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NNNNONRESPONSE ADJUSTMENONRESPONSE ADJUSTMENONRESPONSE ADJUSTMENONRESPONSE ADJUSTMENT USING CLASSIFICATIT USING CLASSIFICATIT USING CLASSIFICATIT USING CLASSIFICATION TREESON TREESON TREESON TREES 

Summary: Nonresponse adjustment methods make use of covariates that are 
available for both respondents and non-respondents. A problem is the 
selection of covariates that relate both to the key survey questions and to the 
response behaviour. Therefore, often the process of selection is performed in 
two steps. 

We present a classification tree method that allows for the construction of 
weighting strata that simultaneously account for the relation between response 
behaviour, survey questions and covariates.  

We apply the classification trees to survey data of Statistics Netherlands. 

Keywords: Data Mining; Bias; Linear weighting; Poststratification; Strata. 

1.1.1.1. IntroductionIntroductionIntroductionIntroduction  

Nonresponse to surveys affects population estimators in case on average respondents 
and non-respondents give different answers to the survey questions. Auxiliary 
information is usually linked to the survey so that potential bias can be detected and 
corrected for. Commonly used techniques are linear weighting, multiplicative 
weighting and propensity score weighting. For an overview of adjustment methods 
we refer to Bethlehem (2002) and Kalton and Flores-Cervantes (2003).  

Crucial in the successful employment of adjustment methods is the validity of the 
assumptions underlying the methods. Most techniques assume that conditionally on 
a set of available auxiliary variables respondents cannot be distinguished from non-
respondents when it comes to the survey topics. Hence, in case the values of these 
variables are fixed response is at random, a feature called Missing-at-Random in the 
literature. Although, it seems reasonable that fixing a number of characteristics 
makes respondents resemble non-respondents, there is little empirical evidence in 
practice to support the assumption. In fact, when more auxiliary information 
becomes available as was the case at Statistics Netherlands, it follows that current 
weighting models can be improved (see Schouten 2003). The additional variables 
either give a better explanation of response behaviour or are better predictors of the 
survey questions. 

In this paper we do not make assumptions about the missing data mechanism and, 
hence, make a Not-Missing-at-Random assumption. Schouten (2004) shows that in 
general an interval can be set up for the bias of the response mean and the bias of the 
poststratification estimator. The width of the bias interval depends on the correlation 
between the 0-1 response indicator and auxiliary variables and the correlation 
between a survey question and auxiliary variables.  
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We have two motivations for employing the weaker Not-Missing-at-Random 
assumption. First, as we already mentioned we do not believe the Missing-at-
Random assumption to always hold since at Statistics Netherlands newly available 
auxiliary information indicated that current weighting models may still lead to 
biased estimates. Also, one can never preclude that in the future more relevant 
auxiliary information can be deployed in the adjustment of nonresponse. Secondly, 
even when the final set of weighting variables comes close to being Missing-at-
Random, we still need a rule to decide which variables to use and which to omit in 
the adjustment. It seems straightforward to choose the width of the bias interval as a 
criterion to compare weighting models, because this interval accounts 
simultaneously for the relation between response behaviour and auxiliary 
information and the relation between survey questions and auxiliary information.  

The objective of this paper is the efficient search for a weighting model that 
minimises the width of the bias interval as given in Schouten (2004). We propose a 
classification tree method with the interval width as a splitting rule and the 
significance of the decrease in interval width as stopping rule. 

Classification trees and its continuous counterpart regression trees are today 
assigned as data mining technique but go back to the sixties. It all started with the 
so-called Automatic Interaction Detector (AID) proposed by Morgan and Sonquist 
(1963). They suggest to partition a population in homogeneous subpopulations by 
means of repeated binary splits. In the succeeding decades several variants of their 
technique were developed, e.g. the well-known CHAID by Kass (1980). For an 
overview of classification and regression trees see for example Breiman et al. (1984) 
and Murthy (1998). Classification and regression trees have also been designed for 
the imputation of missing data, see Mesa, Tsai and Chambers (2000). We employ 
these techniques to efficiently adjust for unit nonresponse in surveys. 

The classification tree that we have developed does not resemble any other existing 
classification tree method when it comes to the splitting and stopping rules. This is 
because we want to minimise the width of the bias interval. The leaves of our 
classification tree form the weighting strata in the poststratification estimator. A 
stratum is split into two new strata whenever it leads to the largest decrease in width 
of the bias interval for the poststratification estimator. However, in case this 
decrease is not significant on a prescribed level, then the split is not permitted and 
the classification stops. 

In section 2 we give some background to the poststratification estimator and its 
properties. We motivate and describe the proposed classification tree algorithm in 
section 3. Next in section 4 we apply the algorithm to the Dutch Integrated Survey 
on Household Living Conditions (in Dutch Permanent Onderzoek Leefsituatie). We 
round off the paper with a discussion of the results in section 5. 
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2.2.2.2. PoststratificationPoststratificationPoststratificationPoststratification  

2.12.12.12.1 The pThe pThe pThe poststratifoststratifoststratifoststratificationicationicationication estimator estimator estimator estimator  

The classification that we propose amounts to the formation of strata in the 
poststratification estimator. We form these strata by repeated splits of the target 
population of the survey.  

Poststratification is a method often used to assign weights to respondents. For a 
reference see Cochran (1977).  The target population of a survey is partitioned into 
so-called strata. The strata are disjoint sets formed by the categories of auxiliary 
variables and it is assumed that these strata are more homogeneous with respect to 
the survey questions. Originally, poststratification was designed for the case where 
there is no nonresponse in order to reduce the variance of population estimators. 
However, in surveys where part of the sample does not respond, poststratification 
can also be used to reduce bias. In that case the objective is twofold. The categorical 
auxiliary variables that form the strata should relate both to the survey questions and 
to response behaviour. In essence, the poststratification estimator predicts the 
answers of non-respondents by the average answer of respondents in the same 
stratum. 

First, we introduce some notation. In the following we distinguish random variables 
from their realisations by using upper-case and lower-case letters, i.e. the realisation 
of a random variable Z is denoted by z . We let Zµ en Zσ be the expectation and 

standard deviation of variable Z , and ),( 21 ZZc and ),( 21 ZZγ correspond to, 

respectively, the covariance and correlation between variables 1Z and 2Z .

Let niiii YR ≤≤∆ 1),,( be independent and identically distributed. Here, iR stands for 

the 0-1 indicator for response, i.e. 1=iR in case unit i responds in the survey and 

0=iR otherwise. The vector /
,,2,1 ),,,( iHiii ∆∆∆=∆ K corresponds to the H

disjunct categories of a nominal or ordinal auxiliary variable, i.e. 1, =∆ ih if unit i

belongs to category h and 0, =∆ ih otherwise, and 1
1 , =∆∑ =

H

h ih . The vector i∆

gives a stratification and we will refer to the categories as strata. Finally, iY
represents an answer to a survey question. 

We let hq denote the marginal probability for stratum h , ]1[ , =∆= ihh Pq , let hp

be the conditional probability of response in stratum h , ]1|1[ , =∆== ihih RPp , and 
h
Yµ be the conditional expectation of Y in stratum h , )1|( , =∆= ihi

h
Y YEµ . The 

overall response probability is denoted by p .

We assume that the values of the auxiliary variables are observed for all units. 
However, the answers to the survey question are only observed for the respondents. 
Furthermore, we assume that the marginal probabilities hq are known.  
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The objective of this paper is the estimation of the unknown expectation of the 
survey question Y , i.e. of iY EY=µ .

For this purpose we use the poststratification estimator postŷ , defined by 

 ∑
=

=
H

h
hhpost Yqy

1

*ˆ , (1) 

with *
hY the response mean to survey question Y in stratum h , i.e. 

 

∑

∑

=

=

∆

∆
= n

i
ihi

n

i
ihii

h

R

YR
Y

1
,

1
,

* . (2) 

2.22.22.22.2 Bias of the poststratification estimatorBias of the poststratification estimatorBias of the poststratification estimatorBias of the poststratification estimator  

The bias of the poststratification estimator (1) can be derived under the condition 
that each stratum contains at least one respondent 

 .,0
1

, hR
n

i
ihi ∀>∆∑

=

(3) 

First, we look at the bias of the stratum response mean *
hY under (3) relative to h

Yµ .

This bias equals 

( )
,1|)1(]0|1[

0|)(

1
,

1
1 ,1 ,,

1 ,
**

h
Y

n

i
ihi

n

ij
j jhji

n

i ihiihi

h
Y

n

i ihihh

RRYERRP

RYEYB

µ

µ

−













 =∆∆+>∆=∆=

−>∆=

∑ ∑∑

∑

=

−

≠
=

=

=

since each term vanishes for which 0, =∆ ihiR and (3) is satisfied in stratum h in 

case 1, =∆ ihiR .

The sum ∑ =
∆

n

i ihiR
1 , is binomially distributed with parameters n and hh pq .

Hence, by application of Bayes’ rule 

 

(4) .
)1(1

]0[1

]1[

]0[

]0,1[
]0|1[

1 ,

,

1 ,

1 ,,

1 ,,

n
hh

hh

n

i ihi

ihi

n

i ihi

n

i ihiihin

i ihiihi

pq
pq
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RRP
RRP

−−
=

=∆−

=∆
=

>∆

>∆=∆
=>∆=∆

∑

∑
∑∑

=

=

=
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Furthermore, since iY and 
1

1 ,1
−

≠
= 






 ∆+∑n

ij
j jhjR are independent we have that   

( )

( )

( )
(5) .

))1(1(1|

1
1|

11|1|)1(

,

1

1 ,
,

1

1 ,,,
1

1 ,

hh

n
hh

h

ihii

n

ij
j jhj

h

ihii

n

ij
j jhjihiiihi

n

ij
j jhji

pnq
pq

p
RYE

RE
p

RYE

RERYERRYE

−−=∆
=







 ∆+

=∆
=







 ∆+=∆=






 =∆∆+

−

≠
=

−

≠
=

−

≠
=

∑

∑∑

The last step in (5) can be obtained using the fact that ∑
≠
= ∆

n

ij
j jhjR1 , is again 

binomially distributed, however, with parameters 1−n and hh pq . If  Z is 

binomially distributed with parameters  m and φ , then it can be shown that 

φ
φ
)1(
)1(1

1
1 1

+
−−

=
+

+

mZ
E

m
.

Now, if we combine (4) and (5) we get 

 
( )

.
)1|(1|

)( ,

1

,* h
Y

h

ihiih
Y

n

i h

ihii
h p

RYE
np

RYE
YB µµ −

=∆
=−

=∆
=∑

=

(6) 

We define ),( 21 ZZch and ),( 21 ZZhγ as the conditional covariance and correlation, 

respectively, between 1Z and 2Z in stratum h . Furthermore, we let h
Zσ be the 

conditional standard deviation of Z in stratum h .

We can now rewrite (6) to 

 h
Y

h

h
iih

h

iihh
Y

h

h
h
Yiih

h p
pRY

p
RYc

p
pRYcYB σγµ

µ −
==−

+
=

1
),(

),(),(
)( * , (7) 

using the fact that the conditional standard deviation of iR in stratum h equals 

)1( hh pp − .

Consequently, the bias of the poststratification estimator under condition (3) follows 
from (1) and (7) 

 
.

1
),(

)()ˆ(

1

1

*

∑

∑

=

=

−
=

=

H

h

h
Y

h

h
iihh

H

h
hhpost

p
pRYq

YBqyB

σγ

(8) 

2.32.32.32.3 A localA localA localA local  bias bias bias bias interval interval interval interval forforforfor the poststratification estimator the poststratification estimator the poststratification estimator the poststratification estimator  

First, we derive an interval for the bias in each stratum of the poststratification 
estimator. We will call this interval the local bias interval. In the next section we 
derive an alternative interval that we will refer to as the global bias interval. 
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We can construct sharp lower and upper limits for the bias of the poststratification 
estimator using the following lemma. 

 

Lemma 2.3: If variables 21 , ZZ and 3Z have a finite variance, then the correlation 
),( 21 ZZγ between 1Z and 2Z is bounded by 

 
,),(1),(1),(),(

),(),(1),(1),(),(
2

32
2

313231

21
2

32
2

313231

ZZZZZZZZ

ZZZZZZZZZZ

γγγγ

γγγγγ

−−+≤

≤−−−
(9) 

and the bounds in (9) are sharp. 

We refer to Schouten (2002) for a proof of lemma 2.3. By sharp bounds we mean 
that we can find  21 , ZZ and 3Z that correspond to any value in interval (9) while 

fixing ),( 31 ZZγ and ),( 32 ZZγ . In the following we omit the index i to the 

random variables. 

Let X be some random variable with finite Xσ . If we combine (8) and (9) we get 

 

.),(1),(1),(),(
1

)ˆ(

),(1),(1),(),(
1

1

22

1

22

∑

∑

=

=






 −−+

−
≤

≤






 −−−

−

H

h
hhhh

h
Y

h

h
h

post

H

h
hhhh

h
Y

h

h
h

YXRXYXRX
p

pq

yB

YXRXYXRX
p

pq

γγγγσ

γγγγσ

(10) 

Hence, any auxiliary variable defines an interval for the bias of the poststratification 
estimator. Since the bounds in (10) are sharp, we may take the intersection over all 
available auxiliary variables other than the variable that is used to construct the 
stratification. We may, however, also take different auxiliary variables for each 
stratum. Let HXXX ,,, 21 K be H , not necessarily different, auxiliary variables. 

We can again use (8) and (9) to get the following lower and upper limit for the bias 

 

.),(1),(1),(),(
1

)ˆ(

),(1),(1),(),(
1

1

22

1

22

∑

∑

=

=






 −−+

−
≤

≤






 −−−

−

H

h
hhhhhhhh

h
Y

h

h
h

post

H

h
hhhhhhhh

h
Y

h

h
h

YXRXYXRX
p

pq

yB

YXRXYXRX
p

pq

γγγγσ

γγγγσ

(11) 

Since we can bound 1),(1),(1),(),( 22 −≥−−− YXRXYXRX hhhhhhhh γγγγ

and 1),(1),(1),(),( 22 ≤−−+ YXRXYXRX hhhhhhhh γγγγ , it always holds 

that 

 ,
1

)ˆ(
1

11
∑∑
==

−
≤≤

−
−

H

h

h
Y

h

h
hpost

H

h

h
Y

h

h
h p

pqyB
p

pq σσ (12) 
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and the maximal absolute bias equals ∑ =

−H

h
h
Y

h

h
h p

pq
1

1
σ .

We call interval (11) the local bias interval as it allows for a local search for new 
strata. In the next section we set up an alternative bias interval. 

2.42.42.42.4 A global bias interval for the poststratification estimatorA global bias interval for the poststratification estimatorA global bias interval for the poststratification estimatorA global bias interval for the poststratification estimator  

In this section we argue that the bias that is maximally possible in absolute sense is 

the same for the poststratification estimator postŷ and the response mean defined by 

 
∑
∑

=

== n

i i

n

i ii

R

YR
Y

1

1* .

First, we derive the bias of  *Y by assuming only one stratum. Similarly to (7) we 
have 

 ,1),(
),(),(

)( *
Yii

ii
Y

Yii

p
pRY

p
RYc

p
pRYcYB σγµ

µ −
==−

+
= (13) 

where Yσ is the standard deviation of Y . Similarly to (10) we then get the 

following bias interval of the response mean when using auxiliary variable X

.),(1),(1),(),(1)(

),(1),(1),(),(1

22*

22






 −−+

−
≤≤






 −−−

−

YXRXYXRX
p

pYB

YXRXYXRX
p

p

Y

Y

γγγγσ

γγγγσ
(14) 

Next, we write the poststratification estimator postŷ in the form of a regression 

estimator. The estimator can be rewritten to 

 

(15) ,))((

)(

)(

)1(ˆ

1
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*

1
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1
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1
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1

*
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1

1
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∑
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H
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HhhH

H

h
HhhH

H

h
HH

H

h
hhhhpost

YYqY

YYYYqY

YYqY

YqqYqYqy K

where *
h∆ is the response mean of the auxiliary stratum indicator h∆ . Hence, the 

poststratification estimator amounts to the regression estimator with the first 1−H
strata indicator variables h∆ as predictors, assuming the stratum probabilities hq to 

be known and incorporating an intercept in the model. If we let α be the intercept 
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and β be the vector of slope parameters, then the estimators for these parameters in 

(15) are /**
1

**
1

/
11 ),,()ˆ,,ˆ(ˆ

HHHH YYYY −−== −− KK βββ and  ∑
−

=

∆−=
1

1

** ˆˆ
H

h
hhY βα .

Let us now suppose that the true differences between the stratum means defined by 
k
Y

h
Ykh µµλ −=:, are known, but that the stratum means h

Yµ themselves are 

unknown. If we would know one of the stratum means, say H
Yµ , then clearly we 

also know the others since we can simply add Hh,λ . Hence, we only need to 

estimate one stratum mean. We take H
Yµ as the unknown stratum mean. 

An obvious estimator for H
Yµ is  

 ∑
=

−∆=
H

h
Hhhh

H
Y Y

1
,

** )(ˆ λµ . (16) 

If all strata would have the same mean, i.e. 0, =Hhλ , then H
Yµ̂ is simply the 

response mean. In case there would be no nonresponse, then H
Yµ̂ is the maximum 

likelihood estimator. Provided the Hh,λ are known and using (16) we get the 

following estimator for Yµ

∑
=

+=
H

h
Hh

H
YhY q

1
, )ˆ(ˆ λµµ . (17) 

We can rewrite (17) to 
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1
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We can, thus, conclude that Yµ̂ is equal to the regression estimator when the 

observed differences between the strata, i.e. **
Hh YY − , are replaced by the true 

stratum differences Hh,λ .

We construct a bias interval for Yµ̂ and show that it has the same width as that of 

the response mean given by (14). Conditionally on 0
1

>∑ =

n

i iR the bias of estimator 

Yµ̂ equals 
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(19) .),(1)(
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The expression for the bias of *
h∆ in the third line of (19) is derived analogously to 

the bias of the response mean.  

Now, let ∑ =
∆=

H

h hHhX
1 ,λ in (14). From (19) it follows that the bias of the 

estimator Yµ̂ falls in an interval with the same width as the bias interval of the 

response mean *Y , since in lemma 2.3 all correlations are fixed including ),( RXγ .

The interval width of (19) equals  

 .),(1),(112 2
1 ,

2
1 , YR

p
p H

h hHh
H

h hHhY ∑∑ ==
∆−∆−

− λγλγσ (20) 

As a consequence the bias interval has the same width (20) for both estimators. We, 

therefore, strongly believe that for the poststratification estimator postŷ also a bias 

interval with the same width as (20) can be constructed, since contrary to the 
response mean this estimator does make use of auxiliary information but it does not 
use the true differences Hh,λ between the strata. In other words, if the parameters 

Hh,λ are replaced by their corresponding response based estimators **
Hh YY − , then 

the width of the bias interval remains as it is. We do not have a proof, however. 

It is not difficult to show that (20) is equal to 

 .),(1),(112 2
1

2
1

YR
p

p H

h h
h
Y

H

h h
h
YY ∑∑ ==

∆−∆−
− µγµγσ (21) 

We refer to (19) as the global bias interval, since we can use it for a global search for 
new strata. This interval serves as the basis for the classification algorithm in this 
paper. In the next section we elaborate on the algorithm. 

3.3.3.3. The classification tree algorithmThe classification tree algorithmThe classification tree algorithmThe classification tree algorithm  

3.13.13.13.1 MotivationMotivationMotivationMotivation  

In practice the formation of strata is not straightforward. When the categories of 
auxiliary variables are crossed it may occur that empty or almost empty strata are 
formed. In that case the answer of non-respondents in the same stratum cannot be 
predicted or the prediction is based on too small a number of respondents causing 
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variance to grow. Furthermore, it may not be efficient to cross every category of one 
auxiliary variable with every category of another auxiliary variable. Finally, a 
criterion must be chosen that makes it possible to compare different sets of strata. 
When should one choice of strata be favoured to another choice of strata? 

The problem of forming strata is addressed extensively in the literature. Little (1986) 
for instance suggests forming so-called adjustment cells by first dividing 
respondents that have similar response behaviour into separate cells and then 
pooling those cells that give similar answers to the survey questions. 

In this paper we make no assumption about the missing data mechanism. In sections 
2.3 and 2.4 we derived general intervals for the bias of the poststratification 
estimator. The intervals give us the maximal absolute bias, i.e. the bias under the 
worst case scenario. We can use the maximal absolute bias as a criterion for the 
selection of strata. Strata are only subdivided into new strata in case the new 
stratification leads to a significant decrease in the maximal absolute bias. 

In this paper we restrict ourselves to the construction of strata using the global bias 
interval. The approach is similar to Schouten (2004) where a forward inclusion – 
backward elimination strategy is applied. 

The width of the bias interval (19) is proportional to 
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If we have two stratifications, i.e. two sets of strata, then we let *w∆ denote the 
difference in width given by (23). 

 

A classification tree is an ideal method to enforce categories to be crossed only 
when this really leads to a more optimal set of strata. More optimal in the present 
setting means that the new stratification gives a smaller value of (23), i.e. the 
absolute bias that is maximally possible is smaller for the new stratification. 

Classification trees are constructed top-down. We let the root of the tree consist of 
all respondents. Hence, the starting point is only one stratum and the 
poststratification estimator reduces to the response mean. The first step, then, is a 
bisection of all respondents into two disjoint groups, so-called nodes. In each 
subsequent step one of the nodes is selected and split again into two disjoint groups. 
This process is repeated until no more node is allowed to be split. The end nodes, 
called leaves, will be the strata in the weighting of the response. The splits are made 
using classifiers, in our case the categories of auxiliary variables that are available 
for both respondents and non-respondents.  

Next in order to run the classification we need two rules, a splitting rule and a 
stopping rule. In section 3.2 we propose splitting and stopping rules and set up the 
classification algorithm. 

3.23.23.23.2 The splitting rule, stopping rule and classification algorithmThe splitting rule, stopping rule and classification algorithmThe splitting rule, stopping rule and classification algorithmThe splitting rule, stopping rule and classification algorithm  

In the previous section we argued that classification should be directed at the width 
of the bias interval. We want to split that stratum using that classifier or category of 
an auxiliary variable that gives the largest decrease in (23). 

 

Note that in making a bisection we optimise over all current nodes and over all 
classifiers. The splitting rule is, therefore, a global rule, while for some other 
classification tree methods the splitting rule is local. The latter means that the 
bisection of a node is executed independent of the other nodes. For each node it is 
decided whether it will be split and optimisation is over the classifiers only. 

It is less obvious how we should choose a stopping rule. We propose four rules of 
which the first rule plays the dominant role. 

Splitting rule: 

Choose that bisection of a node that leads to the largest decrease in the 
width of the bias interval of the corresponding poststratification estimator. 
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The last three rules are straightforward. We may want to limit the number of strata 
and the number of respondents in the strata. The first stopping rule, however, needs 
further explanation. 

If we forget for a moment the other three stopping rules, then it is clear that we can 
split every stratum until only strata with one respondent are left. However, we only 

want to create a new set of strata in case *w∆ is systematic and not caused by taking 
a sample out of the population. We want to distinguish those strata that lead to a 
decrease of the width of the bias interval at a predefined significance level. We, 

therefore, must take the variance of  *w∆ into account. 

If we let *ws
∆

be an estimator for the standard deviation of *w∆ , then we want  the 

standardised decrease in the bias interval width  

 
*

*
*

w
s s

ww
∆

∆
=∆ (24) 

to be significantly smaller than zero. Clearly, we do not know the true probability 
distribution of the standardised bias decrease in (24). We, therefore, assume that the 

distribution of *
sw∆ can be approximated by a standard normal distribution and we 

let the p-value in the first stopping rule be the left quantile of the standard normal 
distribution.  

We estimate the standard deviation *ws
∆

by the jackknife estimator, see Miller 

(1974). All sample units are omitted once and *w∆ is computed based on the 
sample minus the omitted sample unit. This leads to n estimates. The jackknife 
estimator is the standard deviation of those estimates corrected for dependence 
between the estimates. One may, however, also resort to other variance 
approximation methods like bootstrap. 

The classification algorithm becomes: 

Stopping rules: 

1. A split is not allowed if the p-value corresponding to the standardised 
decrease in interval width is larger than α .

2. The maximum number of leaves is K .

3. A node cannot be split if the number of respondents in that node is 
smaller than 1R .

4. A candidate node cannot be formed if the number of respondents in 
that node is smaller than 2R .
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Ideally, we should also like to use (24) in the splitting rule instead of the 

unstandardised *w∆ . Unfortunately, this leads to much longer computation times as 
the jackknife estimate for the standard deviation needs to be estimated for all 
classifiers and all nodes. Therefore, we have chosen only to approximate standard 
deviations in case a candidate split is selected. 

4.4.4.4. ResultsResultsResultsResults  

We apply the algorithm of section 3.2 to the Dutch Integrated Survey on Household 
Living Conditions (Permanent Onderzoek Leefsituatie in Dutch) for the years 1998 
and 2002. We will abbreviate the survey by its Dutch acronym POLS. POLS is a 
large continuous survey with questions about issues like health, social participation 
and recreational activities.  

The survey is modular and consists of a base questionnaire and a number of 
questionnaires that deal with one separate topic. The base questionnaire is to be 
filled in by all persons. However, each person only fills in one topical questionnaire. 
The base questionnaire contains general questions and a number of basic questions 
that are used for allocation of the topical questionnaires. These basic questions are 
also used in weighting models for the topical questions. Here, we will focus on 
questions from the base questionnaire. 

The survey is a two-stage sample, in which the clusters in the first stage are formed 
by municipalities. From the clusters simple random samples without replacement are 
drawn consisting of persons. The first-order inclusion probabilities differ only for 
age. All persons of 12 years and older have the same probability to end up in the 

1. Select the classifier that produces the largest decrease *w∆ when 
splitting the total population. Let 1=k and go to step 2. 

2. Make the split unless the p-value corresponding to *
sw∆ is larger than 

α . If the p-value is smaller then let 1: += kk and go to step 3. 
Otherwise stop. 

3. Go to step 4 if Kk < . Otherwise stop. 

4. For each of the leaves with more than 1R respondents select the 

classifier that produces the largest decrease *w∆ . If all k leaves are 
smaller than 1R respondents, then stop. Otherwise go to step 5. 

5. Remove all candidate splits that lead to at least one node with less 
than 2R respondents. If no candidate splits are left, then stop. 

Otherwise go to step 6. 

6. Select the best split and go to step 2. 
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sample. In this paper we regard all persons of 12 years and older and omit only the 
nonresponse due to frame errors. The 1998 and 2002 samples then consist of, 
respectively, 36136 persons and 39170 persons. 

The 1998 and 2002 POLS had a fieldwork period of two months. In 1998 the first 
month was CAPI, and the second month was a mixture of CAPI and CATI. In 2002 
both months were CAPI. After two months the size of the response was 21571 
persons in 1998 and 22259 persons in 2000, i.e. a response rate of respectively 60% 
and 57%.  

We selected two survey questions from the POLS questionnaire, namely whether a 
person owns a personal computer or laptop and whether a person is active in sports. 
We also selected one auxiliary variable, whether a person receives some form of 
social allowance (disability, unemployment, social security), and treated this 
variable as if it was a survey question. 

To the survey we linked demographic and regional variables, information about jobs 
and social allowances and fieldwork information. We refer to the appendix for an 
overview of the variables used in the classification. All non-categorical variables 
like age and the average value of house in the postal code area were made 
categorical. The dummy-variables corresponding to the categories of the auxiliary 
variables were used as classifiers in the algorithm. However, one dummy-variable 
was omitted for every variable for redundancy reasons. 

We divided all auxiliary variables into two groups, nominal and ordinal, and treated 
the two groups differently in the classification. The categories of ordinal variables 
are arranged according to some natural order, e.g. degree of urbanisation or age in 
classes. The categories of nominal variables lack any order.  

In case of ordinal variables we did allow categories to be clustered as long as the 
clustering followed the ordering. For example, degree of urbanisation has five 
classes: 1) very strong, 2) strong, 3) moderate, 4) little and 5) not. Examples of 
classifiers that are allowed are for instance 1 to 4, 2 to 3 and 3 to 5. However, 1 to 2 
plus 4 is not allowed, since category 3 is missing.  

The decision to allow clustering of ordinal variables was motivated by the fact that 
without clustering some ordinal variables were only rarely used as classifiers. The 
number of categories of some of the available ordinal variables is quite large and the 
average number of respondents per category small. As a consequence these 
categories are less interesting in the formation of substrata. As we did not want to 
form clusters ourselves, we decided to let the algorithm search over all possible 
clusters. 

Figures 1 to 3 show the classification trees for the three selected variables. The trees 
contain, respectively, 33, 27 and 33 nodes, and 17, 14 and 17 leaves. The leaves are 

used as strata in the poststratification estimator. Table 1 shows the values of *w ,
*w∆ , *ws

∆
and *

sw∆ for the first 17 iterations of the classification algorithm 

corresponding to figure 1. 
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We take figure 3 as an example. Whenever a node is split, the classifier is attached 
to the node. The labelling of the nodes indicate the order in which nodes where 
created in the classification tree algorithm. The root in figure 3 is split based on the 
question whether a person is between 55 and 64 years of age. All persons having an 
age in this interval go to node 2. All other persons go to node 3. Next node 3 is split 
into nodes 4 and 5 based on a further classification on age. The persons younger 
than 54 go to node 4, the persons older than 64 go to node 5. Node 4 is then split 
based on the question whether a person has a job. Node 5 is a terminal node and is 
not split. This node corresponds to the stratum 65 years and older. In the sixth 
iteration finally node 2 is split based again on having a job. Here node 12 is a 
stratum, and consists of all persons younger than 55 years that have a job. 

When we move down along the branches of the tree, the nodes are based on an 
increasing number of classifications. Some of these may be nested, e.g. in figure 3 
the variable age is twice used as a classifier. Consequently, the strata may be rather 
exotic when compared to usual weighting models. 

 

Figure 1: The classification tree for ownership of a personal computer or laptop. 

 
PC or laptop

node 22 node 23

node 8
WOZ 100-500

node 24

node 26 node 27

node 25
15-49 y

node 12

1st gen non-native

node 20

node 32 node 33

node 30
<54 y

node 31

node 21
WOZ<200

node 13
1 pers

node 9
WOZ<125

node 4
allowance

node 28 node 29

node 6
Mor/Tur

node 14

node 18 node 19

node 15

WOZ<150

node 7
25-34 y

node 5
Non-native

node 2
< 4 pers

node 10

node 16 node 17

node 11
Age mar

node 3

Age mar

node 1
<59 y



16 

Figure 2: The classification tree for activity in sports. 

 

Figure 3: The classification tree for social allowance. 
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In table 1 we can see that the main decrease in the width of the bias interval for 
ownership of a personal computer or laptop is obtained in the first iteration. The 
other interations lead to much smaller decreases. The 17th interation is the first 

iteration that gives a value of *
sw∆ smaller than the 99%-quantile of the standard 

normal distribution which is approximately equal to 2.32. 

In table 2 we compare the classification tree estimates to the estimates using the 
current POLS weighting model and the weighting model proposed in Schouten 
(2004). In Schouten (2004) an alternative forward inclusion – backward elimination 
algorithm is proposed, however, based on the same objective function, the width of 
the bias interval. In table 2 for the classification estimates also the 95%-confidence 
interval is constructed using the approximated jackknife standard deviations. 

From table 2 we can see that the classification tree estimates do not deviate much 
from the estimates using the alternative model. Most differences fall within the 95%-
confidence intervals. This is true in general for almost all survey questions that we 
investigated. The differences with the estimates of the current weighting model are 
in most cases somewhat larger. 

 

Table 1: The values of *w , *w∆ , *ws
∆

and *
sw∆ for the first 17 iterations of the 

classification algorithm applied to the POLS survey variable ownership of a 
personal computer or laptop. 

Iteration *w *w∆ *ws
∆

*
sw∆

1 0.879 0.121 0.0045 26.77 

2 0.862 0.017 0.0013 13.43 

3 0.854 0.008 0.0010 8.46 

4 0.847 0.006 0.0010 6.73 

5 0.841 0.006 0.0012 5.17 

6 0.838 0.003 0.0008 3.91 

7 0.835 0.003 0.0005 5.03 

8 0.833 0.002 0.0006 4.23 

9 0.831 0.002 0.0006 3.53 

10 0.829 0.002 0.0004 4.30 

11 0.828 0.001 0.0005 2.77 

12 0.826 0.001 0.0003 4.84 

13 0.825 0.001 0.0004 3.59 

14 0.823 0.001 0.0004 3.07 

15 0.822 0.001 0.0005 2.53 

16 0.821 0.001 0.0003 2.79 

17 0.820 0.001 0.0004 2.13 
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Table 2: The estimates according to the classification tree method, the current POLS 
weighting model and the weighting model proposed in Schouten (2004). For the 
classification tree estimates also the 95%-confidence interval is given that is 
computed using the jackknife approximations.  

 Classification tree 
stratification 

Current POLS 
model 

Forward –
backward model 

Owner of PC 57.6% (± 0.6%) 58.3% 57.2% 

Active in sports 44.9% (± 0.6%) 45.6% 45.1% 

Social allowance 11.5% (± 0.4%) 11.0% 11.4% 

We summarise some other findings related to optimality, stability and computing 
times of the classification algorithm: 

• For some survey questions we were able to build trees by hand that 
correspond to a smaller value of the criterion function (23) than the trees 
built by the proposed algorithm. Differences are, however, very small and 
estimates only slightly change. Also, it was quite cumbersome and labour-
intensive to find those more optimal trees. The changes in estimates are 
within the 95%-confidence interval.  

• We divided the POLS sample into two and into 10 disjoint groups and 
applied the classification tree method to each of the subsamples. This way 
we could investigate the stability properties of the method. We found that 
the tree structures can be quite different even for the two halfsamples that 
have a size of approximately 18000 sample persons. However, the estimates 
computed with the different sets of strata were in most cases quite similar. 
We also applied the tree that followed from one halfsample to the other 
halfsample. Again differences were acceptable. 

• The computation time of the algorithm can be quite long, up to 1 hour or 
more for the complete sample of 36000 persons and a set of approximately 
165 classifiers. We must also remark that the categories of age (15 classes), 
average house value of the postal code area (12 classes), degree of 
urbanisation (5 classes) and proportion of non-natives in postal code area (9 
classes) were allowed to form clusters. For instance, 24 clusters can be 
formed for the proportion of non-natives in postal code area apart from the 9 
classifiers for each of the categories. Ideally, we would like the splitting rule 
to depend on the standardised difference in the width of the bias interval 
rather than the unstandardised width. However, computation times will in 
that case not be feasible in practice. 
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5.5.5.5. DiscussionDiscussionDiscussionDiscussion  

We argue that the usual missing-at-random assumption is not always valid in 
surveys. However, even if the assumption is true for the final weighting model, we 
need a criterion to form strata or adjustment cells in non-response adjustment. In this 
paper the missing-at-random assumption is, therefore, not made. We show that 
general intervals can be set up for the bias of the response mean and the 
poststratification estimator. We propose to minimise the width of these intervals. 

We have set up two bias intervals for the poststratification estimator, which we refer 
to as the local and the global bias interval. We do not have a proof that the global 
bias interval is valid. However, we argued that the width of this interval must be the 
same as the width of the bias interval for the response mean. Even if we know the 
true differences between the stratum means, then we showed that the width of the 
bias interval is not reduced. In this paper we minimised the width of the global bias 
interval. In the future we will investigate algorithms for the minimisation of the local 
bias interval. 

Classification trees are candidate tools to form strata economically and in an 
automated way. Strata are divided into substrata only in case there is a significant 
decrease in interval width, leaving those strata alone that do not lead to any further 
decrease. Since the prediction of survey questions and the relation to response 
behaviour is combined in one splitting criterion, the strata can be formed by an 
automated algorithm. Hence, the classification tree method provides a tool to 
perform weighting in one step. 

Approximations for the variance of the poststratification estimates come as a useful 
by-product of the jackknife-method. A proposed split of a tree node is executed only 
in case the decrease in interval width is significant. The jackknife-method is 
employed to approximate the variance of this decrease. However, at the same time 
the variance of the poststratification estimates can be computed while only 
marginally increasing the computation times. 

There are also some drawbacks to the proposed classification tree method. First, the 
trees turn out not to be very stable. Even for two quite large samples the resulting 
trees may have quite different forms. However, due to multicollinearity in the 
variables the estimates are rather stable. In case the tree of one sample is applied to 
another sample, the estimates do not change much. Second, the computation times 
of the classification tree algorithm are considerable, since the number of nodes and 
splits to be investigated can become quite large. For practical purposes the current 
software is too slow and need to be made more sophisticated. Third, the 
classification gives a set of strata for each survey question and it does not seem 
straightforward how to combine those sets into one set of strata that suit all survey 
questions. Fourth, we found that the algorithm is not optimal. Examples can be 
constructed where trees exist that give a smaller bias interval. In most cases these 
trees can be formed by choosing splits in the first iterations that are close to not 
being significant. 
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Summarising, we distinguish the following advantages and disadvantages: 

Advantages:  

• The selection of auxiliary variables can be done in one step. 

• The construction of weighting models can easily be automated. 

• The formation of strata is economical. 

• The variance of the poststratification estimator can be approximated 
synchronically. 

Disadvantages: 

• Computation times are considerable. 

• The stability of the tree structures is poor. 

• The combination of sets of strata corresponding to different survey 
questions is not straightforward. 

• The proposed algorithm is suboptimal. 

We begin with the last disadvantage. We belief the suboptimality of the algorithm to 
be marginal. Only after careful and labour-intensive analysis we were able to 
construct trees that correspond to a slightly more optimal set of strata. 

The computation times may be shortened by more efficient programming and using 
more specialised software. The routines for the classification trees were written and 
coded in S-plus by the authors. 

The stability of the resulting trees is a more difficult problem. This problem may be 
solved by methods that create ensembles of classification trees, see e.g. Bauer and 
Kohavi (1999) and Dietterich (2000). A promising technique in this respect is the 
Random-Forest method developed by Breiman (2001). Future research is necessary 
to investigate whether such methods can improve the stability of the classification. 

Finally, the combination of weighting models for different survey questions may be 
circumvented by the use of a multidimensional splitting rule. Instead of splitting the 
population separately for each survey question, we may choose the node and 
classifier that correspond to the largest decrease in the interval width over all survey 
questions. Also, this question needs further research. 
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Appendix: Auxiliary variables in the classification treesAppendix: Auxiliary variables in the classification treesAppendix: Auxiliary variables in the classification treesAppendix: Auxiliary variables in the classification trees  

Here, we give an overview of the auxiliary variables that are used in the 
classification tree algorithm applied to POLS surveys of 1998 and 2002. 

 

Demographic (personal level): 

Gender, age, ethnic origin (native, Moroccan, Turkish, Surinam, other non-western 
non-native, other western non-native), ethnic generation (native, 1st generation, 2nd

generation and one parent not born in The Netherlands, 2nd generation and both 
parents not born in The Netherlands), marital status, nationality, country of birth.

Demographic (household level): 

Children living in the household, household type (single, single parent, couple, 
couple with children, other type), household size. 

Regional level: 

Degree of urbanization, province in the Netherlands (separate categories for four 
largest cities), size of municipality, average value of houses at postal code area, 
proportion non-native in postal code area. 

Income and allowance: 

Job, old-age pension, disability allowance, unemployment benefit, social security. 

Fieldwork information: 

Interviewer district, interviewer seniority, interviewer gender. 




