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TEMPORAL DISAGGREGATION USING THE STATE SPACE 

APPROACH 

Summary: In this paper, the state space approach is used to perform temporal 
disaggregation. The investigation is performed in two steps. First two study 
cases are used to gain information about the reliability and the accuracy of 
the approach, while, in the second step, the method is applied to the retail 
sales statistics in order to obtain estimates for the monthly turnover sales of 
the retail sector from  January 1994 to December 1999.  

In the first test case, Monte-Carlo simulations are used to investigate the abil-
ity of the state space method to reproduce the data generating process of the 
disaggregated series which is, in that case, a combination of a linear trend 
and an autoregressive process of order 1. From the results, it is seen that only 
a few observations are needed to reproduce the slope accurately while the 
representation of the autoregressive process requires more observations. Fur-
ther, it is clear from this test case that the use of the filtered series (obtained 
from the state space approach) reproduces the original series more accu-
rately than simulations. 

From the second test case, based on the monthly retail sales statistics, it ap-
pears that the representation of the trend has a large influence on the descrip-
tion of the disaggregated series, the model with the largest flexibility provid-
ing the best representation of the original series. Looking closer at the yearly 
data (i.e. the aggregated series), it appears that the inclusion of initial condi-
tions leads to discrepancies between the original yearly data and the sum of 
the monthly data. The use of Denton’s method is found to provide an elegant 
way to distribute the differences among the monthly data. Comparing 
Denton’s method to more naïve approaches nicely illustrates the advantages 
of Denton’s algorithm. 

Finally, the combination of the state space approach with Denton’s method is 
used to disaggregate the data from the yearly statistics on retail sales. This is 
needed if one wants to estimate the monthly sales from the retail sector be-
cause the monthly statistics only rely on relative levels. In this application, the 
positive influence of Denton’s algorithm on the representation of the series is 
clearly illustrated.  

The conclusion of the present paper is that the combination of the two meth-
ods provides a powerful tool to disaggregate annual data in higher frequency 
series. 

 

Keywords: Temporal disaggregation, Time series, State Space approach, 
Denton’s adjustment method, Retail sales statistics. 
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1. Introduction 

A problem often faced in macroeconomics is the interpolation or the distribu-
tion of economic time series observed at low frequency into compatible 
higher frequency data. Such a process, called temporal disaggregation, plays 
an important role in the estimation of short-term indicators and several na-
tional statistical institutes of European countries make extensive use of these 
techniques1, for example when a set of indicators available at the quarterly 
frequency is used for constructing the quarterly national economic account 
from annual figures.  

In the Eurostat handbook, a distinction between direct and indirect disaggre-
gation approaches is made. Direct procedures are based on the availability of 
similar sources as those used to compile the annual accounts at higher fre-
quency intervals, with appropriate simplifications. On the other hand, indirect 
procedures are based on the time disaggregation of the annual accounts data 
in accordance with mathematical and statistical methods using reference indi-
cators that permit the extrapolation for the current year. In addition, several 
methods were developed for the cases where no information on the higher 
frequency structure is available. The estimates are then obtained from as-
sumptions about the relation between the data. These purely mathematical 
approaches are the only methods that can be used when there are serious gaps 
in the basic information, where the only data available are those pertaining to 
the annual series. 

In order to help member states to perform temporal disaggregation, Eurostat 
has developed the Ecotrim software tool2, which supplies procedures based 
on temporal disaggregation of low frequency time series via mathematical 
and statistical methods. Although Ecotrim is a useful package, the code does 
not offer the possibility to use the very powerful state space approach. 

The use of the state space approach for performing temporal disaggregation 
was first introduced by Harvey and Pierce in 1984 and later developed by, 
among others, Durbin and Quenneville (1997), Harvey (1989), Harvey and 
Chung (2000), Harvey and Koopman (1997) and Moauro and Savio (2002) 
who proposed an approach based on the use of seemingly unrelated structural 
time series to deal with multivariate time series. Here, the study will be re-
stricted to univariate series but the extension to multivariate systems is 
straightforward. 

 
1 See the “Handbook on quarterly accounts”, published by Eurostat. 
2 The Ecotrim software is available on request at Eurostat. For a description of the program, 
we refer to the user manual (Barcellan and Buono, 2002), available at the Eurostat website. 
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In the present work, we first briefly introduce the theoretical approach (in 
section 2). Then, in section 3, two case studies are presented. In the first one, 
a DGP3 is used to produce a monthly time series which is aggregated to year 
data. The yearly series is then disaggregated using the state space approach 
and a comparison between the original and the computed series is used to 
investigate the accuracy of the decomposition. In the second test case, a 
“semi-practical” case is treated. The monthly index series from the statistics 
on retail sales (published by Statistics Netherlands) is used to determine the 
seasonal component that will be used further in chapters 3 and 4. In addition 
the disaggregation is investigated by performing calculations similar to these 
reported for the first case study. In section 4, an application, similar to the 
case studies, is reported. The data of the yearly retail sales statistics are dis-
aggregated using a seasonal component extracted from the monthly statistic. 
This approach allows to estimate the monthly sales of the retail sector, while 
the monthly statistic is built on relative levels. Finally conclusions are pre-
sented in section 5.   

 

2. Theoretical background 

 

2.1 State space approach4

The state space model for univariate or multivariate time series is based on a 
set of two definition equations. The first one, called observation or measure-
ment equation, expresses the observation vector, Y, as a linear function of a 
state variable, X, plus noise.  

(1) ntWXGY tttt ,....,1, =+=

where W is white noise and G is a sequence of (not necessarily square) matri-
ces. The second equation, named state or transition equation, defines the state 
variable Xt+1 in terms of the previous state, Xt, plus a noise term.  

(2) ntVXFX tttt ,...,2,1 =+=+

where Vt is a white noise and F is a sequence of matrices. The conditions 
under which the state space approach can be used are that V and W must be 
uncorrelated at all times and that the initial state X1 is uncorrelated with all 
the noise terms (V and W).  

 
3 Data Generating Process. 
4 In this section, only a short description of the method is reported. For detailed information 
on the method or a description of the Kalman filter, we refer to Brockwell and Davis (2002) 
or Durbin and Koopman (2001).  
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In the present case, it is useful to decompose the two equations in such a way 
that the influence of the exogenous regressors becomes clearly visible. The 
observation equation and the state equation can then be written as: 

(3) ntQxZY tttt ,....,1,''' =++= ςβα

and 

(4) ntHWT tttttt ,.....,2,11111 =++= −−−−− εβαα

Noticing that the state equation depends on the initial condition (i.e. α1, T1,
W1 and H1) and that the two errors terms (ε and ζ) are normally distributed. 
The vectors xt and the matrices Wt contain exogenous regressors that enter 
respectively the measurement equation and the transition equation and zero 
elements corresponding to effects that are absent from one or the other equa-
tions.  

Assuming that the Yt’s are not observed but that information about temporally 
aggregated series, Σj=0, …, s-1 Yτs – j, is available at times τ = 1, 2, … [n/s] 5, it is 
possible to apply the approach proposed by Harvey (1989) to obtain a repre-
sentation of the disaggregated series. This approach is based on the definition 
of the so-called cumulator as 

(5) tttt YAA +Ψ= −1

ψt is a function always equal to one, except when t = s(τ – 1) + 1, where τ
goes from 1 to [n/s]. In that case ψt is equal to 0. The state space representa-
tion for At can be written in terms of αt

* = [αt, At] ’ as 

(6) 







==

1
0*;*'*' ZZA tt α

and 

(7) ntHWT tttttt ,.....,2,*****
11111 =++= −−−−− εβαα

Noticing that the regression effects are all contained in the state equation and 
that the noise in the measurement equation was dropped. Moreover, the tran-
sition matrix, T*, is time varying because it includes ψt.

From these equations, the At’s can be estimated using the state space ap-
proach, while the disaggregated series is obtained by reversing the definition 
equation of the cumulator.  

The flexibility of the approach allows to include AR terms in the definition 
equations and, in the present case, an AR(1) process is included via the T

5 Where [p] denotes the integral part of p.
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matrix. The representation of a series by a linear model with first order auto-
regressive errors was first introduced by Chow and Lin in 1971. 

 

2.2 Denton’s adjustment method 

Denton (1971) developed an algorithm allowing to distribute the discrepancy 
between the sum of the monthly data and the related yearly results. The ap-
proach is based on the definition of a so-called penalty function. In the pre-
sent work, the penalty function to be minimized, p, is based on the differ-
ences between the first differences of the original, z, and adjusted, x, series. 

(8) ∑
=

∆−∆=
n

t
tt zxzxp

1

2)(),(

where ∆ is the backward difference operator6. The correction matrix is com-
puted in several steps. Here, the different steps of the process will not be re-
peated and for more information on the theoretical background, we refer to 
the original paper (Denton 1971). The main steps of the process are, first, the 
use of Lagrange multipliers and, secondly, the computation of the inverse of 
a partitioned matrix. The final result is that the adjusted and the original se-
ries are related by the following equation 

(9) x = z + A-1 B (B’ A-1 B) -1 (y – B’z) 

where y is a vector containing the yearly totals and B is a diagonal square 
matrix of vectors linking the monthly data to their annual sum. The matrix A
is built on the penalty function by first expressing the vector of backwards 
first differences as D(x-z), where D is an n by n matrix and (x-z) an n by 1 
vector. The quadratic form to be minimized can now be written as (x-
z)’D’D(x-z) or, in the present notation, (x-z)’A(x-z).

3. Case studies  

 

3.1 Stationary process around a deterministic trend 

The state space approach is partly based on the Kalman filter (Kalman 1960). 
This powerful technique uses recurrence relations to gain information on the 
system, which involves that the accuracy of the state space description is ex-
pected to improve with t, t = 1, …, n ; n being the number of observations 
(yearly data in the present case). The first case under study is a stationary 

 
6 ∆xt = xt – xt-1  .
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process around a deterministic trend. The stationary process is represented by 
an AR(1) model following 

)1,0(~,765.0 1 NIDWWYY ttt += −

while the deterministic trend has a slope of 0.1293. The aggregated series 
was obtained by summing the Yt, considering that the DGP is associated with 
monthly data.  

The tests were performed on 4 series of different lengths, containing respec-
tively 72, 144, 300 and 600 monthly data. This involves that the state space 
representation relies on, respectively, 6, 12, 25 and 50 “valid” observations 
(i.e. the yearly results). An example of the DGP is shown in fig. 1, together 
with the complete At function.  

 Fig. 1. Example of Yt and At series. In practice, the disaggregation is computed by 
associating the At values to unknown values, with exception of the yearly sums. 
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The accuracy of the state space description is investigated by Monte-Carlo 
simulations using 2500 runs. For each of the 4 series, the mean, the median 
and the standard deviations are reported in table 1. 

In the DGP, the slope is not perturbed by any noise. Therefore it is expected 
that the accuracy of the representation will improve with increasing number 
of observations. It is shown in table 1 that both the mean and the median of 
the Monte-Carlo simulations rapidly converge to the DGP value. The repre-
sentation based on only 6 observations already gives an accurate description 
of the slope, the mean being less than 1 % off the DGP value. Using 12 ob-
servations reduces the error by a factor of 10 while further increase has only 
marginal influence on the accuracy. The standard deviation shows a much 
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stronger dependence on the number of observations than the mean and the 
median. As expected, the standard deviation decreases with increasing num-
ber of observations and, from the results presented in table 1, it looks like the 
decrease follows an exponential curve.  

Table1: Results of the Monte-Carlo simulations for the 4 series (see text). For each 
series, characterized by the number of observations, n, the mean, the median and the 
standard deviation of the two coefficients are reported. The coefficients are related 
to the trend and the AR process. 

Trend     AR coefficient 

n Mean      Med  Std. dev. Mean      Med  Std. dev 

6 0.1300 0.1295 0.0381 0.7486      0.7627 0.1308 

12 0.1292      0.1294 0.0080  0.7937      0.7907 0.0738 

25 0.1293      0.1293 0.0016  0.7842      0.7945 0.0919 

50 0.1293      0.1293 0.0005  0.7592      0.7952 0.1840 

DGP 0.1293     0.7650 

The determination of the AR(1) coefficient behaves differently. Because the 
generation of the AR(1) process involves normally distributed random series, 
it is expected that the accuracy of the method will be lower than for the slope. 
The results for the different Monte-Carlo simulations are reported in table 1. 
Using 6 observations leads to an underestimation of the mean, while the me-
dian is lying very close to the DGP value. The standard deviation, 0.13, is 
rather large (a factor 7/2 larger than for the slope) which explains the large 
difference between the mean and the median, 0.015.  

Increasing the number of observations by a factor of 2 leads to a decrease of 
the standard deviation by a factor of 2 but, in that case, both the mean and the 
median are further from the original value than for n = 6. A further increase 
of the number of observations to 25 does not solve the problem. The mean 
and the median remain centred on 0.79 while the standard deviation in-
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creases, which is unexpected. A further increase of the number of observa-
tions, up to 50, is needed to have the mean approaching the DGP value by 0.8 
%. Surprisingly, the standard deviation is larger than for n = 6, 12 or 25,
which is also illustrated by the large difference between the mean and the 
median, 0.035. This means that, if a single run is taken for simulating the 
series, large differences can be observed.  

To investigate further the behaviour of the system, an extra Monte-Carlo 
simulation on basis of 100 observations was performed, focussing on the 
behaviour of the standard deviation. In that case, the observed mean is 0.746, 
which is slightly further from the original value than for n = 50 but the stan-
dard deviation is reduced to 0.146, being 20 % smaller than for n = 50.

This example clearly illustrates the bottleneck of the method. In order to 
achieve accurate results, observations over 50 years or more are needed. 

Fig. 2. Comparison between the original series (DGP) and a simulation (SIMUL) 
based on one of the runs (chosen at random) of the Monte-Carlo approach (for n =
50). In fig. 2II, only the last 100 points are shown which allows to give a better rep-
resentation of the short-time differences between the two series 
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Results for a single run, taken at random, are shown in fig. 2. From fig. 2I, it 
is seen that the simulation has the right long-term behaviour but fig. 2II 
shows that, because random series are involved, differences in the short-term 
behaviour are observed.  

However, the main goal of the approach presented here is not to retrieve the 
DGP but to give an accurate representation of the original series. From the 
results presented in table 1, it is clear that a simulation on basis of the Monte-
Carlo results leads to accurate long term behaviour (shown in fig. 2I) while 
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the representation of the short-time (see fig. 2II) is less accurate. In addition, 
the condition that the yearly sum of the simulated data should be equal to the 
observed values is nearly never fulfilled. Therefore we will focus on the fil-
tered series which is provided by the state space approach. 

Fig. 3. Comparison between the original (DGP) and filtered (FILTER) series.  In fig. 
2II, the series are detrended in order to give a better representation of the short-time 
differences. 
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A comparison between the filtered and original series is shown in fig. 3. As 
expected, the long-term behaviour is well described (fig. 3I) while differ-
ences in the short-time behaviour (fig. 3II) are more difficult to analyse, the 
amplitude of the detrended original series being about a factor 4 larger than 
for the filtered series.  

Fig. 4 provides a better tool for analysing the accuracy of the state space de-
scription. In that figure, the results of a simulation based on 2500 runs are 
reported. For each run, the differences between the original and filtered 
yearly results are computed. The series called “DIFF” represents the mean 
distance7. As expected, the method gains information about the system with 
increasing time (i.e. the error decreases with increasing t). This effect is even 
better illustrated by the “RDIFF” series in which the mean of the relative 
distance is reported. From fig. 4, it appears that the chance for erratic descrip-
tion is much larger for the 15 first observations than for the rest.  

 
7 In this case, the distance is defined as the absolute value of the difference between the ori-
ginal and the filtered series. 
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The use of Denton’s technique to spread the differences between the series 
smoothly among the monthly data will be discussed in sections 3.2 and 4. 

 

Fig. 4. Distances between the original and filtered data for the yearly observations. 
The series “DIFF” and “RDIFF” correspond respectively to the mean absolute and 
the mean relative distances over a series of 2500 simulations (see text).  
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3.2 Test on the data from the retail sales statistics 

The second test case is built on the data of the monthly retail sales statistics. 
The observations are available for a period of about ten years, going from 
January 1994 to October 20048. Using a deterministic approach, the data can 
be fitted (using a linear regression) as the sum of a seasonal pattern (mod-
elled using dummy variables) and a trend polynomial of degree 39. The re-
sults of the regression are not reported here but the original and the fitted 
series are presented in fig. 5, together with the residuals. From this regres-
sion, the deterministic seasonal behaviour is extracted in order to create an 
artificial seasonal indicator which will be used as variable in the disaggrega-
tion (i.e. it is part of the W*β in the state equation (cf. equation (7)). In a sec-
ond step the monthly data are summed to obtain the yearly results and the 
disaggregation is applied to the yearly series. The reason why the seasonal 
pattern is treated as a variable is that in practical cases external information 
about the seasonal behaviour is required because this kind of information is 
not contained in the yearly data. 
 
8 The data are not related to absolute values but to relative levels. The reference is the year 
1995 that has a mean value of 100. 
9 i.e. a1 t + a2 t2 + a3 t3
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From the results of the deterministic regression, it is clear that, although they 
are small, respectively 0.015 and -0.00008, the coefficients of t2 and t3 are 
highly significant. The values of the individual t-statistics being respectively 
10.6 and -11.7. However, it was decided not to include these two terms as 
exogenous variables in the state equation. This allows to investigate if the 
AR(1) process can compensate for the missing information (i.e. the small 
quadratic and cubic effects are approximated by an AR(1) process). The mo-
tivation is that the yearly data, which are, together with the seasonal pattern, 
the only information provided to the system, seems to follow a quasi-linear 
trend.  

Fig. 5. Original and fitted series for the monthly retail sales. The fitted data are ob-
tained by performing a linear regression including monthly dummies and a trend 
polynomial of degree 3 as regressors. The data presented here are not related to ab-
solute values but to relative levels. The reference is the year 1995 that has a mean 
value of 100. The residuals of the regression are also presented. 
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Three different state space models were tested. In the three cases, the AR(1) 
process is described by the same equation which involves that the models 
only differ by the description of the trend. In model A, the coefficient of the 
trend is a constant, while in model B the trend coefficient is allowed to vary 
smoothly. The latter is expected to give a better representation of the system 
around the turning points, observed close to t = 35 and 110 (see fig. 5). In 
model C, a stochastic trend is introduced in the state equation. The results are 
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expected to be close to these obtained for model B, but here the trend is not 
an exogenous variable anymore10.

Before comparing the accuracy of the representations, it is interesting to look 
at the results presented in table 2. In this table, the coefficients of the seasonal 
pattern and the coefficients of the AR(1) process are reported. Although some 
differences are observed, the three coefficients of the seasonal pattern are 
close to 1, which gives a good representation of the original process.  

Table 2: Coefficients of the seasonal pattern, the AR(1) process and the trend for 
models A, B and C (see text). In addition, the results of a linear regression (includ-
ing the same regressors) are added for comparison.  

Model  Seasonal pattern  AR(1)   Trend 

A 1.008 1.000   0.3233 

B 0.980 -0.18   * 

C 0.974 0.00002  * 

OLS  0.956    0.537   0.3654 

* Because in models B and C the coefficient of the trend is allowed for vary, it can not be 
reduced to a single number.

The differences for the AR coefficients are much larger. From table 2 it is 
seen that model A compensates the lack of information by representing the 
system as the sum of a seasonal pattern and a random walk. Comparing this 
to the results obtained from a linear regression (with a linear trend and an 
AR(1) process as regressors), it appears that the AR process is about a factor 
of two larger when using the state space approach. The inclusion of some 
flexibility in the trend (for model B and C) involves that the AR(1) process is 
not the only process compensating for the missing information anymore. This 
is the reason why the AR coefficient in model B is a factor of 5 smaller than 

 
10 The trend and the seasonal component are part of the W*β term from equation (7). In the 
three models, the seasonal component is then seen as a variable.  
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for model A, while the higher flexibility of the trend in model C makes the 
AR(1) process irrelevant.  

 

Fig. 6. Graphical representation of the state space analysis of the retails sales series.  
In figures I, IV and VII, the filtered series are presented, while in figures II, V and 
VII, the differences between the filtered and the original series are shown. In figures 
III, VI and IX, the differences between the original and filtered yearly results are 
reported. Figures I, II and III are associated with model A, figures IV, V and VI are 
associated with model B and figures VII, VIII and IX are associated with model C. 
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The results are graphically represented in fig. 6 and fig. 7. In fig. 6 the fil-
tered series are plotted (fig. I, IV and VII) together with the monthly (fig. II, 
V and VIII) and yearly residuals (fig. III, VI and IX). The monthly residuals 
are obtained by subtracting the original monthly data from the filtered series. 
The yearly residuals are obtained in a similar way, the data being previously 
summed to obtain the yearly observations. The differences between the fil-
tered series are better represented in fig. 7 where the differences between 
model A and model C (fig. 7I) and between model B and model C (fig. 7II) 
are shown.  

 

Fig. 7. Differences between the filtered series. In fig. 7I, the differences between the 
representations of model A and model C are plotted, while fig. 7II, shows the differ-
ences between model B and C. 
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Looking closely at the filtered series reported in fig. 6, it seems that the series 
show different behaviours close to the turning points (t ~ 35 and t ~ 110). 
These differences are better illustrated in fig. 7. In fig 7I, the largest differ-
ences are found for t  <  25 and t  > 100. The two first peaks could be ex-
plained by the adaptation time needed by model A to compensate for the ri-
gidity of the description (i.e. the lack of flexibility in the trend). This assump-
tion is supported by fig. 6III and 6IX, where the distances to the original data 
are reported. From these two graphs, it is seen that model A poorly repro-
duces the first two yearly data while the description by model C is more ac-
curate. The same can be concluded on basis of fig. 6II and fig. 6VIII. The 
difference between model B and C around the first turning point is clearly 
illustrated by the peak around t = 35 in fig. 7II. In addition, the poor 
representation of the series by model B around t = 60 is clearly visible from 
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tation of the series by model B around t = 60 is clearly visible from fig. 6IV, 
V and VI. It corresponds to a jump in the filtered series caused by a rescaling 
of the trend. 

From fig. 6 I, IV and VII, it is seen that the largest differences between the 
filtered series are observed for t > 100. Fig. 6V, VII and 7II show that, in that 
region, model B and C gives similar representations of the system, while the 
limitations of model A clearly appear in fig. 6III and 7I. The most important 
feature is the behaviour of the representation at year 9. For the three models, 
the distance with the original value is important at that point (about 50, see 
fig. 6III, 6VI and 6 IX), but the models show different reactions. Model A is 
not able to adapt itself within a year, which leads to a much larger discrep-
ancy at year 10. Model B and C both reacts to the large error but, only model 
B succeeds in reducing the error.  

On basis of the results reported in this section, it can be concluded that model 
C gives the most accurate representation of the original series. Therefore, 
only model C will be considered in the following, when discussing the dis-
tance to the yearly results in more details. 

 

Fig. 8. Relative errors (in absolute value) for the yearly and monthly data. The errors 
are computed by subtracting the original data from the filtered series obtained using 
model C. 
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In fig. 8, the relative differences (in absolute value) are presented for both the 
yearly (fig. 8I) and monthly (fig. 8II) data.  From fig. 8I, it appears that the 
largest yearly discrepancies occur after the second turning point, with a 
maximum of 4 %. The repercussions of these errors on the monthly data are 
reported in fig. 8II, where the maximum error is a factor 2 larger. 

Adding to the system the restriction that the discrepancies for the yearly re-
sults should be equal to zero11, brings the problem of distributing the error 
among the months. The distribution has to be done carefully because it may 
have some significant repercussion on the accuracy of the representation.  

 

Fig. 9. Graphical representation of the filtered series and their residuals (see 
text) after correction. Figures I and IV corresponds to a distribution of the 
yearly discrepancy in equal amount among the months, while figures II and 
V corresponds to a weighted distribution. Figures III and VI are obtained 
after applying Denton’s method (see text).  
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11 The inclusion of  initial conditions in the transition equation, which is needed for repre-
senting accurately the data associated with the smallest t values (i.e. at the beginning of the 
time series), perturbs the representation in such a way that the sum over the months can dif-
fer significantly from the yearly data.  
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In the following, three distribution schemes are investigated. In the first one, 
the difference is equally distributed over the 12 months. This approach has 
the advantage that it does not destroy the seasonal pattern but it could bring 
some year to year shifts in the representation. The second method is based on 
a proportional distribution of the error. Here, in addition to a possible year to 
year shift, the seasonal component is altered. A third approach, based on 
Denton’s method (Denton 1971) is also reported. In this approach, the distri-
bution of the yearly discrepancy among the higher frequency periods is done 
by minimizing a so-called penalty function. In the present case, the penalty 
function is based on the differences between the first differences of the origi-
nal and adjusted series (cf. equation (8)). The results for the three correction 
schemes are reported in fig. 9.   

From fig. 9I, II and III, it is not easy to see the differences between the cor-
rected series. The differences become visible when looking at the residuals 
(fig. 9IV, V and VI). The residuals are computed as the difference between 
the corrected values and the original series. From fig. 9IV and V, it is seen 
that the differences between the two first distribution schemes are small. In 
the two cases the years are considered independently of each other and the 
two clear “discontinuities” are a typical signature of this effect. On the other 
hand, the residuals reported in fig. 9VI, show a much smoother behaviour, 
without any jump. 

Comparing the corrected with the non-corrected (i.e. comparing fig. 9I and II 
with fig. 6VIII), it is seen that the two first series are less accurately de-
scribed. The inclusion of the restrictions increases the mean amplitude of the 
residuals. This is well exemplified by the increase of the maximum and 
minimum error from 10 and -8 to, respectively, 15 and -11. When Denton’s 
method is used, the structure and the amplitude of the residuals are only 
slightly perturbed and the accuracy of the corrected series is comparable to 
these of the non-corrected representation.  

 

4. Application 

The monthly statistics on retail sales (see section 3.2) that are used among 
others to estimate the monthly growth of the household consumption are rep-
resented in the form of an index series, 1995 being the reference year. The 
motivation for this is that the statistics do not give a really accurate picture of 
the sales but it gives a good representation of the relative sales (i.e. the 
growth). On the other hand, the yearly statistics on retail sales gives an accu-
rate estimation of the money earned within the retail sector. If one wants to 
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estimate the absolute monthly data, the method presented previously in this 
paper offers a nice possibility.  

Information about the yearly sales from the retail sector is partly available on 
the website of Statistics Netherlands12. Because the accuracy of the state 
space description improves with t, it was chosen to focus on the first 6 years 
(i.e. data from 1994 to 1999) for which data are easily available. The descrip-
tion is expected to be sensitive to the initial conditions and the effect of the 
data adjustment, using Denton’s method, can have important repercussions 
on the accuracy of the representation. If this series is correctly described, it is 
expected that no major problem will be encountered for the next years (i.e. 
2000, 2001 and 2002).  

Fig. 10. Original and corrected monthly series built on data from the yearly retail 
sales statistics (fig. I). In fig. II, the differences between the two series are plotted13.
The data on the y-axis are in 109 €, while on the x-axis the months are numbered 
from 1 to 72. 
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In a first step, the state space approach is applied on the yearly data (reported 
in table 3, in the 4th, 7th and 10th columns) to obtain a monthly series, called 
the original series. The seasonal component of this series is computed on 
basis of the seasonal pattern defined in section 3.2. Then Denton’s method is 
applied to distribute the remaining discrepancies. The results for the original 
and the corrected series are reported in table 3 and plotted in fig. 10. From 

 
12 www.statline.nl 
13 Fig. 10II nicely illustrates how smoothly the discrepancies are distributed when using 
Denton’s method. 
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the table it appears that applying Denton’s algorithm brings the sum of the 
monthly data in perfect agreement with the values from the yearly statistics. 

On basis of these results, it is seen that the differences between the original 
and the corrected series are large for the smallest and the largest t values (i.e. 
at the beginning and the end of the time series).  

 

Table 3. Original (Org) and corrected (Cor) series for the monthly retail sales. In 
addition, the data of the yearly statistics (YS) are reported for comparison. The val-
ues are given in 109 €. 

1994   1995   1996 

Month  Org Cor YS  Org Cor YS Org Cor YS 

January  3.87 3.94  4.08 4.27  4.21 4.27 

February 3.69 3.81  3.88 4.04  4.02 4.09 

March  4.13 4.31  4.36 4.48  4.50 4.58  

April  4.18 4.40  4.41 4.51  4.56 4.64 

May  4.34 4.60  4.59 4.67  4.74 4.83 

June   4.29 4.57  4.54 4.60  4.70 4.79 

July  4.22 4.52  4.46 4.51  4.63 4.72 

Augustus 4.04 4.34  4.27 4.31  4.44 4.54 

September 4.20 4.49  4.43 4.47  4.62 4.71 

October 4.30 4.59  4.55 4.58  4.73 4.82 

November 4.20 4.46  4.43 4.47  4.63 4.71 

December 4.75 4.98  5.03 5.08  5.23 5.30 

Total  50.23 53.00 53 53.02 54.00 54 55.00 56.00 56 
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Table 3. Continued. 

1997   1998   1999 

Month  Org Cor YS  Org Cor YS Org Cor YS 

January  4.44 4.50  4.67 4.73  4.97 4.94 

February 4.26 4.31  4.50 4.56  4.81 4.75 

March  4.73 4.77  4.97 5.04  5.28 5.21  

April  4.79 4.83  5.05 5.11  5.36 5.27 

May  4.97 5.01  5.24 5.30  5.56 5.45 

June   4.94 4.97  5.20 5.26  5.53 5.41 

July  4.88 4.91  5.15 5.20  5.48 5.35 

Augustus 4.71 4.74  4.98 5.03  5.32 5.18 

September 4.88 4.92  5.16 5.19  5.50 5.36 

October 5.00 5.04  5.29 5.31  5.63 5.49 

November 4.91 4.95  5.20 5.20  5.55 5.40 

December 5.49 5.54  5.79 5.77  6.14 5.99 

Total  58.00 58.50 58.5 61.20 61.70 61.7 65.14 63.80 63.8 
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However, neither table 3 nor fig.10 gives any indication about the accuracy 
of the original and corrected fits. This problem is solved by rescaling the 
three series. The rescaling is done by dividing the three series by their value 
for December 1997. The year 1997 was chosen because, during the whole 
year, the differences between the original and corrected series are small and 
nearly constant. The choice of the month, December, is arbitrary14. The three 
rescaled series are plotted in fig. 11I. The differences between the monthly 
data and the original series and between the original data and the corrected 
series are also plotted (see fig. 11II and III). From these two figures, it is seen 
that the correction considerably improves the description of the series, espe-
cially in the region 1 ≤ t ≤12 (i.e. the first year) where the error is reduced by 
about a factor of 2. 

 

Fig. 11. Comparison between the data from the monthly retail sales statistics 
(DHSALES) and the original and corrected series built from the data of the yearly 
statistics. In fig. I the three rescaled series are reported (see text), while fig. II and III 
represent the discrepancies between the series reported in fig. I. Fig. II and III are 
associated with, respectively, the original and the corrected series. A larger version 
of fig. I is presented in appendix 1. 
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It is worth mentioning that the jump at t = 12, although less visible in fig. 
11III, still remains. In the two cases, the difference between the residuals at t 
= 12 and t = 13 is close to 0.15. Fig. 11II also shows that the original series 
gives a better representation of the last year (i.e. 60 ≤ t ≤ 72). This is well 

 
14 The index series uses the data from 1995 as reference for the levels and it could be tempt-
ing to use the same year for rescaling the two series. However this is not the most appropri-
ate solution because the accuracy of the method is lower at the beginning of the series which 
could have some influence on the representation of the year 1995.  
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exemplified by the value at t = 72 for which the residuals of the original and 
corrected series are, respectively, 0.05 and 0.08. 

 

5. Conclusions 

In the present paper, the state space approach is first tested on two case stud-
ies in order to investigate the accuracy of the temporal disaggregation. From 
the first case, it is seen that Monte-Carlo simulations (based on 2500 runs) 
are able to retrieve the original DGP, a combination of an AR(1) process and 
a trend, with a good accuracy. No more than 6 observations are needed to 
reproduce the coefficient of the slope within less than 1%, while increasing 
further the number of observations leads to a more accurate representation of 
the slope, and, more important, to a much smaller standard deviation.  

The description of the AR(1) process is shown to be more sensitive to the 
number of observations. With 25 observations or less, the means of the dif-
ferent Monte-Carlo simulations are not localised close to the DGP value. Us-
ing 50 observations or more leads to a much better description of the process 
but the standard deviation is found to be rather large. This means that basing 
a representation on a single run can lead to an erroneous description of the 
short-time behaviour.  

In most cases, we are not interested in retrieving the DGP but in describing 
accurately the disaggregated series. It is shown in the first test case that simu-
lating the series is not the best option because the short-term fluctuations can 
be poorly represented. The use of the series built with the Kalman filter gives 
better results. In that case, it is seen that, as expected from the theory, the 
accuracy of the description is increasing with t, which involves that the last 
years are better described than the first ones.  

The results of the monthly retail sales statistics of the last 10 years are used 
for the second test case. On basis of the original data, the yearly series is built 
and the seasonal pattern is extracted. Here, the goal of the study is to investi-
gate whether the AR(1) term is able to compensate for an artificially created 
lack of information. Three different models are tested and from the analysis 
of the results, it appears that using a stochastic trend gives enough flexibility 
to compensate for the lack of information. In that case, the AR(1) term be-
comes irrelevant.  

However, even the best results do not reproduce exactly the yearly data. The 
largest differences are close to 4 % while, when considering the monthly 
data, the largest errors are close to 10 %.  It is therefore clear that imposing a 
zero discrepancy between the yearly observations and their state space repre-
sentations can have significant repercussions on the description of the series.  
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The distribution of the discrepancy among the monthly data is investigated 
by applying 3 different methods. The first two are based on a weighted distri-
bution within the year, while the third one makes use of Denton’s algorithm. 
From the results, it is seen that Denton’s approach gives by far the most con-
sequent representation. 

The application of these two approaches to the data from the yearly retail 
sales statistics is shown to give very satisfying results. Because the monthly 
statistics only report relative levels, the use of yearly data is needed to esti-
mate the absolute monthly sales of the retail sector. The sensitivity of the 
state space method to the initial condition is responsible for some discrep-
ancy between the sum of the monthly and the yearly data, the largest differ-
ence being 2.8 billion euros (~ 5% of the total sales). It is shown that using 
Denton’s approach not only removes all discrepancies but, in addition, it 
shifts the fitted series in such a way that its shape is closer to the shape of the 
series built on the data from the monthly statistics.  

As a global conclusion, it can be said that the combination of the state space 
approach with Denton’s method provides a powerful tool for performing ac-
curate temporal disaggregation. 
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Appendix 1: Enlargement of fig. 11I. 
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