Abraham and Vijayan (1992), and 
Harvey and Chung (2000) applied MA models for the serial correlation in the 
sampling errors. Pfeffermann (1991), Pfeffermann et al. (1998) and Van den Brakel 
and Krieg (2009) used AR models for the serial correlation in the sampling errors. 
Autocorrelations can be estimated from the survey data and can be used, like the 
design variances of kty ,ˆ , as prior information in the sampling error model. 
Pfeffermann et al. (1998) developed a procedure to estimate the autocorrelation in 
the survey errors from the separate panel estimates of a rotating panel design and 
used this prior information to estimate the autocorrelation coefficients of an AR 
model.  

Generally there are systematic differences between the subsequent panels of a 
rotating panel design. In the literature, this phenomenon is known as rotation group 
bias (RGB), Bailar (1975). Pfeffermann (1991) applied a multivariate structural time 
series model to the series of the survey estimates of the separate panel waves that 
accounts for this RGB and applied an AR model for the autocorrelation of the 
sampling errors of the different panels. Variances and autocorrelations of the 
sampling errors are obtained by standard maximum likelihood estimation in this 
application. Van den Brakel and Krieg (2009) used a multivariate structural time 
series model similar to the model proposed by Pfeffermann (1991). They estimated 
the variances and autocorrelations of the sampling errors from the survey data and 
used this as prior information in the time series model.  

The PSLC and the SSPEC are based on non-overlapping cross-sectional samples. 
The only difference between the sample designs is the yearly sample size. As a 
result there is no serial correlation between sampling errors and non-homogeneous 
variance is caused by differences in the yearly sample size. Based on these 
considerations it is decided to combine both terms kt ,ν and kt ,ε in one irregular 
term, which is assumed to be normally and independently distributed with zero 
mean and a variance that is inversely proportional to the sample size: 

ktktkt e ,,, εν =+ (3) 

),0(
2
,

,
t

k
kt n

N εσε ≅ .

Defining the variance of the irregular term inversely proportional to the sample size 
implies that it is implicitly assumed that the sampling error dominates the irregular 
term. It is also assumed that the irregular components of (3) at different time points 
are uncorrelated: 0)( ,', =ktktCov εε for 'tt ≠ . As a result model (1) simplifies to 

kttkktkt Ly ,,,ˆ εδβ ++= (4) 

 



13

For the stochastic trend, the widely applied smooth trend model is assumed, see e.g. 
Durbin and Koopman, (2001): 

 
,
,

,,,1,

,1,1,

kRtktkt

ktktkt

RR
RLL
η+=

+=

−

−− (5) 

with ktL , the level component and ktR , the stochastic slope component of the trend, 
and kRt ,,η an irregular component. The smooth trend model (5) is a special case of 
the local linear trend model, which also has an irregular term for ktL , , see e.g. 
Durbin and Koopman, (2001) equation (3.2). The population values in this 
application do not change rapidly over time. Therefore a model that gives smooth 
trend estimates seems to be appropriate. The choice for (5) also results in a more 
parsimonious model, which is an additional advantage in this application where the 
length of the observed series is small. It is assumed that the irregular components of 
(5) are normally and independently distributed, i.e. ),0( 2

,,, kRkRt N ση ≅ , and that 
they are uncorrelated at different time points, i.e. 0)( ,,',, =kRtkRtCov ηη for 'tt ≠ .
Furthermore, it is assumed that the irregular components of (4) and (5) are 
uncorrelated: 0)( ,,', =kRtktCov ηε for all t and 't .

The intervention variable models the effect of the survey redesign. Three types of 
interventions are discussed: a level shift, a slope intervention, and an intervention an 
a seasonal pattern. Let RT denote the time period at which the survey process is 
redesigned. In the case of a level intervention it is assumed that the magnitude of the 
discontinuity due to the survey redesign is constant over time. In this case tδ is 
defined as a dummy variable: 

 




≥
<

=
R

R
t Tt

Tt
if1
if0

δ (6) 

In the case of a slope intervention it is assumed that the magnitude of the 
discontinuity increases over time. This is accomplished by defining tδ as: 

 




≥−+
<

=
RR

R
t TtTt

Tt
if1

if0
δ (7) 

It is also possible to define an intervention on the seasonal or cyclic pattern. Such 
interventions can be considered if an interaction is expected between the survey 
redesign and the months or the quarters of the year. In this case, a stochastic 
seasonal component is added to equation (1) or (4). Widely applied models are 
trigonometric models and the dummy variable seasonal model, see Durbin and 
Koopman (2001), section 3.2 for expressions. Furthermore the intervention variable 

tδ has the form (6) and the regression coefficient kβ is replaced by a time 
independent seasonal component.  

The interventions described so far assume that the redesign only affects the point 
estimates of the survey. A survey redesign could, however, also affect the variance 
of the measurement errors. An increase or decrease of the variance of the 
measurement errors will be reflected in the estimated variance of kty ,ˆ . A
straightforward way to account for such effects is to incorporate the estimated 
variances of the survey estimates as prior information using sampling error model 
(2). Another possibility is to define separate model variances for the irregular term 

kt ,ε in the measurement equation for the period before and after the implementation 
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of the survey redesign, i.e. 2
1,,, )( kktVar εσε = if RTt < and 2

2,,, )( kktVar εσε = if 
RTt ≥ . The ratio between 2

1,,kεσ and 2
2,,kεσ can be used to test hypotheses about the 

equivalence of both variance components. This approach, however, requires a 
sufficient number of observations under both surveys to test the equivalence of these 
variance components with sufficient power.  

The discontinuity in the series is modelled with an intervention variable that 
describes the moment that the survey process is redesigned. This approach assumes 
that the other components of the time series model approximate the real 
development of the population variable reasonably well and that there is no 
structural change in e.g. the trend or the seasonal component at the moment that the 
new survey is implemented. If a change in the real development of the population 
variable exactly coincides with the implementation of the new survey, then the 
model will wrongly assign this effect to the intervention variable which is intended 
to describe the redesign effect. Information available from series of correlated 
variables can be used to evaluate the assumption that there is no structural change in 
the real evolution of the parameter. Such auxiliary series can also be added as a 
regression component to the model, with the purpose to reduce the risk that a 
structural change in the evolution of the series of the target parameter is wrongly 
assigned to the intervention variable. An auxiliary series can also be included as a 
dependent variable in a multivariate model, which accounts for the correlation 
between the parameters of the trend and seasonal components, Pfeffermann and 
Burck (1990), Pfeffermann and Bluer (1993), or allows for a common trend,  Harvey 
and Chung (2000). 

The risk that the intervention variable wrongfully absorbs a part of the development 
of the real population value can be reduced by applying parsimonious intervention 
parameters. Therefore, time dependent interventions, like an intervention on a 
seasonal component, must be applied carefully. These intervention parameters are 
more flexible and will easily absorb a part of the real evolution of the population 
value, particularly if only a limited number of observations after the survey change-
over are available.  

The intervention approach can be generalized in a straightforward way to situations 
were the survey process has been redesigned at two or more occasions. This is 
achieved by adding a separate intervention variable for each time that the survey 
process has been modified. 

4.2 State space representation 

The structural time series models developed in subsection 4.1 for the separate 
parameters kty ,ˆ of the vector tŷ comprise a K-dimensional structural time series 
model. The general way to proceed is to put this model in state space representation 
and analyse the model with the Kalman filter. The state space representation for this 
K-dimensional structural time series model reads as: 

 tttt εαZy +=ˆ (8) 

 ttt ηTαα += −1 (9) 

The measurement equation (8) describes how the observed series depends on a 
vector of unobserved state variables tα and a vector with disturbances tε . The state 
vector contains the level and slope components of the trend models and the 
regression coefficients of the intervention variables. The transition equation (9) 
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describes how these state variables evolve over time. The vector tη contains the 
disturbances of the assumed first-order Markov processes of the state variables. The 
matrices in (8) and (9) are given by 

 T
KKtKtttt RLRL ),...,,,,...,,( 1,,1,1, ββ=α , (10a) 

 ( )][][ |)0,1( KtKt IIZ δ⊗= , (10b) 

 ),( ][KtrBlockdiag ITT = , (10c) 

 







⊗=

10
11

][Ktr IT , (10d) 

with ][ p0 a column vector of order p with each element equal to zero, and ][ pI the 
pp× identity matrix. The disturbance vectors are defined as 

 T
Kttt ),...,( ,1, εε=ε ,

TT
KKRtRtt ),,0,...,,0( ][,,1,, 0η ηη= .

It is assumed that 

 ][)( KtE 0ε = , ),...,(1)( 2
,

2
1, K

t
t Diag

n
Cov εε σσ=ε ,

]3[)( KtE 0η = , ),,0,...,,0()( ][
2

,
2

1,
T
KKRRt DiagCov 0η σσ= .

In the case that each measurement equation and each transition equation has its own 
separate hyperparameter, then (10) is a set of K univariate structural time series 
models. If the measurement equations or the transition equations share common 
hyperparameters, then (10) is a K dimensional seemingly unrelated multivariate 
structural time series model. This is for example the case if 22

,
2

1, ... εεε σσσ === K .

The time independent regression coefficients of the intervention variables are also 
included in the state vector, as described by Durbin and Koopman (2001), 
subsection 6.2.2. The Kalman filter can be applied straightforwardly to obtain 
estimates for the regression coefficients. An alternative approach of estimating the 
regression coefficients is by augmentation of the Kalman filter, see Durbin and 
Koopman (2001), subsection 6.2.3 for details. 

In this application, each variable specifies the proportions over K categories. In other 
words, each variable makes up a K-dimensional series, which obeys the restriction 
that at each point in time these series add up to one, i.e. 1ˆ

1 , =∑ =

K

k kty , and 
1ˆ0 , ≤≤ kty . As a result, the K regression coefficients of the intervention variables 

must obey the restriction 0
1

=∑ =

K

k kβ . The multivariate structural time series model 
(10) can be augmented with this restriction by using the following design matrix in 
the transition equation (9):  

),( ivtrBlockdiag TTT = , (10e) 

where trT is defined by (10d), and 

 







−

=
−

−−

0]1[

]1[]1[
T
K

KK
iv 1

0I
T , (10f) 

with ][ p1 a column vector of order p with each element equal to one. Due to ivT ,
defined in (10f), the regression coefficients as well as their Kalman filter estimates 
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obey the restriction 0
1

=∑ =

K

k kβ . In the case of a level intervention, the time series 
after the moment of the survey transition can be adjusted for the estimated 
discontinuities with kktkt yy β̂ˆ~

,, −= . As an alternative, the series before the survey 
transition can be adjusted with kktkt yy β̂ˆ~

,, += . In the case of a slope intervention 
the time series is adjusted with tkktkt yy δβ̂ˆ~

,, −= . If the time series after the 
moment of the survey transition is adjusted, then tδ is defined by (7). If the time 
series before the changeover is adjusted, then tδ is defined as 





≥
<−

=
R

RR
t Tt

TtTt
if0
if

δ . (11) 

Since the observed series and the estimated discontinuities obey the required 
consistencies, the adjusted series does too. 

An intervention on a seasonal component can be implemented in a way similar to a 
level intervention. Let s denote the number of time periods of the seasonal set. The 
state vector tα is augmented with sK × state variables to model the seasonal 
pattern for each parameter kty ,ˆ . The K regression coefficients kβ are replaced by 
another set of sK × state variables to model the intervention on seasonal pattern for 
each target parameter. The design matrix of the measurement equation tZ is 
augmented with a term T

sK ][][ zI ⊗ , where ][sz is an s dimensional vector that 
describes the relation between the observed series and the state variable of the 
trigonometric seasonal model or the dummy variable seasonal model. Furthermore 

][KtIδ in tZ is replaced by T
sKt ][][ zI ⊗δ . The design matrix of the transition 

equation is augmented with a block diagonal element sK TI ⊗][ , where sT denotes 
the  transitional relation for a trigonometric model or the dummy variable seasonal 
model. See Durbin and Koopman (2001), subsection 3.2 for expressions of ][sz and 

sT . To force that the sum over the seasonal intervention variables of the K
parameters equals zero, the design matrix of the transition equation is augmented 
with siv TT ⊗ , where ivT is defined by (10f). Adjusted series are obtained with the 
approach described for the level intervention. 

4.3 Logratio transformations 

The multivariate model developed for tŷ accounts for the restriction that 
1ˆ

1 , =∑ =

K

k kty , but ignores the restriction 1ˆ0 , ≤≤ kty . Ignoring the second 
restriction might result in adjusted parameter estimates taking values outside the 
admissible range [0,1]. In fact each parameter defines a set of time series that are 
observed on the K-1-dimensional simplex. One way to account for both restrictions 
is to apply a logratio transformation to the original data: 











=

Kt

kt
kt y

y
x

,

,
, ˆ

ˆ
lnˆ , k=1, …, K-1.     (12) 

With (12) the original observations tŷ are transformed from the (K-1) dimensional 
simplex to the (K-1) dimensional real space, see Aitchison (1986) for details. State-
space models are applied to logratio transformed compositional time series obtained 
from repeated surveys by Silva and Smith (2001). They also give the details how to 
account for serial correlation between the sampling errors in logratio transformed 
survey data in the case of partially overlapping surveys. 
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Instead of modelling the original series tŷ and explicitly benchmark the regression 
coefficients to restriction (10f), it is also possible to develop a set of K-1 univariate 
structural time series models or a set of K-1 seemingly unrelated structural time 
series for t

Kttt xx )ˆ,...,ˆ(ˆ 1,1, −=x .

This model is obtained with formulae (8) and (9) where tŷ is replaced by tx̂ , and 
taking 

 T
KKtKtttt RLRL ),...,,,,...,,( 111,1,1,1, −−−= ββα ,

( )]1[]1[ |)0,1( −− ⊗= KtKt IIZ δ ,

),( ivtrBlockdiag TTT = , ]1[]1[ ,
10
11

−− =







⊗= KivKtr ITIT , (13) 

 T
Kttt ),...,( 1,1, −= εεε ,

TT
KKRtRtt ),,0,...,,0( ]1[1,,1,, −−= 0η ηη .

The estimated discontinuities apply to the K-1 transformed series. In the case of 
level intervention, the series observed after the survey transition can be adjusted to 
the level of the series before the changeover using kktkt xx β̂ˆ~

,, −= . The series 
observed before the survey transition can be adjusted to level under the new 
situation with kktkt xx β̂ˆ~

,, += . In the case of a slope intervention the time series is 
adjusted with tkktkt xx δβ̂ˆ~

,, −= . If the time series after the moment of the survey 
transition is adjusted, then tδ defined by (7). If the time series before the 
changeover is adjusted, then tδ is defined by (11). The state-space representation 
for a seasonal intervention follows in a straightforward way from subsection 4.2. 
Subsequently, the adjusted series can be transformed back to their original values 
that specify the proportions over K categories on the simplex by the inverse of (12), 
which is given by 

1)~exp(

)~exp(~
1

1
,

,
,

+
=

∑
−

=

K

k
kt

kt
kt

x

x
y , k=1, …, K-1,    (14) 

1)~exp(

1~
1

1
,

,

+
=

∑
−

=

K

k
kt

Kt

x
y .

The adjusted series meets the consistency property that the adjusted proportions add 
up to 1, and the values of the K categories take values in the range [0,1], since the 
logratio transformation accounts for the properties of the data observed on a 
simplex. Most important drawback of this approach is that the interpretation of the 
results is more difficult and the asymmetric treatment of the classes in the logratio 
transformation (12). Aitchison (1986) shows that analysis results obtained with 
logratio transformed compositional data are invariant for the choice of the reference 
category that is used as the denominator. This result is generalized to VARMA 
models applied to logratio transformed compositional time series by Brunsdon and 
Smith (1998) and state-space models by Silva and Smith (2001). The outcomes for 
the adjusted series, nevertheless, depend on the choice of the category that is used in 
the denominator of the logratio transformation, and can be attributed to the 
numerical optimization procedure used for maximum likelihood estimation (see 
subsection 4.5).  
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The asymmetric treatment of the K classes in logratio transformation (12) can be 
avoided by replacing the reference category Kty ,ˆ in the denominator by the 
geometric mean over the K categories. This results in the so called central logratio 
transformation, which is defined by 

 







=

)ˆ(
ˆ

lnˆ ,
,

t

kt
kt yg

y
z , k=1,…, K, (15) 

with  

 
KK

k
ktt yyg

1

1
,ˆ)ˆ( 







= ∏

=

. (16) 

The advantage of this transformation is that the results do not depend on the choice 
of a reference category. With (15), however, the vector tŷ is transformed from the 
K-1 dimensional simplex to a linear subspace of the K dimensional real space that is 
confined by 0ˆ

1 , =∑ =

K

k ktz .

The central logratio transformed series can be modelled with a K dimensional 
structural time series model. Since the K regression coefficients of the intervention 
variables must still obey the restriction 0

1
=∑ =

K

k kβ , time series model (8), (9), 
(10a), through (10f), can be applied to  model the series obtained after the central 
logratio transformation. The series can be adjusted for the estimated discontinuities 
in a similar way as described for the untransformed and logratio transformed series. 
Subsequently the adjusted series can be transformed back to their original values by 
the inverse of (15): 

 

∑
=

= K

k
kt

kt
kt

z

z
y

1
,

,
,

)~exp(

)~exp(~ , k=1,…, K. (17) 

 

4.4 Benchmarking with series for subpopulations 

In sample surveys, parameter estimates for the total population are often also 
itemized in different subpopulations or domains. The following relationship applies 
between the series at the national level and its breakdown in H subpopulations  

∑
=

=
H

h

h
t

h
t y

N
Ny

1

ˆˆ . (18) 

Here h
tŷ and hN denote the parameter estimate and the size of subpopulation h

respectively, and ∑ =
=

H

h hNN
1

the size of the total population. Applying the time 
series models, described in sections 4.1, 4.2 and 4.3, separately to the series at the 
national level and its breakdown for these H subpopulations might result in 
inconsistencies between these series after adjustment for the discontinuities. These 
inconsistencies arise since the regression coefficients for the intervention variables 
do not account for the consistency requirement specified by (18).   

One solution is to benchmark the adjusted series for the subpopulations to the 
adjusted series at the national level, for example by using the method of Lagrange 
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multipliers. Let TT
Ht

T
t

T
tottt )~...,~,~(~

,1,, yyyy = denote a KH )1( + -vector containing 
the adjusted parameter estimates for period t for the total population 

T
Ktotttotttott yy )~,...,~(~

,,1,,, =y and the H subpopulations T
Khththt yy )~,...,~(~

,,1,,, =y .
These parameters must obey a set of linear restrictions such that (18) is met and the 
unit sum constraint for the vectors tott ,

~y and ht ,
~y for h = 1, …, H, still applies. This 

gives rise to a set of )( KH + linear restrictions that can be expressed as  

cyR =*~
t , (19) 

with 






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



⊗
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+
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KH

T
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][]1[
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T
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N

N
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





= ,...,1f ,

and ( )TT
H

T
K ]1[]1[ , +−= 10c .

Applying the method of Lagrange multipliers gives  

 ]~[)(~~ 1*
t

TT
tt yRcRVRVRyy −+= − , (20) 

where V denotes the covariance matrix of ty~ . In (20) the discrepancies ]~[ tyRc −
are distributed over the values of ty~ proportional to their accuracy measure 
specified by V. This implies that the parameters for the total population receive 
smaller adjustments than the parameters for the subpopulations, since parameters for 
the total population are estimated more precisely compared to domain estimates. The 
covariance matrix of (20) is given by 

 RVRVRVRVyV 1* )()~( −−= TT
t .

The benchmarked estimates obtained with (20) have smaller or equal variances than 
the separately adjusted series. The interpretation of this variance reduction is that the 
restrictions specified by (19) add additional information to the model that is applied 
to adjust the series for the observed discontinuities. 

Inconsistencies can also be avoided by modelling the untransformed series for the 
total population and its breakdown in the H subpopulations, i.e. 

TT
Ht

T
t

T
tottt )~,...,~,~(~

,1,, yyyy = , simultaneously in one multivariate model and include 
the consistency requirements in the transition equation for the regression coefficient 
of the intervention variables. To avoid unnecessary mathematical notation, the 
transition equation is only given for the regression coefficients of these intervention 
variables. The formulation of the complete state space representation follows 
directly from the models defined in section 4.1.  

Let Tββ = denote the transition equation for the time invariant regression 
coefficients of the intervention variables for the series of the total population and the 
H subpopulations, i.e. ( )TT

H
TT

Tot ββββ ,...,, 1= , with Totβ the K dimensional vector 
containing the intervention variables for the K categories of the parameter for the 
total population and hβ the K dimensional vector containing the intervention 
variables of the parameter for the subpopulations. If the transition matrix is defined 
as 
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HKK
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][][][

][][ ,

where ivT is defined by (10.f), then it follows that the adjusted series meet the 
consistencies specified by (18) as well as the unit sum constraint for the K classes of 
the parameter for the total population and the H subpopulations.  

Both methods can be generalized to benchmark the series for the population total 
and two or more domain classifications simultaneously. Adding too many 
restrictions, however, might result in numerical problems for solving (20) or 
estimating the state space model. 

4.5 Implementation of the Kalman filter 

After having expressed the multivariate structural time series model in state space 
representation and under the assumption of normally distributed error terms, the 
Kalman filter can be applied to obtain optimal estimates for the state variables as 
well as the measurement equation see e.g. Durbin and Koopman, (2001). Estimates 
for state variables for period t based on the information available up to and including 
period t are referred to as the filtered estimates. The filtered estimates of past state 
vectors can be updated, if new data become available. This procedure is referred to 
as smoothing and results in smoothed estimates that are based on the completely 
observed time series. So the smoothed estimate for the state vector for period t also 
accounts for the information made available after time period t. In this paper, point 
estimates and standard errors for the state variables are based on the smoothed 
Kalman filter estimates using the fixed interval smoother. See Harvey (1989) or 
Durbin and Koopman (2002) for technical details. 

The non-stationary state variables are initialised with a diffuse prior, i.e. the 
expectations of the initial states are equal to zero and the initial covariance matrix of 
the states is diagonal with large diagonal elements. The time independent regression 
coefficients of the intervention variables are also initialised with a diffuse prior, as 
described by Durbin and Koopman (2001), subsection 6.2.2.  

The analysis is conducted with software developed in Ox in combination with the 
subroutines of SsfPack 3.0, see Doornik (1998) and Koopman et al. (1999, 2008). In 
Ssfpack 3.0 an exact diffuse log-likelihood function is obtained with the procedure 
proposed by Koopman (1997). Maximum likelihood estimates for the 
hyperparameters, i.e. the variance components of the stochastic processes for the 
state variables are obtained using a numerical optimization procedure (BFGS 
algorithm, Doornik, 1998). To avoid negative variance estimates, the log-
transformed variances are estimated. 

5. Results 

5.1 Results with four different time series models 

The time series models developed in section 4 are applied to the series of 
“Separating chemical waste” and “Contact frequency with neighbors”, which are 
plotted in Figure 1 and 2. The results obtained with four different models are 
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compared. These models assume that the series can be decomposed in a stochastic 
trend, a level intervention and an irregular term. Because the series concern annual 
data, it was not necessary to use a seasonal component. This allowed the selection of 
very parsimonious models, which was inevitable since the series are very short (11 
years). Adding AR or MA components deteriorated the model fits and generally 
resulted in overfitting of the data. 

The first model, denoted M1, is a seemingly unrelated structural time series model 
applied to the untransformed series. This model is defined by equations (6), (8), (9), 
(10a), (10b), (10c), and (10d). Note that there is no restriction for the estimated 
discontinuities. This is a seemingly unrelated structural time series model, since it is 
assumed that the variances of the irregular terms in the measurement equations are 
equal, i.e. 22

,
2

1, ... εεε σσσ === K . Due to the limited length of the series, this 
assumption is made to reduce the number of hyperparameters to be estimated. 

 The second model, denoted M2, is the restricted multivariate model defined by 
equations (6), (8), (9), (10a), (10b), (10d), (10e), and (10f). This implies that the 
observed series are not transformed and that the regression coefficients of the 
intervention variables are explicitly benchmarked by restriction ivT defined in (10f). 
It is also assumed that 22

,
2

1, ... εεε σσσ === K .

The third model, denoted M3, is a seemingly unrelated structural time series model 
applied to the K-1 series obtained after applying logratio transformation (12) using 
the last category as the reference category in the denominator. This model is defined 
by (6), (8), (9) and (13). To reduce the number of hyperparameters it is assumed that 

22
1,

2
1, ... εεε σσσ === −K

The fourth model, denoted M4, is the restricted multivariate model applied to the K 
series obtained after applying the central logratio transformation (15). This model is 
defined by equations (6), (8), (9), (10a), (10b), (10d), (10e), and (10f). It is assumed 
that 22

1,
2

1, ... εεε σσσ === −K .

For each model two analyses are conducted. One is based on the data available up to 
and including 2006, the other on the complete series, including 2007. This gives 
some intuition of the size of the revision of the estimate of the discontinuity if an 
additional observation under the new approach becomes available. 

Estimation results for the discontinuities under the different models are given in 
Table 2 for the parameter “Separating chemical waste” and in Table 3 for the 
parameter “Contact frequency with neighbours”.  

As expected in advance, the estimated discontinuities under M1 do not obey the 
restriction 0ˆ

1
=∑ =

K

k kβ . As a result, the corrected series are not consistent, since 
the categories for a parameter do not add up to one.  

The multivariate model for the original series (M2) and the central logratio 
transformed series (M4) results in consistent series since the estimates for the 
discontinuities are forced to obey the required restriction. Augmenting the model 
with restriction (10f) also reduces the standard errors of the estimated 
discontinuities, since the restriction adds additional information to the model. This 
follows if the results obtained with the multivariate model (M2) are compared with 
the results obtained with the seemingly unrelated time series model (M1) for the 
original series. 

Another way to preserve the consistency between the series of the K categories of a 
parameter is to apply the logratio transformation, since this transformation 
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eliminates the redundancy due to the unit sum constraint over the K categories. The 
estimated discontinuities for the logratio and central logratio transformation in 
Tables 2 and 3 are the results obtained with the transformed series.  

Table 2: Estimated discontinuities for “Separating chemical waste” with different 
models 

Model T Category 
1 2 3 4 5

M1 2006 4.29 (1.21) -4.34 (1.21) 0.00 (1.21) 1.50 (1.21) -1.44 (1.21) 
M1 2007 1.91 (1.88) -4.15 (0.77) -0.07 (0.77) 1.49 (0.77) -1.17 (0.98) 
M2 2006 4.29 (1.07) -4.35 (1.07) -0.01 (1.07) 1.50 (1.07) -1.44 (1.07) 
M2 2007 3.07 (1.44) -4.01 (0.75) 0.07 (0.75) 1.63 (0.75) -0.76 (0.98) 
M3* 2006 -0.06 (0.14) -1.08 (0.20) 0.16 (0.10) 1.00 (0.20)   
M3* 2007 0.19 (0.15) -0.77 (0.21) 0.23 (0.11) 0.68 (0.12)   
M4* 2006 -0.04 (0.26) -1.06 (0.26) 0.22 (0.31) 1.01 (0.16) -0.13 (0.07) 
M4* 2007 -0.05 (0.25) -1.09 (0.26) 0.17 (0.30) 1.00 (0.21) -0.03 (0.07) 
*: Results obtained for  the (central)  logratio transformed series. T: period of the last 
observation included in the analysis. Standard errors in brackets. 

 

Table 3: Estimated discontinuities for “Contact frequency neighbours” with 
different models 

Model T Category 
1 2 3 4

M1 2006 4.79 (1.19) 0.31 (0.69) -4.19 (1.32) 1.60 (0.51) 
M1 2007 4.40 (1.20) -0.09 (0.59) -3.18 (1.30) -1.36 (0.59) 
M2 2006 5.02 (0.93) 0.46 (0.66) -3.92 (0.96) -1.56 (0.48) 
M2 2007 4.44 (0.93) -0.07 (0.56) -3.01 (0.95) -1.35 (0.56) 
M3* 2006 0.33 (0.09) 0.27 (0.09) 0.16 (0.09)   
M3* 2007 0.38 (0.11) 0.30 (0.10) 0.14 (0.08)   
M4* 2006 0.14 (0.06) 0.08 (0.06) -0.03 (0.06) -0.19 (0.06) 
M4* 2007 0.12 (0.05) 0.07 (0.05) -0.03 (0.05) -0.16 (0.05) 
*: Results obtained for the (central) logratio transformed series. T: period of the last 
observation included in the analysis. Standard errors in brackets. 

The results obtained under equivalent models illustrate the size of the revision for 
the estimated discontinuities if the data for an additional year becomes available. 
Adding the estimates obtained in 2007 to the series results in a revision of the 
estimated discontinuities. Large revisions are observed for the first category of 
“Separating chemical waste” under model M1 and the fourth category of “Contact 
frequency with neighbours” under model M1. For the other three models the sizes of 
the revisions are smaller with respect to the standard errors. It can be expected that 
the size of the revisions decreases if the length of the series increases, particularly if 
the number of data points after the changeover increases. 

The original data, the corrected series obtained with models M2, M3, and M4, are 
shown in figures 3 and 4. The outcomes obtained under the SSPEC for the period 
2005 through 2007 are corrected to make the series comparable with the outcomes 
of the PSLC, using the procedure described in section 4. In subsection 5.2 a 
simulation study is conducted to investigate which model is most appropriate to 
estimate discontinuities and produce corrected series for the variables of the PSLC 
and the SSPEC.  
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Figure 3: Separating chemical waste 
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Figure 4: Contact frequency with neighbours 
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5.2 Model evaluation 

The underlying assumptions of the state-space model are that the disturbances of the 
measurement and system equations are normally distributed and serially independent 
with constant variances. There are different diagnostic tests available in the literature 
to test to what extent these assumptions are met, see Durbin and Koopman (2001), 
section 2.12.  
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In this application model evaluation is particularly important. The observed series 
are the outcome of variables that have a multinomial response at each time period. 
The Gaussian models M1 and M2 are applied to the untransformed data and 
therefore do not account for this property. Models M3 and M4 are also Gaussian, but 
account for the multinomial response through the logratio and a central logratio 
transformation. Durbin and Koopman (2000) and Durbin and Koopman (2001), 
chapters 10 and 11 describes simulation methods for the analysis of non-Gaussian 
models and can be used as an alternative. 

Another point of concern is the limited length of the available series. Only 11 
periods are observed, which might affect the precision of the maximum likelihood 
estimates for the hyperparameters and the smoothed Kalman filter estimates for the 
discontinuities. Furthermore, standard diagnostic tests to evaluate model 
assumptions will not have sufficient power to asses model-deficiencies and are 
therefore not very useful in this application. As an alternative two simulations are 
conducted.  

5.2.1 Simulation with different time series lengths  

In the first simulation the effect of the length of the series on the reliability of the 
estimates for the hyperparameters and the discontinuities is investigated. 
Replications of time series are generated from the unconditional distribution implied 
by model M3 using the maximum likelihood estimates for the hyperparameters and 
the smoothed estimates for the discontinuities obtained for the variable “Contact 
frequency with neighbours”.  

For each replication, states and observations are generated using the Ssfpack 
procedure SsfRecursion as described in Koopman et al. (2008), section 4.1. 
This procedure uses standard normal random numbers for the disturbance terms of 
the measurement and system equations. The maximum likelihood estimates for the 
hyperparameters and the smoothed estimates for the discontinuities are used to 
define the state-space model. Subsequently model M3 is applied to analyse the 
simulated time series.  

Three different simulations are conducted. In the first simulation, time series with a 
length of 11 observations, 8 before and 3 after the survey redesign, are generated. In 
the second simulation, time series with a length of 22 observations, 16 before and 6 
after the survey redesign, are generated. In the third simulation, time series with a 
length of 44 observations, 32 before and 12 after the survey redesign, are generated. 
The variance of the irregular terms of the measurement equation is inversely 
proportional to the yearly sample size of the survey. For the first simulation the 
actual sample sizes of the PSLC and the SSPEC are used. In the second and the third 
simulation additional sample sizes are generated from a uniform distribution where 
the minimum and maximum yearly sample size of the PSLC and the SSPEC are 
used as the lower and upper boundaries of the uniform distribution. For each 
simulation study 10,000 time series are generated.   

The resample distributions of the maximum likelihood estimates for the 
hyperparameters and the smoothed estimates for the discontinuities are used to 
obtain more insight in the reliability of these model estimates in this application 
where only a limited number of data points are available. In Table 4 the means and 
standard errors of the resample distributions of the estimated hyperparameters and 
discontinuities are compared with the values used in the assumed distribution. The 
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resample distributions of the estimated hyperparameters and discontinuities are 
plotted in Figures 5 and 6.  

Table 4: Simulation results for the estimated hyperparameters and discontinuities 
with different lengths of the times series 

 Simulated values 
Parameter Real 

values 
T=11 T=22 T=44 

Hyp. 1  0.0480 0.0460 (0.0464) 0.0445 (0.0208) 0.0467 (0.0123)
Hyp. 2  0.0237 0.0261 (0.0412) 0.0210 (0.0139) 0.0227 (0.0079)
Hyp. 3  0.000 0.0170 (0.0392) 0.0027 (0.0064) 0.0006 (0.0014)
Hyp. 4  5.260 4.7182 (1.2177) 5.1664 (0.5833) 5.2223 (0.3869)
Disc. 1 0.380 0.380 (0.141) 0.378 (0.124) 0.379 (0.123) 
Disc. 2  0.300 0.298 (0.122) 0.300 (0.105) 0.300 (0.101) 
Disc. 3  0.140 0.142 (0.104) 0.139 (0.070) 0.140 (0.049) 
Hyp.1, Hyp. 2, Hyp. 3: Standard deviations irregular terms of the slope from the 
trend model for three series obtained after logratio transformation, i.e. 1,Rσ , 2,Rσ ,

3,Rσ . Hyp. 4: Standard deviation irregular terms of the measurement equations, i.e. 
εσ . Disc. 1, Disc. 2, Disc. 3: Discontinuity for three series obtained after logratio 

transformation, i.e. 1β , 2β , 3β . Standard errors in brackets. 

 

The mean of the resample estimates for the hyperparameters and the discontinuities 
are not significantly different from the real values used in the assumed distribution 
in each of the three simulations with different time series lengths. This implies that 
there are no indications that a limited number of observations results in biased 
parameter estimates. The precision of the maximum likelihood estimates of the 
hyperparameters clearly improves with the length of the time series. It follows from 
Table 4 that the size of the standard errors decreases with the length of the series. 
The same conclusion follows from figure 5. Short series result in wide and skewed 
resample distributions around the true values. The resample distributions centre on 
the true value and become more symmetrically if the length of the series increases. 
The precision of the smoothed estimates of the discontinuities, on the other hand, is 
much better in the case of the shortest time series. It can be seen from Table 4 that 
the decrease of the standard errors if the length of the series increases is much 
smaller compared to the hyperparameters. The same conclusion follows from Figure 
6. The effect of the length of the series on the dispersion of the resample distribution 
around the true values is much smaller. The sample distributions are also allocated 
more symmetrically around the true values, even in the case of the shortest time 
series.  
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Figure 5: Resample distributions estimated hyperparameters for different time series lengths. 

Hyp.1, Hyp. 2, Hyp. 3: Standard deviations irregular terms of the slope from the trend model for three 
series obtained after logratio transformation, i.e. 1,Rσ , 2,Rσ , 3,Rσ . Hyp. 4: Standard deviation 
irregular terms of the measurement equations, i.e. εσ .



28

Figure 6: Resample distributions estimated discontinuities for different time series lengths. 

Disc. 1, Disc. 2, Disc. 3: Discontinuity for three series obtained after logratio transformation, i.e. 

1β , 2β , 3β .
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5.2.2 Simulation with different models under multinomial response 

In the second simulation the performance of the four models, used in subsection 5.1, 
under a multinomial response with different discontinuities is studied. In this 
simulation, time series with a length of 11 time points are generated as follows. For 
each time point tn independent trials are drawn from a multinomial distribution 
with parameters tn and ),,,( 4,3,2,1, ttttt pppp=p , with tn the yearly sample size 
and tp the observed distribution over the four categories of “Contact frequency 
with neighbours” observed with the PSLC in the first 8 years and the SSPEC in the 
last 3 years. The distributions observed with the SSPEC are corrected for the 
estimated discontinuities obtained with model M2. Thus tt yp ˆ= if 2004≤t and 

βyp ˆˆ −= tt if 2004>t . According to this approach uninterrupted time series 
*r

tp are generated.  

Subsequently two different types of discontinuities are added to the last three time 
points of the series, i.e. t

r*
t

r
t ∆pp += . The first set of discontinuities are chosen 

constant over time by taking  t
t )4.1,0.3,1.0,5.4( −−−=∆ for t = 2005, 2006 and 

2007. These discontinuities are approximately equal to the estimated discontinuities 
under model M2, see Table 3. The second set of discontinuities is derived from the 
estimation results obtained with model M3. Time varying discontinuities are 
obtained by taking ttt yy∆ ~ˆ −= for t = 2005, 2006 and 2007. Here tŷ are the 
originally observed series under the SSPEC and ty~ the adjusted series obtained with 
the inverse of the logratio transformation (14). Although M3 assumes a time 
independent regression coefficient for the intervention variable, the discontinuities 
become time dependent since the adjusted series is mapped from the real space back 
to the simplex with the inverse of the logratio transformation (14).  

In each simulation 10,000 series are generated and analysed with the four models 
proposed in subsection 5.1. Let r

t∆̂ denote the estimated discontinuities for time 
periods t = 2005, 2006 and 2007 for the r-th replicate. For models M1 and M2 the 
estimated discontinuities are equal to the estimated regression coefficients of the 
intervention variable, i.e. rr

t β∆ ˆˆ = and thus constant in time. For models M3 and 
M4 the simulated series are transformed using the logratio and the central logratio 
transformation respectively. Time varying discontinuities for the r-th replicate are 
estimated as the difference between the original and adjusted series, i.e. 

r
t

r
t

r
t pp∆ ~ˆ −= for t = 2005, 2006 and 2007. Here r

tp~ denotes the adjusted series for 
the r-th replicate obtained with the inverse of the logratio transformation (14) or the 
inverse central logratio transformation (17). 

In Table 5, the mean and standard errors of the estimated discontinuities r
t∆̂ are 

summarised for the simulation with constant discontinuities. Standard errors are 
obtained with the resample standard deviation. In Table 6 the same analysis results 
are specified for the simulations with time dependent discontinuities. 

For each model it follows that the real values of the discontinuities are included in 
the 95% confidence intervals of the simulated means. Nevertheless it can be 
concluded that the simulated means of the discontinuities of model M1 and M2 are 
closer to the real values of the discontinuities than models M3 and M4. This is the 
case for the simulation with constant discontinuities (Table 5) but also for the time 
varying discontinuities (Table 6). Furthermore the simulated standard errors under 
models M1 and M2 are smaller than the simulated standard errors obtained with 
models M3 and M4.   
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Table 5: Real and simulated values time independent discontinuities  

 Discontinuity 
Cat. 1  Cat. 2  Cat. 3  Cat. 4  

Real value 4.5  -0.1  -3.0  -1.4  
M1 4.400 (1.232) 0.037 (0.631) -2.672 (1.248) -1.529 (0.489) 
M2 4.266 (1.209) -0.001 (0.650) -2.694 (1.125) -1.572 (0.497) 
M3-2005 3.489 (1.430) 0.042 (0.759) -1.818 (1.118) -1.713 (0.578) 
M3-2006 3.946 (1.682) 0.100 (0.685) -2.274 (1.437) -1.773 (0.696) 
M3-2007 3.976 (1.677) 0.108 (0.745) -2.038 (1.230) -2.046 (0.850) 
Mean value M3* 3.804  0.083  -2.043  -1.844  
M4-2005 3.353 (1.336) 0.191 (0.864) -1.935 (1.443) -1.609 (0.577) 
M4-2006 3.852 (1.658) 0.230 (0.775) -2.426 (1.853) -1.657 (0.680) 
M4-2007 3.847 (1.591) 0.256 (0.852) -2.192 (1.707) -1.911 (0.825) 
Mean value M4* 3.684  0.226  -2.184  -1.725  
*: Mean over the three years. Standard errors between brackets. 

Table 6: Real and simulated values time dependent discontinuities 
 Discontinuity 

Cat. 1  Cat. 2  Cat. 3  Cat. 4  
Real value 2005 4  -0.21  -1.96  -1.83  
Real value 2006 4.45  -0.11  -2.46  -1.88  
Real value 2007 4.47  -0.12  -2.20  -2.15  
M1 3.788 (1.207) -0.035 (0.614) -1.562 (1.134) -1.975 (0.446) 
M2 3.665 (1.153) -0.072 (0.629) -1.582 (1.052) -2.011 (0.459) 
M3-2005 2.997 (1.245) -0.041 (0.710) -0.845 (0.932) -2.111 (0.538) 
M3-2006 3.207 (1.422) -0.010 (0.645) -0.993 (1.123) -2.204 (0.681) 
M3-2007 3.331 (1.461) 0.001 (0.703) -0.896 (1.041) -2.437 (0.830) 
M4-2005 2.910 (1.153) 0.064 (0.781) -0.925 (1.184) -2.048 (0.548) 
M4-2006 3.146 (1.361) 0.083 (0.705) -1.095 (1.445) -2.134 (0.679) 
M4-2007 3.246 (1.348) 0.107 (0.774) -0.996 (1.348) -2.357 (0.813) 
Standard errors between brackets. 

5.3 Implementation 

The simulations indicate that time series models applied to the untransformed series 
result in more accurate estimates for the discontinuities than the models applied to 
the logratio or central logratio transformed series. The main advantage of the 
logratio and central logratio transformation is that the adjusted values add up to one 
and always take values within the admissible range of [0,1] by definition. The major 
drawback of both transformations is that the interpretation of the results is complex. 
The estimated discontinuities as well as the corrected series for a particular class are 
influenced by the discontinuity of the reference class in the case of the logratio 
transformation. In the case of the central logratio transformation the estimated 
discontinuities as well as the corrected series for each particular class is influenced 
by the discontinuities of all other classes, via the geometric mean over all classes in 
the denominator of this transformation. An additional disadvantage of the logratio 
transformation is that the results depend on the choice of the reference category to 
be used in the denominator of the logratio transformation.  

The advantage of the multivariate model applied to the untransformed data is that 
the interpretation of the results is straightforward and that the estimated 
discontinuities for the separated categories are only affected by the other categories 
through the zero sum constraint. The major drawback is that the corrected values 
might take values outside the admissible range of [0,1]. This, however, did not occur 
in this application. 
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Based on these considerations, the multivariate model M2 applied to the 
untransformed data is finally used in this application to estimate discontinuities and 
calculate corrected time series for all other parameters about environmental 
consciousness and social participation. The common picture of the effect of the 
redesign is an increase of the proportion of respondents in the first categories 
compensated by a decrease in the last categories after the change-over. See Van den 
Brakel and Roels (2009) for a more detailed discussion about the results. 

In this application, the series for the two domains of gender were also analyzed and 
adjusted for the observed discontinuities. For a few parameters, the method of 
Lagrange multipliers, describes in section 4.4, was applied to restore the consistency 
with the series for the total population. In this case the covariance matrix in (20) was 
taken diagonal with the variances of the smoothed Kalman filter estimates for the 
regression coefficients of the intervention variables as elements. This benchmark 
resulted in small modifications of the adjusted series.  

Consistent time series can be obtained by correcting the observed series for the 
estimated discontinuity. Depending on the anticipated impact of the redesign on the 
quality of the estimates, the series observed in the past can be adjusted to make it 
comparable with the outcomes obtained under the new design. It is also possible to 
adjust the outcomes obtained under the new approach to make them comparable 
with the series under the old survey design.  In this application the data collection 
mode changed from CAPI under the PSLC to CATI under the SSPEC. Therefore it 
is anticipated that the series observed in the past are more accurate than the 
outcomes obtained under the SSPEC. Indeed, with the CAPI mode the entire target 
population is reached while the CATI mode only surveys the subpopulation with a 
listed telephone number. Furthermore less measurement errors and social desirable 
answers are expected under the CAPI mode due to the personal contact with an 
interviewer and the lower interview speed, see e.g. Holbrook et al. 2003, Roberts 
2007. Based on these considerations it was decided that the outcomes obtained 
under the SSPEC are corrected to make the series comparable with the outcomes of 
the PSLC. Under the assumption that the development observed with the CATI data 
is representative for the entire target population, consistent time series are obtained. 

6. Discussion 

The relevance of official statistics, produced by national statistical institutes, 
strongly depends on the comparability of the outcomes over time. A redesign of the 
survey process generally results in discontinuities in time series obtained with 
repeatedly conducted sample surveys. To avoid the confounding of real 
developments with the systematic effect induced by the redesign, structural time 
series models with an intervention variable are developed to estimate the size of the 
discontinuities. This approach relies on the assumption that there is no structural 
change in the evolution of the series of the population value at the moment that the 
survey is redesigned. Additional auxiliary information and subject matter expert 
knowledge can e used to asses whether the assumption that there is no structural 
change in the real evolution of the population variable is tenable. Auxiliary time 
series can be incorporated in the model to improve the estimates for the 
discontinuities. If this assumption is questionable, experiments where both surveys 
are run in parallel for some period of time should be considered as an alternative. 
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The transition of the PSLC to the SSPEC resulted in systematic differences in the 
estimates for parameters about environmental consciousness and social participation. 
In this application, Gaussian state-space models are applied to compositional time 
series which are derived from variables with a multinomial response at each time 
period. In a simulation study the performance of multivariate models applied to 
untransformed, logratio transformed and central logratio transformed series are 
compared.  In this application the most accurate estimates for the discontinuities are 
obtained with a multivariate model applied to the untransformed series that accounts 
for the unit sum constraint. This is a remarkable result, since the logratio and central 
logratio transformations were considered to account for the multinomial response. It 
is worthwhile to investigate to what extent simulation methods for the analysis of 
non-Gaussian models further improve the accuracy of the estimated discontinuities. 

Another point of concern is the limited length of the available series. Simulations 
indicate that the dispersion of the resample distribution of the maximum likelihood 
estimates for the hyperparameters narrows rapidly if the length of the available 
series increases. The dispersion of the resample distribution of the smoothed 
estimates of the discontinuities, on the other hand, remains more stable if the length 
of the series in the simulations increases. Therefore it appears that although the 
maximum likelihood estimates of the hyperparameters of the state-space models can 
be far from the true values under the available series, the models already produce 
useful estimates for the discontinuities.  This is a plausible result. Most information 
about the size of the discontinuity comes from the observations close to the moment 
of the survey redesign. This also depends on the flexibility of the other model 
components. The discontinuities are increasingly based on local observations close 
to the moment of the survey redesign, as the trend and other model components are 
more flexible.  

One aspect of the time series approach is that more observations under the new 
approach become available when time proceeds. The advantage is that the 
discontinuities can be quantified more accurately if this additional information 
becomes available. A concomitant drawback is that the estimated discontinuities 
three years after redesigning the survey are still subject to revisions. A publication 
policy is required to deal with these revisions in practice. For this application it was 
decided to base the final estimates for the discontinuities on the information 
available up until 2007 in this application. 
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