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Summary: A common problem faced by statistical offices is that data may be 
missing from collected data sets. The typical way to overcome this problem is 
to impute the missing data. The problem of imputing missing data is 
complicated by the fact that statistical data often have to satisfy certain edit 
rules, which for numerical data usually take the form of linear restrictions. 
Standard imputation methods for numerical data as described in the literature 
generally do not take such linear edit restrictions on the data into account. In 
the present paper we describe two algorithms for imputation of missing 
numerical data that do take the edit restrictions into account. Both methods 
assume that the data are approximately multivariately normally distributed. 
The first method uses the estimated multivariate normal model to impute the 
missing values and afterwards adjusts the imputed values so they satisfy the 
edit restrictions. The second method sequentially imputes the missing data in 
a record. It uses Fourier-Motzkin elimination to determine appropriate 
intervals for each variable to be imputed. To assess the performance of these 
two imputation methods an evaluation study is carried out. 

Keywords: Fourier-Motzkin elimination, imputation, linear edit restrictions, 
linear programming 
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1. Introduction 

National statistical institutes (NSIs) publish figures on many aspects of society. To 
this end, these NSIs collect data on persons, households, enterprises, public bodies, 
etc. A major problem that has to be faced is that data may be missing from the 
collected data sets. Some units that are selected for data collection cannot be 
contacted or may refuse to respond altogether. This is called unit non-response. Unit 
non-response is not considered in this paper. For many records, i.e. the data of 
individual respondents, data on some of the items may be missing. Persons may, for 
instance, refuse to provide information on their income or on their sexual habits, 
while at the same time giving answers to other, less sensitive questions on the 
questionnaire. Enterprises may not provide answers to certain questions, because 
they may consider it too complicated or too time-consuming to answer these specific 
questions. Missing items of otherwise responding units is called item non-response. 
Whenever we refer to missing data in this paper we will mean item non-response. 

Missing data is a well-known problem that has to be faced by basically all institutes 
that collect data on persons or enterprises. In the statistical literature ample attention 
is hence paid to missing data. The most common solution to handle missing data in 
data sets is imputation, where missing values are estimated and filled in. An 
important problem of imputation is to preserve the statistical distribution of the data 
set. This is a complicated problem, especially for high-dimensional data. For more 
on this aspect of imputation and on imputation in general we refer to Kalton and 
Kasprzyk (1986), Rubin (1987), Kovar and Whitridge (1995), Schafer (1997), Little 
and Rubin (2002), and Longford (2005). 

At NSIs the imputation problem is further complicated owing to the existence of 
constraints in the form of edit restrictions, or edits for short, that have to be satisfied 
by the data. Examples of such edits are that the profit and the costs of an enterprise 
have to sum up to its turnover, and that the turnover of an enterprise should be at 
least zero. Records that do not satisfy these edits are inconsistent, and are hence 
considered incorrect. While imputing a record, we aim to take these edits into 
account, and thus ensure that the final, imputed record satisfies all edits. The 
imputation problem at NSIs is hence given by: impute the missing data in the data 
set under consideration in such a way that the statistical distribution of the data is 
preserved as well as possible subject to the condition that all edits are satisfied by 
the imputed data.  

For academic statisticians the wish of NSIs to let the data satisfy specified edits may 
be difficult to understand. Statistically speaking there is indeed hardly a reason to let 
a data set satisfy edits. However, as Pannekoek and De Waal (2005) explain, NSIs 
have the responsibility to supply data for many different, both academic and non-
academic, users in society. For the majority of these users, inconsistent data are 
incomprehensible.  
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They may reject the data as being an invalid source or make adjustments themselves. 
This hampers the unifying role of NSIs in providing data that are undisputed by 
different parties such as policy makers in government, opposition, trade unions, 
employer organizations, etc. As mentioned by Särndal and Lundström (2005, p. 
176): “Whatever the imputation method used, the completed data should be 
subjected to the usual checks for internal consistency. All imputed values should 
undergo the editing checks normally carried out for the survey”.  

Simple sequential imputation of the missing data, where edits involving fields that 
have to be imputed subsequently are not taken into account while imputing a field, 
may lead to inconsistencies. Consider, for example, a record where the values of two 
variables, x and y, are missing. Assume these variables have to satisfy three edits 
saying that x is at least 50, y is at most 100, and y is greater than or equal to x. Now, 
if x is imputed first without taking the edits involving y into account, one might 
impute the value 150 for x. The resulting set of edits for y, i.e. y is at most 100 and y 
is greater than or equal to 150, cannot be satisfied. Conversely, if y is imputed first 
without taking the edits involving x into account, one might impute the value 40 for 
y. The resulting set of edits for x, i.e. x is at least 50 and 40 is greater than or equal to 
x, cannot be satisfied. 

In this paper we develop two algorithms for imputation of missing numerical data 
that do take the edit restrictions into account. Both methods assume that the data are 
approximately multivariately normally distributed. In fact, in our calculations we 
will treat this unknown distribution as following a multivariate normal distribution 
exactly. For data that have to satisfy edits defined by linear inequalities this is surely 
incorrect, because at best the data could follow a truncated normal distribution but 
never a regular normal distribution. Our simplification makes it relatively easy to 
determine marginal and conditional distributions, which are needed for one of the 
two imputation methods, examined in this paper. In order to estimate the parameters 
of the multivariate normal distribution, we have used the EM algorithm. As starting 
values for the EM algorithm we have used the observed means and covariance 
matrix of the complete cases. Our implementation of the EM algorithm is based on 
Schafer (1997).  

The innovative aspect of our work is the way we ensure that edits are satisfied. 
Despite the fact that much research on imputation techniques has been carried out, 
imputation under edits is still a rather neglected area. As far as we are aware, apart 
from some research at NSIs (see, e.g., Tempelman, 2007) no or hardly any research 
on this particular aspect of imputation has been carried out. 

The remainder of this paper is organised as follows. Section 2 first discusses the 
kind of linear edits on which we will focus in this paper. Section 3 describes an 
adjustment method where imputed records are later adjusted so they satisfy the 
specified edits. A second imputation method is described in Section 5.  
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A fundamental role in this algorithm is played by Fourier-Motzkin elimination. We 
refer to this imputation method as the FM method. The Fourier-Motzkin elimination 
technique itself is explained in Section 4. Section 6 illustrates the FM method by 
means of an example. An evaluation study and its results are described in Section 7. 
In that section we compare the results of the adjustment method with the FM 
method. Finally, Section 8 concludes the paper with a short discussion. 

2.  Linear edit restrictions 

In this paper we focus on linear edits for numerical data. Linear edits are either 
linear equations or linear inequalities. We denote the number of continuous variables 
by n, and the variables in a certain record by  (i=1,…,n). We assume that edit j 

(j=1,...,J) can be written in either of the two following forms: 
ix

011 =+++ jnnjj bxaxa K ,     (2.1a) 

or 

011 ≥+++ jnnjj bxaxa K .     (2.1b) 

Here the  and the  are certain constants, which define the edit.  ija jb

Edits of type (2.1a) are referred to as balance edits. An example of such an edit is 

 T = P + C,       (2.2) 

where T is the turnover of an enterprise, P its profit, and C its costs. Edit (2.2) 
expresses that the profit and the costs of an enterprise should sum up to its turnover. 
A record not satisfying this edit is obviously incorrect. Edit (2.2) can be written in 
the form (2.1a) as T – P – C = 0. 

Edits of type (2.1b) are referred to as inequality edits. An example is 

 ,        (2.3) 0≥T

expressing that the turnover of an enterprise should be non-negative. An inequality 
edit such as (2.3), expressing that the value of a variable should be non-negative, is 
also referred to as a non-negativity edit. 
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3. An adjustment method 

A straightforward approach to let imputed values satisfy specified edits is to use an 
adjustment method consisting of two steps. In the first step the missing data are 
imputed without taking the edits (2.1) into account. These missing data can, for 
instance, be imputed by assuming that the data follow a multivariate normal 
distribution, and use a standard imputation method for this situation (see, e.g., Little 
and Rubin, 2002, and Schafer, 1997). As already mentioned, in this paper we indeed 
assume that the data follow a multivariate normal distribution, and impute the 
missing data of a record by drawing values from the appropriate estimated 
conditional distribution for the missing data given the observed values. 

We denote the values after the first imputation step for the record under 
consideration by  (i=1,…,n). In the second step, the adjustment step, the final 

values in the record under consideration,  (i=1,…,n), are determined by 

minimising the objective function 

ix ,first

ix ,final

 ∑ −
i

iii xxw ,final,first       (3.1) 

subject to the condition that the values  (i=1,…,n) satisfy all edits (2.1) and the 

condition that for all variables k that were observed  equals the corresponding 

observed value. The latter condition means that only the values imputed in the first 
imputation step may be modified. The  (i=1,…,n) are non-negative weights, 

reflecting how serious one considers a change of a unit in variable i to be. The 
problem of minimising the objective function (3.1) subject to the condition that the 
values  (i=1,…,n) satisfy all edits (2.1) is a linear programming problem, and 

can, for instance, be solved by means of the well-known simplex algorithm (see, 
e.g., Chvátal, 1983). 

ix ,final

kx ,final

iw

ix ,final

The adjustment method is quite a general and logical approach. In the first step one 
can apply the imputation method that is best from a statistical point of view for the 
data under consideration. In the second step the imputed values are (hopefully only 
slightly) adjusted so they satisfy the specified edits. The method has one important 
drawback, however. Namely, if after the first step an imputed record does not satisfy 
the edits, the final, adjusted, record will lie on the boundary of the feasible region, 
i.e. at least one of the inequality edits will be satisfied with equality. In other words, 
the number of records that lie on the boundary of the feasible region is completely 
determined by the first imputation step. Apart from using another imputation method 
in the first step, one has no way of influencing the number of records that lie on the 
boundary of the feasible region. 
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In the next three sections we describe our second imputation method, the FM 
method. We begin the description of the FM method by explaining Fourier-Motzkin 
elimination. 

4. Eliminating variables by means of Fourier-Motzkin elimination 

Fourier-Motzkin elimination (see, e.g., Duffin, 1974, and De Waal and Coutinho, 
2005) is a technique to project a set of linear constraints involving m variables onto 
a set of linear constraints involving m-1 variables. The original set of constraints 
involving m variables can be satisfied if and only if the corresponding, projected set 
of constraints involving m-1 variables can be satisfied. The standard version of 
Fourier-Motzkin elimination handles only inequalities as constraints. We use an 
extended version of Fourier-Motzkin elimination that can also handle equations. In 
our application of Fourier-Motzkin elimination the constraints are defined by the 
edits. 

In order to eliminate a variable  from the set of current edits by means of Fourier-

Motzkin elimination, we start by copying all edits not involving this variable from 
the set of current edits to a new set of edits 

rx

Ψ .  

If variable  occurs in an equation, we express  in terms of the other variables. 

Say,  occurs in edit s of type (2.1a), we then write  as 
rx rx

rx rx

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∑

≠ri
iiss

rs
r xab

a
x 1      (4.1) 

Expression (4.1) is used to eliminate  from the other edits involving . These 

other edits are hereby transformed into new edits, not involving , that are 

logically implied by the old ones. These new edits are added to our new set of edits 
. Note that if the original edits are consistent, i.e. can be satisfied by certain 

values  (i=1,…,m), then the new edits are also consistent as they can be satisfied 

by  (i=1,…,m; i ≠  r). Conversely, note that if the new edits are consistent, say 

they can be satisfied by the values  (i=1,…,m; i 

rx rx

rx

Ψ

iu

iu

iv ≠  r), then the original edits are 

also consistent as they can be satisfied by the values  (i=1,…,m) where  is 

defined by filling v  (i=1,…,m; i 
iv rv

i ≠  r) into (4.1). 

If  does not occur in an equality but only in inequalities, we consider all pairs of 

edits (2.1b) involving . Suppose we consider the pair consisting of edit s and edit 

t. We first check whether the coefficients of  in those inequalities have opposite 

signs, i.e. we check whether 

rx

rx

rx

0<× rtrs aa .  
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If this is not the case, we do not consider this particular combination (s,t) anymore. 
If the coefficients of  do have opposite signs, one of the edits, say edit s, can be 

written as an upper bound on , i.e. as 
rx

rx

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≤ ∑

≠ri
iiss

rs
r xab

a
x 1 ,     (4.2) 

and the other edit, edit t, as a lower bound on , i.e. as rx

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≥ ∑

≠ri
iitt

rt
r xab

a
x 1 .     (4.3) 

Edits (4.2) and (4.3) can be combined into  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≤≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− ∑∑

≠≠ ri
iiss

rs
r

ri
iitt

rt
xab

a
xxab

a
11 , 

which yields an implied edit not involving  given by rx

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− ∑∑

≠≠ ri
iiss

rsri
iitt

rt
xab

a
xab

a
11 .   (4.4) 

 

The implied edit (4.4) is added to our new set of edits Ψ . After all possible pairs of 
edits involving  have been considered and all implied edits given by (4.4) have 

been generated and added to 
rx

Ψ , we delete the original edits involving  that we 

started with. In this way we obtain a new set of edits 
rx

Ψ  not involving variable . 

This set of edits  may be empty. This occurs when all current edits involving  

are inequalities and the coefficients of  in all those inequalities have the same 

sign. Note that if the original edits are consistent, say they can be satisfied by certain 
values  (i=1,…,m), then the new edits are also consistent as they can be satisfied 

by  (i=1,…,m; i ≠  r). This is by definition also true if the new set of edits is 

empty. Conversely, note that if the new edits are consistent, say they can be satisfied 
by certain values v  (i=1,…,m; i 

rx

Ψ rx

rx

iu

iu

i ≠  r), then the minimum of the right-hand sides of 

(4.4) for the  (i=1,…,m; i iv ≠  r) is larger than, or equal to, the maximum of the left-

hand sides of (4.4) for the  (i=1,…,m; i iv ≠  r). This implies that we can find a value 

 such that  rv

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≤≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− ∑∑

≠≠ ri
iiss

rs
r

ri
iitt

rt
vab

a
vvab

a
11  for all pairs s and t, 

which in turn implies that the original edits are consistent. We have demonstrated 
the main property of Fourier-Motzkin elimination: a set of edits is consistent if and 
only if the set of edits after elimination of a variable is consistent.  
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We illustrate Fourier-Motzkin elimination by means of the example below. 

Note that as one only has to consider pairs of edits, the number of implied edits is 
obviously finite. 

Example: Suppose there are four variables, T (turnover), P (profit), C (costs), and N 
(number of employees), and that the edits are given by (2.2), (2.3),  
 TP 5.0≤ ,       (4.5) 

PT ≤− 1.0 ,       (4.6) 

 NT 550≤ .       (4.7) 

If we eliminate variable P, we use equation (2.2) to express P in terms of T and C. 
That is, we use . After Fourier-Motzkin elimination, we obtain the edits 
(2.3), (4.7), 

CTP −=

 TCT 5.0≤− , (equivalently:  CT ≤5.0 )   (4.8) 

and 

  (equivalently:  CTT −≤− 1.0 TC 1.1≤ )   (4.9) 

The main property of Fourier-Motzkin elimination says that the set of edits (2.3), 
and (4.7) to (4.9) for T, C and N can be satisfied if and only if the original set of 
edits (2.2), (2.3), and (4.7) to (4.9) for T, P, C and N can be satisfied. 

This was an example of Fourier-Motzkin elimination if the variable to be eliminated 
is involved in an equation. We now use the resulting set of edits (2.3), and (4.7) to 
(4.9) for variables T, C and N to give an example of the elimination of a variable 
involved in inequalities only. If we eliminate variable C from edits (2.3), and (4.7) to 
(4.9), we copy the edits not involving C, i.e. edits (2.3) and (4.7). Moreover, we can 
combine edits (4.8) and (4.9) to obtain 

 , TT 1.15.0 ≤

which is equivalent to (2.3). So, eliminating C from (2.3) and (4.7) to (4.9) leads to 
edits (2.3) and (4.7). The main property of Fourier-Motzkin elimination says that the 
set of edits (2.3) and (4.7) for T and N can be satisfied if and only if the set of edits 
(2.3), and (4.7) to (4.9) for T, C and N can be satisfied. Combining the two results 
we have found, we conclude that edits (2.3) and (4.7) for T and N can be satisfied if 
and only if the original set of edits (2.2), (2.3), and (4.7) to (4.9) for T, P, C and N 
can be satisfied.          
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5. An imputation method based on Fourier-Motzkin elimination 

The FM method consists of the following steps: 

0. Assume a statistical model for the data, and estimate the model parameters. As 
mentioned before, in our application we assume that the data are multivariately 
normally distributed, and we use the EM algorithm to estimate the model 
parameters. 

For each record to be imputed we apply Steps 1 to 5 below until all records have 
been imputed. 

1. Fill in the values of the non-missing data into the edits. This leads to a set of 
edits E(0) involving only the variables to be imputed. 

2. Use Fourier-Motzkin elimination to eliminate the variables to be imputed from 
these edits until only one variable remains. The set of edits after the i-th variable 
to be imputed has been eliminated is denoted by E(i). The final set of edits 
defines a feasible interval for the remaining variable. Select this remaining 
variable as the current variable to be imputed. 

3. Draw a value for the variable currently selected to be imputed from the 
conditional distribution of the selected variable given all known values; either 
observed or already imputed ones.  

4. If the drawn value lies inside the feasible interval, accept it and go to Step 5. If it 
lies outside the feasible interval, reject it and return to Step 3. 

5. We stop when all variables have been imputed. Otherwise, we fill in the drawn 
value for the selected variable k into the edits in E( 2−k ). This defines a 
feasible interval for the ( 1−k )-th eliminated variable. Select the ( )-th 
eliminated variable as the current variable to be imputed, and go to Step 3.  

1−k

Note that the theory developed in Section 4 implies that if the record to be imputed 
can be imputed consistently, the feasible interval determined in Step 2 or 5 is never 
empty. 

If the feasible interval determined in Step 2 has width 0, there is only one feasible 
value for the variable under consideration. In this case it is not necessary to draw a 
value in Step 3. Instead we immediately impute the only feasible value. In some 
other cases the width of the feasible interval determined in Step 2 may be rather 
small. In those cases many values may need to be drawn before a value inside the 
feasible interval is drawn. We therefore set a limit, Ndraw, on the number times that a 
value for a particular variable may drawn. If this limit is reached, and no value 
inside the feasible has been drawn, the last value drawn is set to the nearest value of 
the feasible interval.  
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By means of Ndraw one can indirectly control the number of imputed records on 
boundary of the feasible region defined by the edits. If Ndraw is set to a low value, 
relatively many imputed records will be on this boundary; if Ndraw is set to a high 
value, relatively few imputed records will be on the boundary. 

In our implementation of the FM method we have eliminated, and hence imputed, 
the variables in a fixed order. All variables in each data set to be imputed are 
beforehand randomly assigned a unique number from 1 to the number of variables. 
In Step 2 of the above algorithm we then select the variable to be imputed according 
to the assigned numbers, i.e. the variable with the lowest assigned number with a 
missing value is eliminated first, followed by the variable with the second lowest 
assigned number with a missing value, and so on. The order in which the variables 
are imputed is fixed in the sense that – although this order is randomly determined 
beforehand – the same order is used for all records, and even over all experiments 
with the same data set. 

6. Illustration of the FM method 

In this section we illustrate the FM method by means of an example. In our example, 
we assume that we are given a data set with some missing values, that there are four 
variables, T, P, C and N, and that the edits are given by (2.2), (2.3) and (4.5) to (4.7).  

We focus on Steps 1 to 5 of the algorithm for a specific record, and assume that the 
model parameters, means  and covariance matrix , of the multivariate normal 

distribution estimated in Step 0 of our algorithm are given by  

μ Σ

μ  = (1000, 200, 500, 4) 

and  

 . 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1501060
501000050010500
1050025003000
6010500300013500

Σ

Here the first column/row corresponds to T, the second column/row to P, the third 
column/row to C, and the fourth column/row to N.  

Now, suppose that for a certain record in our data set we have N = 5, and that the 
values for T, P and C are missing. We first fill in the observed value for N into the 
edits (2.2), (2.3) and (4.5) to (4.7) (Step 1 of our algorithm). We obtain (2.2), (2.3), 
(4.8), (4.9) and 

 2750≤T ,       (6.1) 
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Now, we sequentially eliminate the variables for which the values are missing from 
the edits. We start by eliminating P from (2.2), (2.3), (4.8), (4.9) and (6.1). This 
leads to the edits (2.3), (6.1) and 

 TCT 5.0≤−    (equivalently: CT ≤5.0 ),  (6.2) 

    (equivalently: CTT −≤− 1.0 TC 1.1≤ ).  (6.3) 

Edits (2.3) and (6.1) to (6.3) have to be satisfied by C and T.  

We next eliminate variable C, and obtain (2.3), (6.1) and 

 ,       (6.4) TT 1.15.0 ≤

Edit (6.4) is equivalent to (2.3). The edits that have to be satisfied by T are hence 
given by (2.3) and (6.1). The feasible interval for T is therefore given by [0, 2750]. 
We have now completed Step 2 of our algorithm. 

To impute T, we determine the distribution of T, conditional on the value for 
variable N. The distribution of T turns out to be N(1060, 9900), the normal 
distribution with mean 1060 and variance 9900. We draw values from this 
distribution until we draw a value inside the feasible interval (Steps 3 and 4 of the 
algorithm). Suppose we draw the value 1200.  

We fill in the imputed value for T into the edits for C and T, i.e. edits (2.3) and (6.1) 
to (6.3) (Step 5 of the algorithm). We obtain  

C≤600 , 

1320≤C , 

01200 ≥ , 

 . 27501200 ≤

The feasible interval for C is hence given by [600, 1320]. We determine the 
distribution of C, conditional on the values for variables N and T. This distribution 
turns out to be N(656.11, 18181.18). We draw values from this distribution until we 
draw a value inside the feasible interval (Steps 3 and 4 of the algorithm). Suppose 
we draw the value 700. 

We fill in the imputed values for C and T into the edits that have to be satisfied by C, 
T and P, i.e. edits (2.2), (2.3), (4.8), (4.9) and (6.1) (Step 5 of the algorithm). We 
obtain  

 , 7001200 += P

 600≤P , 

P≤−120 , 

01200 ≥ , 

 . 27501200 ≤
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There is only one feasible value for P, namely 500. The imputed record we obtain is 
given by T = 1200, C = 700, P = 500, and N = 5.    ■ 

7. Evaluation study 

7.1 Evaluation data 

For our evaluation study we have used three data sets: a data set with actually 
observed data from a business survey, data set Rall, the same data set but without 
balance edits, data set Rineq, and a data set with synthetic data, data set S. The main 
characteristics of these data sets are presented in Table 1. 

Table 1. The characteristics of the evaluation data sets. 

 Data set Rall Data set Rineq Data set S 

Total number of records 3,096 3,096 500 

      Number of records with missing values 544 469 490 

Total number of variables 8 7 10 

Total number of edits 14 12 16 

      Number of balance edits 1 0 3 

      Total number of inequality edits 13 12 13 

            Number of non-negativity edits 8 7 9 

The actual values for data set Rall, and hence also for data set Rineq, are all known. In 
the completely observed data set values were deleted by a third party, using a 
mechanism unknown to us. Data set Rineq was constructed in order to examine the 
effects of balance edits on the results. In fact, we have removed the balance edit 
from data set Rall in two different ways. First of all, we have only removed the 
balance edit, but have left all involved variables in the data set. As a consequence, 
the estimated covariance matrix will be singular and the balance edit will be 
automatically satisfied by the imputed data, if the parameters of the normal 
distribution are estimated by means of the EM algorithm using the complete cases to 
obtain a first estimate for the model parameters as we do in our application. We refer 
the interested reader to Chapter 4 in Tempelman (2007) for a proof. The evaluation 
results should hence be the same as for the case where all edits are used, apart from 
some minor differences due to the stochastic nature of the methods used. This is 
confirmed by our evaluation study (results not reported in this paper). Second, we 
have removed the balance edit, one of the variables involved in this balance edit, and 
its associated non-negativity edit. Rineq is the resulting data set.  
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The removed variable, R4, does not occur in any of the other edits apart from its 
associated non-negativity edit. Removing this variable has the effects that the 
estimated covariance matrix is non-singular, and that the balance edit will not be 
automatically satisfied. 

Data set S is indirectly based on an observed business survey and its corresponding 
edits. This observed data was used to estimate the parameters of a multivariate 
normal model by means of the EM algorithm. Next, data set S was generated by 
drawing from the estimated multivariate normal model. If a drawn vector did not 
satisfy all specified edits it was rejected, else it was accepted. In this way 500 
vectors were generated. Missing values were generated by randomly deleting for 
each variable a specified number of values. The number of values deleted was 
(much) higher than in the actually observed business survey in order to evaluate the 
performance of our imputation methods for a very complicated situation. 

For all three data sets we have two versions available: a version with missing values 
and a version with complete records. The former version is imputed. The resulting 
data set is then compared to the version with complete records, which we consider as 
a data set with the true values. 

The numbers of missing values and means of the 8, respectively 7, variables of data 
set Rall and data set Rineq are given in Table 2 and those of the 10 variables of data set 
S in Table 3. The means are taken over all observations in the complete versions of 
the data sets. 

Table 2. The numbers of missing values and the means of the variables of data sets 
Rall and Rineq. 

Variable Number of missing values Mean 

R1 76 11,574.83 

R2 79 777.56 

R3 130 8,978.70 

R4
* 147 1,034.07 

R5 68 10,012.77 

R6 67 169.24 

R7 73 209.86 

R8 0 37.41 

* Data set Rineq does not contain variable R4. 

Variable R8 does not contain any missing values and is only used as auxiliary 
variable. 
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Table 3. The numbers of missing values and the means of the variables of data set S. 

Variable Number of missing values Mean 

S1 120 97.77 

S2 180 175,018.30 

S3 240 731.03 

S4 120 175,749.33 

S5 180 154,286.53 

S6 180 7,522.34 

S7 180 8,519.65 

S8 180 1,277.04 

S9 120 171,605.57 

S10 120 4,143.76 

7.2 Evaluation measures 

To measure the performance of our imputation methods we use a  measure, an 

 measure, an rdm measure, and the number of imputed records on the boundary 

of the feasible region defined by the edits, i.e. the number of records for which at 
least one inequality edit is satisfied with equality. The first three criteria have been 
proposed by Chambers (2003), and have been used in an evaluation study by 
Pannekoek and De Waal (2005). The  measure is the average distance between 

the imputed and true values defined as  
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The rdm (relative difference in means) measure is defined as 
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Smaller values of the above three measures indicate better imputation performance. 
The number of imputed records on the boundary of the feasible region defined by 
the edits should be close to the actual number of records on the boundary for the 
complete versions of the data sets. 

To remain consistent with the literature, in particular with the previously published 
papers by Chambers (2003) and Pannekoek and De Waal (2005), we have not made 
an attempt to make the  and the m1Ld 1 measures comparable across variables. 

We use the measures in a relative way, namely to compare the adjustment method to 
the FM method. The measures are neither necessarily appropriate nor sufficient to 
measure the impact of imputation on the quality of survey estimates in general. For 
an actual production process it depends on the intended use of the data whether 
record level accuracy (dL1) or more aggregate measures of imputation bias like m1 or 
rdm are more important. Furthermore, to assess the importance of bias caused by 
imputation it should be related to other quality aspects, such as sampling variance. 

7.3 Evaluation results 

Both imputation methods described in this paper are of a stochastic nature as they 
depend on drawing vectors from a probability distribution. To reduce the effects of 
the stochastic nature of our methods we have repeated each evaluation experiment 
10 times, and have calculated the average of these 10 experiments. Unless stated 
otherwise the value of Ndraw for the FM method (see Section 5) is set to 160 in our 
experiments. The results for data set Rall are presented in Table 4 for the adjustment 
method and Table 5 for the FM method. 
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Table 4. Evaluation results for the adjustment method on data set Rall 

Variable 
1Ld  1m  rdm 

R1 2069.20 1145.80 0.15 

R2 226.91 108.27 0.17 

R3 158.79 106.63 -0.04 

R4 532.81 531.39 3.58 

R5 14.81 14.81 -0.01 

R6 41.00 40.617 2.65 

R7 86.37 75.14 1.42 

Table 5. Evaluation results for the FM method on data set Rall

Variable 
1Ld  1m  rdm 

R1 3141.27 2593.45 0.34 

R2 277.30 222.28 0.34 

R3 176.55 142.97 -0.05 

R4 189.06 160.18 0.44 

R5 65.59 54.20 0.00 

R6 13.59 13.17 0.90 

R7 83.83 80.40 1.77 

 

Variable R8 does not have any missing values, so no evaluation results for R8 are 
presented. 

The results for data set Rineq are presented in Table 6 for the adjustment method and 
Table 7 for the FM method. 
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Table 6. Evaluation results for the adjustment method on data set Rineq

Variable 
1Ld  1m  

rdm 

R1 1868.20 256.14 -0.26 

R2 205.16 34.67 -0.38 

R3 1490.70 1452.00 -0.99 

R5 1227.90 541.04 -0.49 

R6 2783.80 2783.80 592.50 

R7 14.40 12.03 -0.54 

Table 7. Evaluation results for the FM method on data set Rineq

Variable 
1Ld  1m  rdm 

R1 3101.88 2717.77 0.33 

R2 271.09 216.54 0.29 

R3 360.10 279.12 -0.09 

R5 1837.67 1756.52 0.14 

R6 13.77 13.37 0.84 

R7 92.65 89.43 1.93 

The results for data set S are presented in Table 8 for the adjustment method and 
Table 9 for the FM method. 

Table 8. Evaluation results for the adjustment method on data set S 

Variable 
1Ld  1m  rdm 

S1 466.17 452.17 4.63 

S2 44304.04 42833.46 -0.26 

S3 32441.33 32332.18 43.50 

S4 28114.87 673.03 0.00 

S5 56780.58 49973.13 -0.33 

S6 33203.49 28916.08 3.72 

S7 22135.07 15792.76 1.77 

S8 75627.02 75118.57 56.62 

S9 127862.42 104736.50 0.60 

S10 145238.77 104194.00 -26.82 
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Table 9. Evaluation results for the FM method on data set S 

Variable 
1Ld  1m  rdm 

S1 13943.12 13916.90 142.57 

S2 17440.92 8066.39 0.05 

S3 9941.38 9767.14 13.14 

S4 32672.09 31633.86 0.19 

S5 11404.99 5274.79 -0.04 

S6 2221.02 1430.56 0.18 

S7 3472.59 1405.63 0.16 

S8 5062.49 4818.50 3.63 

S9 5715.68 3569.85 0.02 

S10 28261.21 28064.01 7.22 

 

It is hard to draw conclusions from Tables 4 to 9. For some variables the adjustment 
method leads to better results than the FM method. For other variables the opposite 
happens. This is not very surprising as both methods rely on the same statistical 
model for drawing imputation values. In order to draw some conclusions we 
examine how often one methods leads to better results than the other, where “better” 
is defined as “closer to zero”. For data set Rall, the results for the adjustment method 
in Table 4 are in 13 cases better than those for the FM method in Table 5. The 
opposite happens in 8 cases. For data set Rineq, the results for the adjustment method 
in Table 6 are in 10 cases better than those for the FM method in Table 7. The 
opposite happens in 8 cases. For data set S, the results for the adjustment method in 
Table 8 are in 5 cases better than those for the FM method in Table 9. The opposite 
happens in 25 cases. From this we conclude that for the relatively easy to impute 
data sets Rall and Rineq the results for , , and rdm are slightly better for the 

adjustment method than for the FM method. The inclusion or exclusion of the 
balance edit in R

1Ld 1m

all, respectively Rineq does not seem to affect the results much. 
However, for the very complicated data set S the FM method leads to clearly better 
results than the adjustment method. This is probably caused by the fact that in the 
FM method the values imputed cannot be too far from their true values as each 
separately imputed value is at worst on the boundary of its feasible interval. This 
imputed value is later used as predictor in order to impute other missing values. In 
the adjustment method the values imputed in the first step may be far from their true 
values. For the complicated data set S, this is apparently not, or in any case to an 
insufficient extent, corrected in the adjustment step.  
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The final evaluation measure we consider is the number of records on the boundary 
of the feasible region defined by the edits. In Table 10 the average number of 
records on the boundary of the feasible region over 10 evaluation experiments for 
the adjustment method and the FM method on data sets Rall, Rineq, and S are 
presented. For the FM method we show the results for three different values of Ndraw, 
namely the values 1, 160 and 1000. The value of Ndraw used is mentioned between 
brackets. The results for , , and rdm for N1Ld 1m draw = 1 and Ndraw = 1000 (not 

presented here) are comparable to the results presented in Tables 5, 7, and 9, where 
Ndraw = 160. In Table 10 we also present the number of records on the boundary of 
the feasible region for the complete versions of the three mentioned data sets. In 
almost all cases records of these data sets lie on the boundary of the feasible region 
because a variable that has to satisfy a non-negativity edit attains the value zero. 

Table 10. (Average) number of records on the boundary of the feasible region 
defined by the edits. 

 Average 
number for 
FM method 

(1) 

Average 
number for 
FM method 

(160) 

Average 
number for 
FM method 

(1000) 

Average 
number for the 

adjustment 
method 

Actual number 
for complete 

data 

Data set Rall 499.8 467.1 467.0 499.6 495 

Data set Rineq 435.7 396.4 396.0 437.3 424 

Data set S 178.3 162.4 162.2 178.9 2 

 

Table 10 shows that the result for data set Rall for the adjustment method is closer to 
the actual number of records on the boundary of the feasible region defined by the 
edits for the complete data than the FM method for any of the three values of Ndraw. 
For data set Rineq it depends of the value of Ndraw which method leads to a result that 
is the closest to the actual number of records on the boundary for the complete data. 
For data set S the results of the FM method are closer to the actual number of 
records on the boundary for the complete data than the adjustment method for any of 
the three values of Ndraw.  

Table 10 also shows the effect of the parameter Ndraw of the FM method: the higher 
Ndraw, the less records will generally be on the boundary of the feasible region. By 
means of Ndraw one can indirectly control the number of records on the boundary of 
the feasible region. The results of the FM method with Ndraw = 1 in Table 10 are 
quite close to the results for the adjustment method. This was to be expected as in 
both methods only one value for each missing value is drawn, using the same 
underlying statistical model. This drawn value may be later modified. The main 
difference between the FM method with Ndraw = 1 and the adjustment method is that 
in the FM method each drawn value may be modified directly after it has been 
drawn, whereas in the adjustment method all drawn value are later modified 
simultaneously. 
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If one wants, for the FM method, the number of imputed records on the boundary of 
the feasible region defined by the edits to be close to the actual number of records on 
the boundary, one should choose Ndraw

 between 1 and 160 for data sets Rall and Rineq. 
Data set S appears to be too complicated for both the adjustment and the FM 
method. The number of imputed records on the boundary of the feasible region is 
too high for both methods. By increasing the value of Ndraw the number of records on 
the boundary decreases only slowly for the FM method. Increasing the value of Ndraw

 

also leads to an increase of the computing time, however. So, although one can 
influence the number of records on the boundary of the feasible region by changing 
the value of Ndraw, the effect of changing the value of Ndraw is limited, in any case for 
complicated data sets such as S. The drawback of the adjustment method noted in 
Section 3 that the number of records on the boundary of the feasible region for this 
method is completely determined by the first imputation step does not appear to be a 
major disadvantage in comparison to the FM method – at least not for our evaluation 
data – as the results of the adjustment method are not clearly worse than the FM 
method in this respect. 

We have also applied a logarithmic transformation to the data before applying our 
imputation methods. The results were similar to the results presented in this paper.  

8. Discussion 

In this paper we have described two imputation methods that lead to imputed data 
that satisfy specified edits. For the data sets in our evaluation study we conclude that 
in the worst case (data sets Rall and Rineq) the FM method leads to comparable or 
slightly worse evaluation results as the adjustment method. In the best case (data set 
S) the FM method leads to clearly better results than the adjustment method. The 
FM method seems to have a built-in mechanism to protect itself from imputing very 
wrong values. Such a mechanism seems to be lacking from the adjustment method. 
Our study is, however, very limited and more research is necessary before we can 
draw any definite conclusions. 

In our application of the adjustment method we have used a linear objective 
function. The main reason for using a linear objective function is that this is easy to 
implement in a software program. The results of the adjustment method may be 
possibly improved by using a quadratic objective function instead of our linear one. 
In any case, for statisticians, minimising a quadratic objective function is more 
natural and often more logical than minimising a linear objective function. 

The FM method has the advantage that one can, indirectly, control the number of 
records on the boundary of the feasible region defined by the edits. The price that 
has to be paid for this is that the algorithm is more complex than the algorithm for 
the adjustment method.  
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Moreover, the effect of this indirect control over the number of records on the 
boundary of the feasible region seems limited. From a purely practical point of view, 
the adjustment method may therefore be a better choice in many cases. 

For data set S, far too many records lie on the boundary of the feasible region for 
both the adjustment method and the FM method. For almost all records on the 
boundary one or more non-negativity edit is satisfied with equality, i.e. the value of 
the involved variable equals zero. The fact that far too many non-negativity edits are 
satisfied with equality strongly indicates that the assumed statistical model, which in 
our application is assumed to follow a multivariate normal distribution, is incorrect. 
In order to improve the statistical results of the two imputation methods presented in 
this paper, the underlying statistical model should be improved. Further research is 
required to develop such better statistical models as well as computationally 
tractable methods to handle such methods. 

As mentioned in Section 5, in our implementation of the FM method we have 
imputed the variables in a fixed order that is randomly determined beforehand. The 
results of the method are, however, likely to be influenced by the order in which the 
variables are imputed. More research is needed to examine whether the results 
improve if the data set is multiply imputed, using several different, randomly 
determined, orders in which the missing data are imputed. More research is also 
needed in order to determine the best order for the variables to be imputed. A likely 
candidate for the best order is to impute the missing values according to the 
accuracy of the imputed values, i.e. impute the missing value that can be imputed 
most accurately first, followed by the missing value that can be imputed second 
most accurately, and so on. Future research will have to decide whether this is 
indeed the best order, or if there are even better imputation orders. 

When imputing a missing value in a record in our implementation of the FM 
method, we use the previously imputed values in this record as auxiliary 
information. In this way we try to preserve the correlation structure between the 
imputed values as much as possible. Again, the results of the method are likely to be 
influenced by the order in which the missing values are imputed. The same 
questions mentioned in the paragraph above have to be answered. 

Using previously imputed values in order to impute a missing value has an obvious 
drawback: if the stochastic imputation process leads to a bad imputed value, this 
affects all subsequently imputed values in this record. It remains to be examined if 
the results of the FM method improve, or deteriorate, if we do not use the previously 
imputed values as auxiliary information but instead use only the observed data as 
auxiliary information. 

 

 

 

 

  23



The imputation methods we have developed in this paper can be applied to general 
linear edit restrictions. If only non-negativity edits are specified, one could possibly 
also use tobit and logit models instead of our methods. Such models automatically 
ensure that the variable to be imputed attains a non-negative value. The use of tobit 
or logit models for imputation subject to non-negativity edits remains to be 
examined. 

We have made the implicit assumption in this paper that apart from values being 
missing, the data are otherwise correct. In practice, this is rarely true. Data observed 
in practice generally contain errors. The existence of errors in the data complicates 
the imputation problem as presented in this paper. It may, in fact, be impossible to 
impute the missing values in such a way that all edits become satisfied, because the 
errors in the record inevitably lead to inconsistency. For a data set arising in practice 
it is therefore recommended to edit the data first, for instance by applying software 
for automatic editing. An overview of algorithms for automatic editing is given by 
De Waal and Coutinho (2005). 
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