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6XPPDU\�� 5HSHDWHG� ZHLJKWLQJ� SURYLGHV� D� PHWKRG� WR� REWDLQ� VHWV� RI� WDEOH�

HVWLPDWHV�ZLWK�QXPHULFDOO\�FRQVLVWHQW�PDUJLQV�IURP�FRPELQDWLRQV�RI�UHJLVWHUV�

DQG� VXUYH\V�� ,W� LV�EDVHG�RQ� UHSHDWHG�DSSOLFDWLRQ�RI� WKH� UHJUHVVLRQ�HVWLPDWRU�

DQG� JHQHUDWHV� D� QHZ� VHW� RI� ZHLJKWV� IRU� HDFK� WDEOH� ZKLFK� LV� HVWLPDWHG��

5HSHDWHG�ZHLJKWLQJ� LV� LPSOHPHQWHG� LQ� WKH�SURWRW\SH�VRIWZDUH�SDFNDJH�95'��

7KLV�UHSRUW�GHVFULEHV�WKH�UHVXOWV�RI�ILYH�VLPXODWLRQV�LQ�ZKLFK�YDULRXV�DVSHFWV�

RI� UHSHDWHG�ZHLJKWLQJ�ZHUH� WHVWHG�� 7KH� GLIIHUHQFHV� LQ� DFFXUDF\� EHWZHHQ� WKH�

UHSHDWHG�ZHLJKWLQJ��DQG�WKH�VWDQGDUG�UHJUHVVLRQ�HVWLPDWRU�ZHUH� IRXQG�WR�EH�

VPDOO��:KHQ�FRUUHFWO\�LPSOHPHQWHG��UHSHDWHG�ZHLJKWLQJ�FRQVLVWHQWO\�\LHOGHG�D�

VPDOOHU� VWDQGDUG�GHYLDWLRQ�� ,Q�FHUWDLQ�FDVHV��D�YHU\� OLPLWHG� LQFUHDVH� LQ�ELDV�

FRPSDUHG� WR� VWDQGDUG� ZHLJKWLQJ� ZDV� IRXQG�� 7KH� 95'� HVWLPDWRU� IRU� WKH�

YDULDQFH�ZDV� IRXQG� WR�EH�UHOLDEOH�RQO\�IRU�FHOOV�RI�VXIILFLHQW�VL]H�DQG�ZLWK�D�

ORZ�HQRXJK�YDULDQFH�RI�WKH�ZHLJKWV��

.H\ZRUGV��FRQVLVWHQW�HVWLPDWHV��FRPELQLQJ�UHJLVWHUV�DQG�VXUYH\V��UHJUHVVLRQ�

HVWLPDWRU��VLPXODWLRQV��YDULDQFH�HVWLPDWLRQ�

��� ,QWURGXFWLRQ�

Recently, a method has been developed at Statistics Netherlands to obtain 

numerically consistent estimates of tables from a combination of registers and 

surveys; see Kroese and Renssen (1999) and Houbiers HW�DO� (2003). This method, 

repeated weighting (RW), is based on repeated application of the regression 

estimator. It produces a new set of calibration weights for each table estimate, where 

the calibration restrictions depend on the table margins that are already estimated. In 

addition to improving consistency, this method may also produce estimates that are 

more accurate than those obtained with a standard regression estimator, since it 

makes wider use of auxiliary information from other surveys. Repeated weighting is 

implemented in a prototype software package called VRD, see Houbiers and 

Snijders (2002). VRD estimates both the tables and their variances. The RW 

estimator and the variance formula are discussed in Knottnerus (2003 A). 

This report describes simulations that were carried out to investigate the properties 

of the RW estimator. The aim was to compare the accuracy of the RW estimator 

with that of a standard regression estimator and to test the variances calculated by 

VRD. Five separate simulations were performed. In each case, data was used from a 

register and from two independently drawn surveys. The first simulation mimics a 

situation where one of the two surveys is very large and the two surveys have a 

sizeable overlap. The other four simulations focus on situations where there are two 

relatively small, non-overlapping surveys. 
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Section 2 provides an introduction to repeated weighting. The general simulation 

procedure is explained in section 3. Sections 4 and 5 describe specifics for the two 

types of simulations. Section 6 discusses the results, which are presented in detail in 

the appendix. 

��� 5HSHDWHG�ZHLJKWLQJ�

This section gives a short introduction to repeated weighting. It mainly focuses on 

those elements important to the simulations.  

���� &RPELQLQJ�UHJLVWHUV�DQG�VXUYH\V�

Repeated weighting was developed for situations where information on one or 

several variables is available from more than a single data source. A basic example 

is shown in figure 1a. There are two surveys with non-overlapping samples V1 and V2, 

drawn from the same population1. The first survey provides information on the 

weekly working hours +� and the monthly wage : of the sampled persons. The 

second includes these variables and, in addition, the education level (.�+�and ( are 

classification variables, while : is a quantitative variable. The gender * of each 

person in the population is known from a register. 

From this set of microdata, three rectangular “blocks” can be created. A block is a 

subset of data in which for each sampling unit the same variables are available. 

These blocks are shown schematically in figure 1b. They are numbered 

consecutively with decreasing size. Block 1 is the register, which contains data on 

the entire population. Only * is available for this block. Block 2 contains the union 

of V1 and V2. For these sampling units, *, + and : are available. Block 4 contains the 

units in V2 and the variables *, +��:� and (. 

 

)LJXUH���D��6FKHPDWLF�UHSUHVHQWDWLRQ�RI�D�PLFURGDWD�VHW�IRU�ZKLFK�UHSHDWHG�

ZHLJKWLQJ�FDQ�EH�XVHG��E��7KH�EORFNV�WKDW�FDQ�EH�FUHDWHG�IURP�WKLV�GDWDVHW���

                                                      

1 In this example, we assume for simplicity that the two samples are strictly non-overlapping. 

In practice, if one has two independently drawn samples that are both much smaller than the 
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These blocks represent the largest subsets of data from which tables can be 

estimated. In order to reduce the variance of the table estimates, each table is 

obtained from the largest suitable data block. The frequency table [*�x�+] x 1, for 

instance, is estimated from block 2, though one could also estimate it from block 3. 

The table [*�x (] x 1, on the other hand, can only be obtained from block 3. 

���� 6WDQGDUG�ZHLJKWLQJ�

When standard weighting (SW) is used, tables are estimated using a single set of 

weights per block. These weights represent the starting point for repeated weighting 

and are therefore called VWDUWLQJ�ZHLJKWV. We denote them by ���G , where E �  indicates 

block N. Typically, the starting weights correct for non-response and unequal 

inclusion probabilities and have been calibrated on register variables to adjust for 

sampling fluctuations. In general, even variables from other blocks may have been 

included in their weighting scheme. However, this is not currently common practice 

at Statistics Netherlands and we will not consider that possibility here.  

The starting weights for the register are of course equal to one. For blocks which 

contain data from the register plus a single survey V � , the starting weights are the 

survey weights ���G , possibly calibrated on one or more register variables. In the 

above example, the starting weights could include a calibration on *. For block 3, 

the weights would then be given by 

),;( 2
23 V*GG �
�
�

	
� φ=  (1) 

where ),( 
� V*φ  denotes a correction weight.  

The survey weights 2
�
G which appear in (1) consist of an inclusion weight and a 

correction factor for non-response. Also, certain calibrations on register variables 

may already be included in these weights. We are assuming that the survey weights 

have at least been calibrated on the population total 1.  

Block 2 contains elements from both surveys. Its starting weights are obtained in 

two steps. First, the survey weights are rescaled by a sample-dependent factor to 

ensure that the block weights reproduce the population total 
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where the ’s are positive factors which satisfy the constraint 

.121 =+ λλ  (3) 

                                                                                                                                         

population, the overlap between these two samples will be very small and one can still 

follow the same procedures as in this example. 
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This constraint ensures that the zeroth order block weights )0(���G  yield the 

population size when summed over the block, assuming that the survey weights do 

so when summed over their samples.  

The factors  should be chosen in such a way that the variance of estimators from 

block 2 is minimized. Assuming independent and non-overlapping samples V1 and V2 

in figure 1, we can write 

( ) ( )
( ) ( )

( )( ) ( ),ˆVar1

ˆVarˆVar

ˆˆVarˆVar

1

21

212

2
1

2
1

2
2

2
1

21

�

��

���

\U

\\

\\\

λλ

λλ

λλ

−+=

+=

+=

 (4)  

where ��\̂ denotes the estimator of some quantity <� from block Ek and 
k

ˆ �\ the 

estimator of the same quantity from sample Vk. On the last line, U indicates the ratio 

of the variances from V2 and V1. Minimizing this expression with respect to 1, we 

obtain 

11 +
=
U

Uλ . (5) 

For simple random sampling, the ratio of the variances is the inverse ratio of the 

sample sizes: U�= 9 � ��9 � = Q � ��Q � . This yields the factors 

21

2
2

21

1
1  ,

QQ

Q

QQ

Q

+
=

+
= λλ   (simple random sampling). (6)  

If a non-trivial sampling scheme is used, the correlation between the variable and the 

survey weights starts to play a role and U will in general be different for different 

estimators. However, Kish (1992) argues that it is often a good approximation to 

assume that variables and weights are uncorrelated. In that case, the variance scales 

with the inverse of an effective sample size Qeff., which is given by 

,
1eff.

/

Q
Q

+
=  (7) 

where / is the square of the coefficient of variation of the survey weights. 

( ) ( )
( )21

2121

∑
∑ ∑

∈

∈ ∈
−

=
��

���

�� ��
���

���

G

GG
/ . (8) 

Because / is positive, Qeff. ��Q. The sample size is therefore effectively reduced by 

the variability of the weights. Using (7), we obtain the same expression for the ’s as 

for s.r.s. (6), but with Q �  replaced by Qeff., � . 

After generating the zeroth order block weights (2) in this way, the starting weights 

are obtained by calibration on register variables, in this case *. 
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),( 2
)0(22 E*GG �

 
�

 
� φ= .  

���� 7DEOH�HVWLPDWLRQ�

Tables estimated with starting weights may suffer from numerically inconsistent 

margins. This problem can arise when two tables are obtained from a different 

block. Consider the frequency tables [*� x� +] x 1 and [+� x� (] x 1. The first is 

estimated from block 2, the second from block 3. Since they are estimated from 

different sets of data, using weights that are designed only to reproduce the marginal 

table [*] x 1, they will likely have a different marginal table [+] x 1. 

This problem is solved by repeated weighting. The basic principle is to recalibrate 

the weights with which a table is estimated on the margins it has in common with 

tables estimated earlier. This may result in different sets of weights for different 

tables estimated from the same block.  

Table estimates obtained from such a procedure depend on the set of tables which is 

estimated and on the order in which the estimates are performed. These factors 

therefore need to be fixed in some way. In the simulation study, two procedures for 

achieving this are compared: minimal repeated weighting and splitting up. 

���� 0LQLPDO�UHSHDWHG�ZHLJKWLQJ�

������ )UHTXHQF\�WDEOHV�

We first discuss the minimal repeated weighting procedure for the case that only 

frequency tables are estimated. 

The first step is to specify the full set of output (frequency) tables one wants to 

estimate. Next, certain marginal tables of these output tables are added to this set. 

There are two cases in which a marginal table is added:  

• it can be estimated from a larger block than the “parent” table, 

• it is obtained from the same block as the parent table, but it can be 

consistently estimated with starting weights. 

A table can always be consistently estimated with starting weights if all its marginal 

tables are obtained from the same block as the table itself. It can still be consistently 

estimated with starting weights if one or more of these marginal tables are obtained 

from another (larger) block, provided that these are tables that have been included in 

the calibration scheme of the starting weights. Since we are only considering cases 

where the starting weights contain calibrations on register tables, these marginal 

tables will have to be obtained from the register. 

After the marginal tables have been added to the set, the process is repeated for WKHLU 

marginal tables. This continues until no more tables need to be added according to 

the above criteria. The set is subsequently ordered (the procedure for which is 

described below) and the tables are estimated one after the other. Each table is 
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calibrated on the margins it has in common with tables that have been estimated 

before. 

The set is ordered first by increasing block number, second by increasing 

dimensionality. Within groups of tables from the same block, tables that can be 

consistently estimated with starting weights are moved to the front. This procedure 

does not always fully specify the order of the estimates and different choices can 

lead to (slightly) different results. This is a specific problem of the minimal repeated 

weighting procedure, which we come back to in section 2.4.4. 

The reweighting process ensures that all shared margins of the tables in the set are 

estimated consistently. Furthermore, the variance of the table estimates may be 

improved compared to standard weighting, since margins that are estimated from 

larger data blocks are used as calibration restrictions, and these margins have a 

positive correlation with the table interior. An example of minimal repeated 

weighting is discussed in section 2.4.3. 

������ 4XDQWLWDWLYH�WDEOHV�

When quantitative tables are estimated, an extra consistency requirement comes into 

play.  

Suppose we want to estimate the quantitative tables [+�x�(] x 0�and [* x�+]�x�0 

and the frequency table [+� x� (] x 1. Consistency is required between the two 

quantitative tables, because they share the marginal table [+ ]� x� 0. In addition, 

consistency is required between [+�x�(] x 0�and [+�x�(] x 1. The reason is that the 

ratio of these two tables yields an estimate of the average monthly wage by working 

hours and education level. For this estimate to be accurate, the weights with which 

the quantitative table is obtained should correctly reproduce the total number of 

elements per table cell. Especially when the quantitative table and the underlying 

frequency table are not obtained from the same block, unreliable averages may result 

if the quantitative table is not calibrated on the frequency table. 

This second consistency requirement is met by adding to the set the underlying 

frequency tables of all quantitative tables. Subsequently, the marginal tables are 

added to this set as discussed before. The tables are ordered, with the additional 

restriction that a quantitative table must always be estimated DIWHU its frequency 

table, which ensures that the quantitative table will be calibrated on its underlying 

frequency table. This restriction does not violate the principle that tables from larger 

blocks are estimated first, since the frequency table is always obtained from the 

same block as the quantitative table or from a larger one.  

������ ([DPSOH��

Suppose we want to estimate the tables [+�x�(] x : and [+�x�(] x 1. With minimal 

reweighting, the following table estimates are generated 
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7DEOH� %ORFN� 5HFDOLEUDWLRQV�

:� 2 starting weights (no recalibrations) 

[+]�x 1 2 starting weights 

[+]�[�: 2 [+]�x 1 + :
�

[(]�x 1 3 starting weights 

[+�x�(] x 1 3 [+]�x 1���[(]�x 1�

[+�[�(] [�: 3 [+�x�(] x 1��[+]�[�:�

The asterisk in the calibrations column indicates that the calibration of [+]�[�: on 

[+]�x 1 + : has no effect. This is because [+]�x 1 and : are estimated with starting 

weights from the same block as [+]� [� : and, consequently, the three tables are 

already consistent. Note that the marginals [+]�x 1 and [+]�[�: were included in the 

set because they can be obtained from a larger block than their parent tables, while 

: and [(]�x 1 were included because they can be estimated with starting weights.2  

������ 'UDZEDFNV�RI�PLQLPDO�UHSHDWHG�ZHLJKWLQJ�

There are two disadvantages related to minimal repeated weighting. One was 

mentioned earlier: the order in which the tables are estimated is not always 

unambiguously determined and a different order will yield a slightly different result. 

Another disadvantage is that the outcome of a table estimate depends on what other 

output tables one is estimating at the same time. Suppose that, in the previous 

example, we would not have been interested only in [+�x�(] x : and [+�x�(] x 1, 

but also in [(] [� :. Using the same minimal repeated weighting procedure, we 

would have arrived at the following estimates 

 

  

 

 

 

 

 

 

 

The table [+� [� (] [�: now has a different weighting scheme than in the earlier 

example. Apparently, estimates of tables can change when a new output table is 

                                                      

2 The table estimate : is in fact redundant, in the sense that exactly the same estimates for 

the other tables are obtained whether it is included or not, see section 4.2.2. 

7DEOH� %ORFN� 5HFDOLEUDWLRQV�

:� 2 starting weights 

[+]�x 1 2 starting weights 

[+]�[�: 2 [+]�x 1��:�
�

[(]�x 1� 3 starting weights 

[+�x�(] x 1 3 [+]�x 1���[(]�x 1�

[(]�[�:� 3 [(]�x 1 + :�

[+�[�(] [�: 3 [+�x�(] x 1��[+]�[�:����[(]�[�:�
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added. For table estimates of sufficient accuracy, this change should be very small, 

but it might still be considered a problem. 

���� 6SOLWWLQJ�XS�SURFHGXUH�

The splitting up procedure avoids these problems by introducing DOO marginal tables 

into the set, regardless of how these tables are estimated. In this way, table weights 

are always calibrated on all possible margins. As a result, different choices for 

ordering the tables can no longer result in different calibration schemes for the table 

weights (provided that these choices comply with the rules for ordering the tables 

that were mentioned earlier). Also, the estimate for an output table has become 

independent of the other output tables one chooses to estimate at the same time. 

This is easily checked for the above example. One indeed finds that, if splitting up is 

used, the set of estimates becomes the one shown in section 2.4.4, also when [(]�[�: 

is not specified as output table. 

A drawback of the splitting up procedure is that it requires, in general, more table 

estimates and more calibrations than minimal repeated weighting. This makes it less 

economical. For table cells with a small size, there is also the risk of a reduced 

accuracy of the estimates compared to standard weighting. The calibrations, which 

are implemented using the regression estimator, make use of estimated regression 

coefficients. If many of these coefficients are estimated based on a small sample, 

their inaccuracies, though relatively small individually, may collectively result in a 

less stable estimator than if no calibrations were performed. Moreover, splitting up 

introduces additional calibrations on margins that are estimated from the same block 

as the table itself, albeit with a different calibration scheme, and these calibrations 

do not necessarily increase the accuracy of the table estimate. 

���� 9DULDQFH�HVWLPDWLRQ�

Under certain conditions, VRD can provide an estimate for the variance of tables 

obtained with repeated weighting. The details of the formula implemented in VRD 

are explained in Snijders and Houbiers (2002). Here, we simply give the formula 

and discuss the assumptions on which it is based. 

The variance estimator implemented in VRD has the following form  

( ) ∑ ∑ ∑ 
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1
1

1
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ππ
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α
, (9) 

where RWˆ
α
&< denotes the RW estimator of the variable <�LQ�FHOO� �RI�WDEOH�7, N labels 

the samples which are involved in this estimate and
'()π is the inclusion probability 

for element L in sample V * . The residuals 
+, -.]

,α  are given by 
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where “set 7” contains 7 and all tables which are used as calibration restrictions for 

the estimate of table 7. These tables W 7 � 7�may appear in the calibration scheme of 

the survey weights 
89:G or of the starting weights 

8;:G , or they may be tables that are 

estimated before 7 in the repeated weighting procedure and with which 7� has a 

margin in common. The index � refers to the cells of the tables W 7 . The matrix 

elements α
γ

<=> ?0
, contain the paramaters @  and estimated regression coefficients that 

are used in the calibrations. For frequency tables, the variables γ
A
B\ have a value of 

one if element L is part of the subpopulation defined by the table cell W  and zero 

otherwise. For quantitative tables, γ
A
B\ is the score of the quantitative variable for 

element L if the element is in the table cell and zero otherwise. 

The following approximations are used in (9) 

• The formula assumes a sampling scheme with replacement (Hansen Hurwitz 

estimator). It is approximately correct for sampling ZLWKRXW�replacement as 

long as all samples are small compared to the population (Q @ �<< 1). 

• The samples V @  are assumed to have no elements in common. 

• The matrix 0� is obtained from sample data and therefore has a nonzero 

variance. This variance is neglected in (9). For simple random sampling, the 

contribution that is neglected in this way is smaller than (9) by a factor of 

k1 Q  and the approximation is therefore asymptotically correct for large 

Q @ . For non-trivial sampling schemes, we expect the approximation to be 

valid for Qeff., @  >>1. 

It follows from these approximations that (9) can be used in cases where Q @  << 1��

Qeff., @  >>1 and the overlap between samples is much smaller than the sample sizes. It 

should be noted that the RW estimator can still be used in cases where these 

restrictions are not satisfied. However, equation (9) is then no longer expected to 

yield a good estimate of its variance. 

An additional approximation is involved in the estimation of variances of ratios of 

table estimators. Consider the table “average monthly wage by education level”, 

which is given by  

( ) α

α
α

1][

][
Av][

×
×=×

(

:(
:( , 
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where  is a cell index for the table. We denote the estimator of this table by α
)Av(

ˆ CW . 

To obtain its variance, we expand to lowest order in the relative variances of its 

numerator ( αDŴ ) and denominator ( α
1̂W )  

( ) ( ) ( ) ( )
3

1

1
4

1

1

2

2

1

)Av(
ˆ

ˆ,ˆCovˆ
2

ˆ

ˆVarˆ

ˆ

ˆVarˆVar
α

ααα

α

αα

α

α
α

W

WWW

W

WW

W

W
W

EEEEE −+≈ . (11) 

The variances in (11) are estimated using equation (9). To obtain the covariance, we 

estimate the variance of the sum of the two tables using (9) and then use the identity 

Cov(x,y)=(1/2)(Var(x+y)-Var(x)-Var(y)). Eq. (11) is valid if the variances of the 

table estimators αDŴ  and α
1̂W are small compared to the square of their values. 

���� 6WUXFWXUH�RI�(DUQLQJV�6XUYH\�

Repeated weighting is currently used at Statistics Netherlands for the Structure of 

Earning Survey (SES). To test RW in a realistic setting, one of the simulations is 

constructed to mimic the SES. We therefore briefly discuss how RW is implemented 

for this particular survey. 

������ 'DWD�VHW�

The SES is concerned with properties of jobs. This survey combines data from three 

different sources. 

• A register containing data on 6.6 million jobs. The simulation uses the 

classification variables gender (*), age ($) and business activity (%) from 

this register. 

• The Employment and Wages Survey (EWS), which covers a subpopulation 

of 2.8 million jobs. We use the classification weekly working hours (+) and 

the quantitative variable monthly wage (:) from this survey. 

• The Labour Force Survey (LFS), whose sample contains approximately a 

hundred thousand records. From this survey, only the classification variable 

Education level (() is used. 

The structure of the data set is shown in figure 2. There are four data blocks: the first 

contains all sampling units, the second those in the EWS, the third those in the LFS, 

the fourth those in the cross section of EWS and LFS. The LFS has an overlap of 

about 50% with the EWS, so block 4 contains approximately 50 000 units. 

������ 6WDUWLQJ�ZHLJKWV��

The starting weights for blocks 2 and 3 are obtained by the procedure described in 

section 2.2 for blocks containing data from a single survey. The weights are 

calibrated on the register variables *, $ and %, using the weighting scheme [* [ $] 

[�1 + [%] [�1.  
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)LJXUH���D��0LFURGDWD�VWUXFWXUH�RI�WKH�6(6��RQO\�WKH�YDULDEOHV�WKDW�DUH�XVHG�LQ�WKH�

VLPXODWLRQ�DUH�VKRZQ�KHUH��E��EORFNV�XVHG�LQ�REWDLQLQJ�HVWLPDWHV�IURP�WKH�6(6��

For block 4, the situation is different from the one discussed in section 2.2, since one 

now has a cross section of two samples rather than a union. The approach is in this 

case to treat block 4 as if it were a third sample. For the survey weights of this 

sample, the products of the survey weights of EWS and LFS are used 

LFSEWSLFSEWS FFF GGG =∩ . (12) 

This choice is based on a probabilistic interpretation of the weights. If the EWS/LFS 

survey weight of an element represents the inverse probability for that element to be 

in the EWS/LFS sample, then the product of the EWS and LFS survey weights 

represents the inverse probability for the element to be in ERWK of these samples. 

Since the survey weights include corrections for non-response, this “probability to 

be in a sample” should be interpreted as an inclusion-and-response probability. In 

this argument, we neglect the fact that the survey weights also contain corrections 

for sampling fluctuations, which, strictly speaking, is not consistent with a 

probabilistic interpretation of the weights. These corrections, however, are typically 

small. 

Unfortunately, the LFS and, especially, the EWS survey weights have a wide 

distribution. Because of this, the product in eq. (11) results in some “outlier” survey 

weights for block 4 with very high values. These outliers can lead to unstable 

estimates. As an ad hoc solution to this problem, a maximum value of 6000 is 

imposed on the weights. Subsequently, the weights are rescaled by a constant factor 

to ensure that they correctly reproduce the total population size 1. This procedure 

yields the zeroth order block weights for block 4 

∑∈
∩

∩=
4

4

)6000,Min(
)6000,Min( LFSEWS

LFSEWS)0(

GH H
H

G
H

G

1
GG . (13) 
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As was the case for the other blocks, these zeroth order weights are calibrated on [* 

[ $] [ 1 + [%] [ 1 to produce the starting weights 4
I
JG .  

������ 9DULDQFH�HVWLPDWHV�

The variance formula which was discussed in section 2.6 cannot be directly applied 

to the SES. Firstly, due to complications involved in incorporating the data from the 

Labour Force Survey into the Structure of Earnings Survey, the inclusion 

probabilities ksKπ  are not known. The survey weights ksKG are known, however, and it 

was decided to use these in equation (9) instead of the inverse inclusion 

probabilities. This means that the calibrations which are incorporated in the survey 

weights are not considered in the variance estimation. Secondly, the condition that 

the samples V L  should be small compared to the population and have little mutual 

overlap, under which equation (9) was derived, is not met for the SES. The EWS 

sample covers nearly half the population and EWS and LFS have a large cross 

section. In order to overcome this second problem, the following procedure was 

proposed (Houbiers, 2002). 

• Treat all tables that are estimated from block 2 as register tables. The 

variance of these table estimates is assumed to be zero, since block 2 covers 

nearly half the population. 

• Identify as V1 the LFS sample. 

• Identify as V2� the cross-section of the LFS and EWS samples. Use the 

zeroth-order block weights of block 4, eq. (13), as survey weights for V2. 

Note that the samples V M �and V N  coincide with blocks 3 and 4. The starting weights 

for block 3 are derived from the survey weights of V1, those of block 4 from the 

survey weights of V2.  

The samples V1 and V2 are not independent and the variance estimator therefore does 

not decompose into a sum of independent contributions from the two samples, as in 

equation (9). Ignoring this at first, we let VRD compute a first approximation 9(0)
 to 

the variance using this equation anyway. In the process, the residuals 
OP QR]

,α are 

calculated by the program. It is shown in (Houbiers, 2002) that one can generate an 

improved variance estimate 9(1)�which does properly take into account the overlap 

between the two samples using these residuals. This is achieved by removing from 

V1 those units which are also in V2 and by performing the following transformation on 

the residuals in V2

)(   2s
1

2

1

22 VL
G

G ST
T

STSTST ∈+→ ]]] . 

The improved estimate 9(1)�is obtained by using these new residuals and the reduced 

sample V1 in (9). 



  17 

In the simulation which mimics the SES, both 9(0) and 9(1) were calculated for the 

target table [*�x�+�x�(] x�Av(:). It was found that the relative difference between 

the two variances was at most of the order 10-5. Recently, it has been pointed out 

that the fact the 9(0) and 9(1) are nearly identical�can be explained following a line of 

argument set out in (Knottnerus, 2001). Given the extremely small difference 

between the two variance estimates, only the results for 9(0) are presented in this 

report. It is however important to stress that under different circumstances than the 

ones in the SES, for instance if more surveys were included in the data set, or if 

different calibration schemes were used for the different blocks, the overlap between 

samples could play an important role in the variance, in which case it ZRXOG be 

necessary to use 9(1) rather than 9(0.  

��� 7KH�VLPXODWLRQV�

Five separate simulations were carried out to test the properties of the repeated 

weighting estimator under different circumstances. The aim was to answer a number 

of questions regarding repeated weighting.  

The first question concerns the bias. Repeated weighting involves repeated 

application of the regression estimator. Weights for new estimates are calibrated on 

the outcome of earlier estimates. Since the regression estimator is only 

asymptotically unbiased, one could worry whether repeated weighting leads to an 

accumulation of bias. To test this, the bias is estimated from the simulation results 

both for standard weighting, minimal repeated weighting and splitting up. 

The second question concerns the variance of the repeated weighting estimator. 

Application of the regression estimator results in an improved precision only if the 

auxiliary variable on which one is calibrating is known with greater accuracy than 

the estimate of this variable using the uncalibrated weights. This condition is not 

always met in repeated weighting. Especially when the splitting up procedure is 

used, one often calibrates tables on marginal tables which are estimated from the 

same data as the table itself, but with different weights. In those cases, the estimate 

on which one calibrates could be worse than the one obtained with uncalibrated 

weights. Furthermore, even if the tables are calibrated on a more accurate table 

estimate, the variance could still increase if the estimated regression coefficients 

have large fluctuations, which can happen for small (effective) sample sizes. 

To address these concerns, we investigate whether the variances of the repeated 

weighting estimates, as obtained from the simulation, are significantly lower or 

higher than those from standard weighting and how their difference depends on the 

(effective) cell and sample size. Also, we check whether the splitting up procedure 

has an adverse effect on the variance compared to minimal repeated weighting. 

Finally, the simulations offer the possibility to verify the standard deviation 

estimates that are computed by VRD. As has been discussed in sections 2.6 and 
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2.7.3, a number of approximations are involved in these estimates. The simulation 

results are used to check under what conditions these approximations are valid. 

���� *HQHUDO�SURFHGXUH�

The simulation procedure resembles the application of the bootstrap to survey 

sampling which is discussed in Särndal HW�DO� (1992). It determines the variance of a 

quantity by first creating an artificial population from a real survey sample and then 

drawing repeatedly samples from this artificial population, estimating the quantity of 

interest from each of these samples. The variance of the estimates gives an 

estimatation of the variance of the quantity. In the procedure discussed in Särndal HW�

DO�, the samples are drawn with the scheme of the survey sample on which the 

population is based. Here, we also uses schemes other than that of the original 

sample. 

The artificial population is based on an EWS and an LFS sample from the Structure 

of Earnings Survey (see sections 2.7). From this population, a register is created by 

selecting a few of its variables. In each simulation run, two samples are drawn from 

the population. Together with the register, they form a microdata set from which 

table estimates are made. After 600 runs simulation averages and variances are 

calculated. 

���� $UWLILFLDO�SRSXODWLRQ�

The artificial population is based on block 2 of the SES data set over the year 2000. 

Five variables from block 2 are included in the population file: *��$��%��+�and�:,�as 

well as the EWS survey weight 
UWVYXZG . To this are added from block 3 the variable ( 

and the LFS survey weight 
[]\_^`G . 

Since these last two variables are not available for most elements in block 2, they 

need to be imputed. A value of (�is imputed for each of the records in block 2 that is 

not in block 3. Probabilistic imputation is used, where the probability for each value 

to be imputed is determined from the distribution of (�by gender, age and ethnicity 

in the population of jobs (as estimated from the LFS). A value of 
[]\_^`G is imputed for 

all records in block 2, including those for which 
[]\_^`G is known from the LFS 

sample. This is done to avoid creating an atypical group of elements in the 

population, with weights 
[]\_^`G that have different properties from those of the other 

elements. First, the continuous variable 
[]\_^`G in block 3 is converted into a set-valued 

variable by replacing each value with the average of the octile to which that value 

belongs. Next, 
[]\_^`G is imputed for the records in block 2 using the probability 

distribution of this new variable by gender and ethnicity.3 

                                                      

3 Age is not used, since it only has a weak correlation with LFSaG .  
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After these imputations, records in block 2 with starting weights larger than one are 

duplicated to produce a file which contains as many records as there are jobs in the 

actual population (6.4 million). Non-integer weights are interpreted probabilistically. 

Thus, from an EWS record with 2
bcG = 4.2, at least four record are generated in the 

final population and a fifth with a probability of 0.2. There is a limited number of 

EWS records for which the starting weight are slightly less than one. Those records 

each have a probability of �- 2
bcG to be excluded from the population. 

The final population file has 6.4 million records and contains the variables *��$��%��

+��:�and ( and the survey weights
[]\_^`G and

dWeYfgG .  

���� 6LPXODWLRQ�HVWLPDWHV�DQG�PDUJLQV�

The following quantities are obtained from the simulations. 

• The bias % h . This is computed for standard weighting (SW; estimation with 

starting weights), for minimal RW and for splitting up (RW+). 

• The percentage of estimates VRDi3 which lie inside the 95% confidence 

interval obtained from VRD’s standard deviation estimator. Because 

computing standard deviations in VRD is time-consuming, this quantity is 

only obtained for the RW estimator. 

• The standard deviation S h  of the set of table estimates over the different 

simulation runs. This is also obtained for SW, RW and RW+. 

It is briefly discussed how these quantities and their confidence intervals are 

estimated. 

������ %LDV�

The bias of a table estimator 7̂  is estimated by the difference of its simulation 

average sim.7̂ and the true population value 7. 

∑ −=−= j jkl
5

% 7777 ˆ1ˆˆ
sim.

im. , (14) 

where .
m̂7 denotes the table estimate in run U and 5 is the number of simulation runs 

(5=600). 

Since 7 is a population constant, the variance of sim.ˆ n% is the same as that of sim.7̂ , 

which is estimated by 

[ ]
5

2

sim.
2 ŜˆŜ

o
7 = , (15) 
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where S
p q �is the variance of the table estimator 7̂ . Since sim.7̂  is an average over 5 

independent table estimates, its variance is smaller than that of 7̂  by a factor 5. The 

variance estimator of the table is given by 

( )∑ −
−

=
r

r
5

2

sim.
2 ˆˆ

1

1
Ŝ 77s . (16) 

Assuming normality, the 95% confidence interval of the bias is given by 

[ ]]ˆ[Ŝ96.1ˆ],ˆ[Ŝ96.1ˆ sim.sim.sim.sim. tttt
%%%% +− , where the standard deviation of sim.ˆ u% is 

obtained from (15) and (16) 

[ ] ( )∑ −
−

==
v

v
ww

555
%

2

sim.
sim. ˆˆ

)1(

1ŜˆŜ 77 . (17)  

It follows from our definition of the confidence interval that a bias is found to differ 

significantly from zero if it lies outside the interval [ ]]ˆ[Ŝ96.1 ],ˆ[Ŝ96.1 sim.sim. xx %%− , or, 

equivalently, if its absolute value exceeds 1.96 times its simulation standard 

deviation. Using (17), we can express this criterion in term of the bias ratio 

yy% Ŝˆ sim. : a bias is found to differ significantly from zero if the absolute value of its 

ratio exceeds 1.96/5
z { |

=0.08 (600 simulation runs). 

������ &RYHUDJH�SUREDELOLW\�RI�WKH�95'�FRQILGHQFH�LQWHUYDO�

The coverage probability is obtained by determining for each table cell the fraction 

of the simulation runs for which the cell estimate deviates less from the population 

value than the margin on the estimate which was computed by VRD 

( )∑ −−Θ=
}

}}~ 77
5

3 ααα
α ˆŜ96.1

1ˆ
VRD,

VRD , (18) 

where α �
VRD,Ŝ is the VRD standard deviation estimate for cell � on run U�� 7KH� -

function is one if its argument is positive, zero if it is negative. VRDˆ
α�3 can be 

interpreted as a simple random sampling estimator of a frequency variable from a 

sample with 5 elements. We therefore estimate its standard deviation by  

[ ] ( )
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ˆ1ˆ
ˆŜ

−
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=
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33
3

�����
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�����
������

� αα

α . (19) 

������ $FFXUDF\�RI�VLPXODWLRQ�YDULDQFH�

Assuming normality, the standard deviation of the variance estimate 2Ŝ �  is given by 

(see Knottnerus, 2003 B, page 298) 
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[ ]
1

2
SŜS 22

−
=

5
�� . (20) 

The relative standard deviation of 2Ŝ �  only depends on the number of runs. Since 

600 runs are used in these simulations, 2S �  is determined with a relative margin of 

plus or minus 11%. The relative standard deviation of �Ŝ  is half that of 2Ŝ � . S �  is 

therefore known with a margin of 6%. 

������ 'LIIHUHQFH�RI�YDULDQFHV�

The variance 2S � is estimated by the simulation average of the quantity 

( )2

sim.
2 ˆˆ

1
77 −

−
=∆ ��
5

5
, (21)  

see eq. (16). In order to test whether two weighting methods have different 

variances, we check whether the quantity 

( )∑ ∆−∆=−=
�

����
5

2)2(2)1(2(2)2(1)
2,1

1
ŜŜD̂  (22) 

differs significantly from zero. If the variances for the two methods were estimated 

independently, the standard deviation of 2,1D̂  could be obtained from the standard 

deviations of 
2(1)Ŝ �  and 

2(2)Ŝ �  using (20). However, since both variance estimates are 

obtained from the same simulation runs, the correlation of )1(�∆ and )2(�∆ is important 

and we have to determine the margin of (22) directly. Following the same procedure 

as for the bias, one arrives at the expression 

[ ] ( )∑ −∆−∆
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2
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2)2(2)1(
2,1 D̂

)1(

1
D̂Ŝ .     (23)  

Assuming normality, the difference 2,1D̂ of two variances is considered significant if 

its absolute value exceeds 1.96 times its standard deviation (23). 

��� 6LPXODWLRQ����RYHUODSSLQJ�VDPSOHV�

���� 6LPXODWLRQ�VFKHPH�

The microdata set for simulation 1 has the same structure as that of the SES, see 

section 2.7.1. It consists of a register, a large EWS-sample which covers nearly half 

the population and a relatively small LFS-sample which has a 50% overlap with the 

EWS sample. The register contains the variables *, $ and %, the EWS sample the 

variables + and : and the LFS sample the variables (. The EWS sample is drawn 
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from the artificial population with the inverse survey weights G � EWS. The LFS sample 

is drawn with the inverse of the imputed survey weights G � LFS.4 From these survey 

weights, the starting weights for blocks 2 through 4 are calculated as discussed in 

section 2.7.2, using the calibration model [*�x $] x�1+ [%] x�1. 

Poisson sampling is used to draw the samples. As a result, the sample sizes Q �  
fluctuate between different draws with a relative standard deviation of (Q � )-1/2

. 

Poisson sampling was used because it requires less computation time than fixed-size 

sampling techniques. For a simple Horvitz-Thompson estimator using uncalibrated 

weights, the fluctuations in Q �  would result in increased variances compared to fixed 

size sampling. However, all estimators used in this simulation include a calibration 

on the total population size 1, which removes most of this effect, see Särndal HW�DO� 

(1992), page 87.5  

���� 7DEOH�VHW�

The simulation focuses on the table DYHUDJH� PRQWKO\� ZDJH� E\� JHQGHU�� ZRUNLQJ�

KRXUV�DQG�HGXFDWLRQ�OHYHO� which we denote by�[*�x�+�x�(] x�Av(:). This table is 

the ratio of the quantitative table [*�x�+�x�(] x�: and the frequency table [*�x�+�x�
(] x�1. It is a more detailed version of the SES output table [*�x�(] x�Av(:). The 

extra classification + is included to create a larger difference between the calibration 

schemes for standard weighting, minimal repeated weighting and splitting up. 

������ 0LQLPDO�UHSHDWHG�ZHLJKWLQJ�

For the case of minimal repeated weighting, the following table set is generated 

from the output tables [*�x�+�x�(] x�: and [*�x�+�x�(] x�1. 

7DEOH� %ORFN� 5HFDOLEUDWLRQV�

[*�[�+] x�1 2 starting weights 

[*�[�+] [�: 2 starting weights 

[*�[�(] x�1 3 starting weights 

[*�[�+�[�(] x�1 4 [*�[�+] x�1��[*�[�(] x�1�

[*�[�+�[�(] [�: 4 [*�[�+] [�:�+ [*�[�+�[�(] x�1�

                                                      

4 Notice that the samples are drawn with LQYHUVH� VXUYH\� ZHLJKWV, not with inclusion 

probabilities. As was mentioned in section 2.7.3, the inclusion probabilities for the SES are 

not known. We therefore treat the survey weights as inclusion weights, ignoring the effects 

of non-response and of possible calibrations included in the survey weights. 

5 It can be shown that the adjusted Poisson estimator has, for 1<< Q��1 , approximately the 

same variance as a (fixed size) Hansen-Hurwitz estimator which is calibrated on the 

population size. Since the VRD variance formula (section 2.6) was  derived for a Hansen-

Hurwitz estimator, we expect that the accuracy of the variance estimates is not affected by 

the fact that Poisson sampling is used instead of a fixed-size sampling method. 
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The first three tables are obtained without repeated weighting, since they can be 

estimated consistently with each other using the starting weights. The last two tables 

are esimated with repeated weighting; 

������ 6SOLWWLQJ�XS�

When the splitting up procedure is used, the same output tables generate the set 

7DEOH� %ORFN� 5HFDOLEUDWLRQV�

[*�[�+] x�1 2 starting weights 

[*�[�+] [�: 2 starting weights 

[*�[�(] x�1 3 starting weights 

[+�[�(] x�1� 4 [+] x�1 ���[(] x�1 

[*�[�+�[�(] x�1� 4 [*�[�+] x�1��[*�[�(] x�1��[+�[�(] x�1�

[(]�[�: 4 [(] x�1���: 

[*�[�(] [�: 4 [*�] [�:�+ [(]�[�:�+[*�[�(] x�1�

[+�[�(] [�:� 4 [+] [�:�+  [(]�[�:�+  [+�[�(] x�1�

[*�[�+�[�(] [�: 4 
[*�[�+] [�:�+ [*�[�(] [�:�+ [+�[�(] [�:�

+ [*�[�+�[�(] x�1�

The tables [+] x�1 , :, [(] x�1�� [+]�x�:� and [*]�x�: are omitted from this set 

because they are “redundant”. Including them would not change the weights for any 

of the other tables in the set.6 

���� 3URSHUWLHV�RI�WKH�GDWD�EORFNV�

The EWS sample contains approximately 2.8 million elements. Its survey weights 

have values between 1 and 300, with an average of 2.3. The sample has a large value 

of /: 11.1 (see eq. (8)). Consequently, the EWS sample has an effective size of 

Q/(��/) §���������The LFS sample, which has approximately 100,000 elements, 

has a more even weight distribution. Its lowest weight is 29, its highest 152 and it 

has an / of 0.3. 

The target tables [*�x�+�x�(] x�: and [*�x�+�x�(] x�1 are both obtained from block 

4, which contains the cross section of the EWS and LFS samples. This block 

                                                      

6 This is the case because there appear higher dimensional tables in the set of which 

the omitted tables are margins and which, furthermore, are estimated from the same 

block and with the same weights as the omitted tables. The presence of these tables 

ensures that the calibrations on the omitted tables are carried out, even if they are not 

themselves included in the set. 
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contains approximately 45,000 elements. Its zeroth-order block weights (13) have an 

/�of 9.5. As a result, the effective size of this block is only about 4300.  

Table � shows the cell size and the effective cell size for the cross-tabulation *�x�+�
x�( from block 4. Since the size of the block varies between different runs, the table 

shows expectation values. The number of observations varies from 12 to over 7000 

per cell. The effective cell size is lower than this by a factor of one plus the relative 

weight variance in the cell. This factor varies from 8.8 to 12.1 for the different cells. 

Clearly, the extremely low values of Qeff.,cell for some cells would be problematic if 

this were a real output table. Estimates from these cells are expected to be very 

unreliable. For the purpose of performance evaluation, however, it is useful to have 

such a wide range of Qcell and Qeff.,cell, since it allows us to test repeated weighting 

under varying circumstances. 

7DEOH����5HDO�DQG�HIIHFWLYH�FHOO�VL]H�IRU�WKH�FURVV�WDEXODWLRQ�*�[�+�[�(�IURP�EORFN����

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less 29 101 84 239 1818 43 180 296 566 478
3 9 9 27 178 4 17 32 55 46

Lower secondary 46 157 126 377 3025 71 270 481 905 768
4 14 12 41 292 7 25 50 91 73

Upper secondary C 35 121 83 172 1115 75 276 382 714 650
3 10 8 18 106 7 24 39 69 61

Upper secondary A/B 27 91 60 132 896 56 189 250 479 517
2 8 6 14 86 5 16 25 46 47

Tertiary C 80 273 241 859 7549 200 759 1442 2840 2645
7 24 24 92 736 18 67 146 290 248

Tertiary B 27 96 98 394 3509 93 369 749 1495 1333
3 8 10 43 343 8 34 77 146 128

Tertiary A and higher 12 40 47 210 1904 26 106 242 493 455
1 3 5 24 190 3 9 24 49 43

cell
�

celleff.,
�

cell
�

celleff.,
�

cell
�

celleff.,
�

cell
�

celleff.,
�

cell
�

celleff.,
�

cell
�

celleff.,
�

cell
�

celleff.,
�

 

��� 6LPXODWLRQ����QRQ�RYHUODSSLQJ�VDPSOHV�

���� 6LPXODWLRQ�VFKHPH�

Simulation 1 tested repeated weighting in a situation where the dataset contained 

two overlapping samples, one of them large, and where one of the blocks consisted 

of the cross-section of these two samples. In addition, four other simulations have 

been carried out: simulations 2.1-2.4. These simulations test repeated weighting in 

situations where the dataset contains two small, non-overlapping  samples and one 

of the blocks contains the union of these samples. In such a situation, the criteria for 

using the VRD variance estimator are satisfied (see section 2.6), which was not the 

case in simulation 1. 

The dataset used in these four simulations is of the type discussed in section 2.1. The 

two samples each contain approximately a hundred thousand elements. They are 

drawn from the same artificial population that is used in simulation 1. The register 

contains the same variables as in simulation 1: *, $ and %. For sample V1, the 
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variables + and : are available, while V2 contains data on +, : and (. Three data 

blocks are formed from this set, see figure 1. The starting weights for these blocks 

are calculated as discussed in section 2.2, with the difference that the calibration 

scheme [*� x $] x 1 + [%] x 1 is used instead of [*] x 1. This same calibration 

scheme was used for the starting weights in simulation 1. 

In the first and simplest of the four simulations (simulation 2.1) the two samples are 

drawn with simple random sampling and each has a fixed size of Q=100,000. To 

ensure zero overlap between the two samples, they are drawn in a two stage process. 

First, the 200,000 elements in block 2 are drawn. Next, 100,000 units from this 

block are randomly assigned to V1, the remaining 100,000 elements are assigned to 

V2. Thus, the size of the two samples and of their union is the same in every 

simulation run.  

In simulations 2.2 through 2.4, a non-trivial sampling scheme is used which is 

derived from that of the SES. One sample is drawn with the inverse LFS survey 

weights, the other with the inverse of adjusted EWS survey weights * EWS�G . The 

weights are adjusted to ensure that the sample size is approximately 100,000 units. 

Furthermore, their distribution is made more narrow to reduce the difference 

between the real and effective sample size, see section 5.3.2. Poisson sampling is 

used, so the sample- and block sizes fluctuate between draws. 

In simulation 2.2, V1 is drawn with the inverse * EWS�G -weights and V2 with the inverse 

of  LFS�G . The starting weights for block 2 are calculated using factors �  based on the 

real, not the effective sample size, see section 2.2. Since both samples have nearly 

the same size, this results in � =1-    §� ½,. Simulation 2.3 follows the same 

procedure, but now the �  are based on the effective sample size Q ¡ ¢ ¢]£ , which takes 

into account the difference in the relative weight variance between the two samples. 

This results in � §�����,   § 0.81. In simulation 2.4, the inclusion probabilities for V � �
and V    are interchanged. The ’s are again based on the effective sample sizes, which 

now yields � §�����,   §����9. 

���� 7DEOH�VHW�

Simulations 2.1-2.4 again focus on the output table [*� [� +� [� (] x Av(:). Even 

though the structure of the data set in these simulations is different from that in 

simulation 1, it turns out that the same tables have to be estimated, with the same 

calibration schemes, see sections 4.2.1 and 4.2.2. Tables that are estimated from 

block 4 in simulation 1 are estimated from block 3 in simulations 2.1-2.4.  

���� 3URSHUWLHV�RI�WKH�GDWD�EORFNV�

������ 6LPXODWLRQ�����

In simulation 2.1, the samples V1 and V2 both have a fixed size of Q=100,000. 

Because simple random sampling is used, the variance of their weights is equal to 

zero and the effective cell size is equal to the real cell size.  
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Both output tables are obtained from block 3. Table 2� shows the cell size for the 

cross-tabulation *�x +�x ( from this block. There are no extremely small cell sizes 

as was the case for simulation 1 (see table 1). The smalles cell has 51 elements. 

7DEOH����&HOO�VL]H�IRU�*�[�+�[�(�IURP�EORFN���LQ�VLPXODWLRQ������

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less 101 309 199 577 4332 135 486 566 1105 936
Lower secondary 153 470 322 850 7400 205 687 881 1649 1505
Upper secondary C 135 381 221 456 2985 240 758 720 1376 1361
Upper secondary A/B 98 268 150 354 2419 173 517 488 941 1109
Tertiary C 276 859 578 1899 17806 619 2006 2647 5124 5226
Tertiary B 92 309 245 826 8006 295 982 1377 2711 2513
Tertiary A and higher 51 142 119 437 4299 66 258 454 888 868

 

������ 6LPXODWLRQV����������

One of the samples in simulations 2.2-2.4 is drawn using adjusted EWS-weights 
* EWS¤G . The mean value of these weights is 28 times that of the EWS-weights, 

reducing the sample size from 2,8 milion to 100,000. Furthermore, the adjusted 

weights have a narrower distribution than the original EWS-weights. The EWS* 

samples have an average / of 4.6, compared to 11.1 for the EWS samples. This / is 

still much larger than the value of 0.3 for the LFS-samples, but the difference 

between the two samples is not as extreme as it was in simulation 1. The effective 

size of the EWS* sample is approximately 18,000, that of the LFS sample 77,000. 

Tables 3 and 4 show the real and effective cell sizes for *�x +�x (�from the LFS- 

and EWS*-sample. The LFS sample is expected to yield the more accurate 

estimates, because of its larger effective size. 

The output tables are obtained from block 3. Below, we list which sample’s 

elements appear in block 3 for simulations 2.2-2.4. Furthermore, we give the values 

of the parameters k. Since the ’s are different for different simulation runs, the 

values listed here are expectation values.  

 

 

 

 

 

Simulations 2.2 and 2.3 are identical except for the way in which the parameters  

are calculated. In simulation 2.3, the quality difference between the two samples is 

taken into account, in simulation 2.2, it is not. We therefore expect to obtain more 

accurate RW estimates in simulation 2.3.  

Simulations 2.3 and 2.4 differ in the role which the two samples play. In 2.3, the 

output tables are obtained from the “good” LFS sample, while the “poor” EWS* 

sample is used only to obtain table estimates from block 2 for use in calibrations. 

 1 2 block 3=V2 

Simulation 2.2 0.50 0.50 LFS sample 

Simulation 2.3 0.19 0.81 LFS sample 

Simulation 2.4 0.81 0.19 EWS* sample 
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Because of its large , the LFS sample yields the dominant contribution to estimates 

from block 2. Since the starting weights estimates are also obtained from the LFS 

sample, we expect to find little difference between the RW- and SW-estimates in 

this simulation. In simulation 2.4, the output tables are obtained from the EWS*-

sample and the starting weights variances will therefore be larger than those in 

simulation 2.3. The calibrations on tables from block 2, which is dominated by the 

LFS sample, are now expected to have a large effect and considerable differences 

between SW- and RW-estimates are expected.  

7DEOH����5HDO�DQG�HIIHFWLYH�FHOO�VL]H�IRU�*�[�+�[�(�IURP�WKH�/)6�VDPSOH�

Gender x Working hours Male Female
Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+
Primary or less 98 298 185 535 4175 138 480 581 1103 935

78 226 144 410 3245 109 367 449 849 716
Lower secondary 146 464 322 860 7358 214 714 915 1709 1580

116 360 251 668 5753 165 556 712 1341 1236
Upper secondary C 134 349 216 447 2921 259 770 761 1402 1415

104 275 170 345 2276 198 601 590 1092 1090
Upper secondary A/B 94 264 141 339 2411 185 532 505 979 1157

76 206 110 262 1870 141 416 393 762 891
Tertiary C 288 881 568 1877 17927 650 2099 2763 5370 5485

220 682 447 1471 14060 513 1632 2163 4184 4276
Tertiary B 92 309 236 820 8055 330 1038 1452 2834 2608

73 243 184 641 6308 250 808 1138 2213 2032
Tertiary A and higher 46 141 119 445 4329 67 263 481 922 893

37 111 90 344 3387 53 205 373 725 702
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7DEOH����5HDO�DQG�HIIHFWLYH�FHOO�VL]H�IRU�*�[�+�[�(�IURP�WKH�DGMXVWHG�(:6�VDPSOH�

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+
Primary or less 71 244 201 577 4302 100 414 655 1268 1083

12 36 44 95 857 20 75 137 237 190
Lower secondary 109 368 295 875 7033 159 601 1042 1977 1682

19 57 50 155 1335 29 107 213 385 289
Upper secondary C 83 290 195 408 2630 169 616 835 1568 1445

10 39 31 70 484 27 91 171 297 224
Upper secondary A/B 63 215 141 316 2124 124 421 546 1049 1142

8 31 23 56 381 19 63 107 189 183
Tertiary C 186 633 552 1975 17404 447 1691 3116 6167 5788

28 88 91 345 3349 71 279 594 1198 1021
Tertiary B 66 224 230 901 8090 208 818 1625 3255 2919

11 29 47 172 1553 29 139 315 603 554
Tertiary A and higher 28 94 108 483 4385 57 232 524 1072 995

3 14 16 81 872 12 42 88 207 197
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��� 5HVXOWV�DQG�GLVFXVVLRQ�

The results for the five simulations are presented in the appendix. Tables 6-10 show 

the relative biases of the SW, RW and RW+ estimators. Tables 11-15 show the 

standard deviations of these estimators. Figures 3-7 compare the standard deviations 

of the SW and RW and the RW and RW+ estimators. Figures 8-12 show the 

coverage probability of the VRD confidence interval as a function of the relative SW 

standard deviation of the cell. In figure 13, the coverage probability is plotted versus 

the effective cell size for all five simulations. All these results are obtained for the 

target table [*�[�+�[�(]�x�Av(:).  
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���� %LDV�

The biases of the SW, RW and RW+ estimators for the five simulations are shown 

in tables 6-10. They are expressed as a percentage of the population value for Av(:) 

in the cell, which is the same in every simulation. Values for the bias which differ 

significantly from zero are indicated in grey. In these grey cells, the bias ratio 

exceeds 0.08 (see section 3.3.1). 

Throughout the simulations, little difference is seen between the RW and the RW+ 

estimator as far as the bias is concerned, but some differences are found between 

these two repeated weighting estimators and the standard regression estimator (SW). 

Over all, the standard regression estimator is seen to yield a somewhat smaller bias, 

although, throughout the whole range of (effective) cell sizes, also many cases occur 

where repeated weighting does better. The largest differences between the SW and 

RW/RW+ bias, of the order of a few percent of the population value, are found in 

simulations 1 and 2.4 for the very worst cells (Qeff.,cell§���DQG�VPDOOHU���Cells of such 

poor quality only occur in these two simulations. For the cells with larger effective 

sizes, the difference in the relative bias between the SW- and the RW/RW+ 

estimators are of the order of 0.1% or smaller. 

To determine the relevance of these changes in the bias, it is useful to consider what 

their impact is on the root mean square error (rmse). The rmse is the square root of 

the quadratic sum of bias and standard deviation. If the SW bias in the rmse is 

replaced by the RW or RW+ bias, a relative change of at most 5% of the rmse is 

found for effective cell sizes of about 10 and smaller. For effective sizes between 10 

and 1000, the changes are (much) smaller than 1%. For effective cell size larger than 

1000, increases of the rmse of up to 4% are again found for a small number of cells 

in simulation 2.3. However, these changes are very small in absolute terms, since the 

rmse is only some tens of a percent of the cell value in these cases. 

Altogether, we find no indications for a strong accumulation of bias as a result of 

repeated weighting. There is some increase in bias, but even for the very worst cells 

with effective sizes of about ten or less, this only results in an increase of the rmse of 

at most 5%.  

���� 6WDQGDUG�GHYLDWLRQ�

Below, in table 5, we summarize the results for the standard deviation S ³  in the five 

simulations. This table is based on figures 3-8 in the appendix. The first column 

indicates whether minimal repeated weighting results grosso modo in a smaller or 

larger standard deviation than standard weighting. The third column compares 

splitting up to minimal repeated weighting in the same way. The second and fourth 

column give an indication of the relative magnitude of the differences in the 

standard deviations for RW compared to SW and for RW+ compared to RW. 
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7DEOH���2YHUYLHZ�RI�WKH�GLIIHUHQFHV�LQ�WKH�VWDQGDUG�GHYLDWLRQ�RI�WKH�6:��5:�DQG�

5:��HVWLPDWRUV�IRU�WKH�ILYH�VLPXODWLRQV�

 

In simulations 1, 2.1, 2.3 and 2.4, minimal repeated weighting yields a more 

accurate estimator than standard weighting. In simulation 2.2, it yields a less 

accurate one. Apparently, the choice of ´  in this simulation results in estimates from 

block 2 which are less accurate than those from block 3. The calibrations on these 

unreliable estimates lead to an RW estimator which has a larger standard deviation 

than the SW estimator. In simulation 2.3, which is identical to simulation 2.2 except 

for the fact that the ´  are determined from the effective rather than the real sample 

sizes,7 repeated weighting does yield an improved estimator. This demonstrates the 

importance of taking into account not only the samples’ sizes but also the variances 

of their weights when determining the parameters k. 

In figures 3-7 in the appendix, the relative difference between the SW and RW 

standard deviations is plotted against the relative SW standard deviation of the cell, 

which scales with 
cellff.,1 µQ  for each of the simulations.8 In simulations 1, 2,1, 2.3 

and 2.4, an increase of the standard deviation in RW compared to SW is only found 

for a handful of cells with a small effective size. A significant increase is found in 

three cases, twice for cells with an effective size of 3, once for a cell with an 

effective size of 12.  

We conclude that, if the paramHWHUV� k are chosen correctly, repeated weighting 

yields a smaller standard deviation than standard weighting. This improvement is 

found throughout, except for cells with very small effective sizes (Qeff. § 10 or 

smaller). 

                                                      

7 For a given simulation run U, the samples used in simulations 2.2 and 2.3 are identical. As a 

result, the SW estimates for the target table, which are obtained from block 3, are exactly the 

same in both simulations. 

8 The relative SW standard deviation can be fitted to cellff.,10 ¶·
¸¸

+  with 52=0.8-0.9 for the 

different simulations. The intersect &0 is small: between -0.009 and +0.006. The slope &1 is 

of order 1 (between 0.6 and 0.9). 

RWS ¹ compared to SWS º  +RWS » compared to RWS ¹   

trend scale of rel. differences trend scale of rel. differences 

simulation 1 smaller 10%    larger 1% 

simulation 2.1 smaller 1%  similar 0.1% 

simulation 2.2 larger 10%      similar 1% 

simulation 2.3 smaller 1%  similar 0,1% 

simulation 2.4 smaller 10%                                larger 1% 
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For all five simulations, the differences between the results for splitting up and 

minimal repeated weighting are considerably smaller than between those for 

minimal repeated weighting and standard weighting. Apparently, the additional 

calibrations that are performed in the splitting up procedure have little effect on the 

standard deviation of the estimator. This can be understood from the fact that the 

most influential calibrations will be those on tables estimated from larger blocks 

than the target table, and those calibrations are already included in the minimal 

reweighting scheme. Since additional calibrations introduce extra fluctuations into 

the estimator (due to the variance in the estimates of the regression coefficients) a 

small adverse effect of the splitting up procedure on the precision could be expected. 

This deterioration of the precision is indeed found in simulations 1 and 2.4. That it is 

found for these simulations and not for the others could be because the effective size 

of the block from which the target table is obtained is smallest in simulations 1 and 

2.4 (4,300 and 18,000 compared to 77,000 and 100,000). The small effective block 

size leads to larger fluctuations in the estimates of the regression coefficients that are 

used in the RW+ estimator. This in turn results in an increased standard deviation. 

Both in simulation 1 and 2.4, the increase in standard deviation in RW+ compared to 

RW is found to be worst for the cells with the smallest effective size (or largest 

relative SW standard deviation). This dependence could be explained in the same 

way: the estimates of regression coefficients that refer to the smallest cells have the 

largest fluctuations. 

An alternative explanation for the fact that an increase in the RW+ standard 

deviation is only seen in simulations 1 and 2.4 is that, in these simulations, the 

differences between RW and RW+ are of the order of 1%, compared to 0.1% in 

simulations 2.1 and 2.3 Possibly, the RW+ estimator is less accurate than the RW 

estimator also for these other simulations, but the differences are too small to show 

up in the simulation results. This argument cannot explain why no clear 

deterioration is seen in simulation 2.2, where the simulation results should be 

accurate enough to show the effect. 

With regard to the splitting up procedure, we conclude that it yields estimates which 

are of a similar precision as those from minimal repeated weighting. When an 

increase in the standard deviation is found, this increase is worst for the cells whose 

effective sizes are smallest. 

���� &RYHUDJH�SUREDELOLW\�

Figures 8-12 show the coverage probability of the VRD confidence interval VRD
cell3  

for the different simulations. These results are obtained for the minimal repeated 

weighting estimator only. The nominal value for the coverage probability is 95%. It 

is found that this value is only achieved for the best cells. Plotted against the relative 

SW standard deviation of the cell, we find a linear reduction of the coverage 

probability for relative standard deviation larger than about 0.03-0.05 (the onset 

point varies somewhat for the different simulations). For simulation 1, nearly all 

cells are in the region where a linear reduction of the coverage probability is seen. 
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For simulation 2.1, most cells are in the “save” region and have values for VRD
cell3  that 

do not differ significantly from 95% (equation (19) is used to test for statistical 

significance). In the results for simulations 2.2-2.4 one can see the cross-over from a 

roughly constant value for VRD
cell3  at or near 95% to a linear reduction of the 

probability at higher relative standard deviations.  

In figure 13, VRD
cell3  is plotted against the effective cell size for all five simulations. 

The results collapse fairly well onto a single curve, suggesting that VRD
cell3  is mainly 

determined by the effective cell size. We should bear in mind that all these points 

refer to estimates of the same table, using weights that have undergone the same 

calibrations in each of the simulations, so possibly the type of variable which is 

estimated and the specific calibrations which are performed are additional factors 

determining VRD
cell3 . Given this particular table and these particular calibrations, the 

VRD confidence interval is found to be reliable only for effective cell sizes larger 

than 50-100.  

Most likely, this problem is due to the linearization technique used by the VRD 

variance estimator, on which the confidence interval is based. By comparing the 

variance determined from the simulation, 2Ŝ ¼ , with the simulation average of the 

VRD variance estimates 2
VRD,Ŝ ½ , it can be seen that the variance estimator has a 

negative bias which increases as the effective cell size decreases. Since the same 

trend is found for simulation 1 and simulations 2.1-2.4, even though the variance is 

estimated in a different way in simulation 1 (see section 2.7.3), the main cause for 

the negative bias has to lie in an approximation which is used in the variance 

estimator for each of the simulations. For this reason, we conclude that it is the 

linearization procedure which causes these problems: the variance is underestimated 

because the variances of the matrices 0, which contain the estimated regression 

coefficients, are neglected (see section 2.6). Since the regression coefficients are 

determined less accurately for cells of poorer quality, this would explain the Qeff.,cell-

dependence of VRD
cell3 .9 

Note that this same problem occurs for variance estimates for the standard 

regression estimator, see Särndal HW�DO� (1992), page 280. Arguably, the problem is 

more serious for repeated weighting, since RW estimates can involve a very large 

number of calibrations, some of which use other (RW) estimates as restrictions. The 

difference between the RW- and the SW variance estimator in this respect is a 

subject for further research. It would also be useful to investigate whether one can 

                                                      

9 We have verified that, if the standard deviation  Ŝ ¾  is used to determine the confidence 

interval rather than the VRD-estimate for the standard deviation ¿VRD,Ŝ , the cell-size 

dependence of the coverage probability disappears and we do obtain the nominal value of 

95%. This clearly shows that the problem is caused by the negative bias of the variance 

estimator and not, for instance, by deviations from the normal distribution for small cells, 

which would change the relation between standard deviation and confidence interval.  
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specify in general, so also for table estimates with different calibration schemes than 

were considered here, under what conditions the variance estimator can be relied 

upon. A further step would be to try and correct for the negative bias in the variance 

estimator. 

���� 6XPPDU\�RI�FRQFOXVLRQV�

We give a brief summary of the conclusions from the previous paragraphs. 

• Repeated weighting results in only a small increase in bias for cells of 

sufficient quality (Qeff.,cell > 10). The splitting up procedure yields no 

additional bias compared to minimal repeated weighting 

• The parameters  in the starting weights should reflect the relative quality of 

the constituent samples of a data block. To accurately compare the quality of 

two samples, it is important to consider not only the sample sizes but also 

the coefficient of variation of the samples’ weights. 

• If the parameters  are chosen properly, minimal repeated weighting yields a 

reduced standard deviation compared to a standard regression estimator 

which uses only auxiliary information from a register. 

• The splitting up procedure may result in an increase in the standard 

deviation compared to minimal repeated weighting. However, this increase 

is much smaller than the gain in precision compared to the standard 

regression estimator. 

• The VRD variance estimator underestimates the variance for small effective 

cell sizes. This is probably due to the linearization procedure, in which the 

variances of the estimated regression coefficients are neglected. This 

approximation is also commonly used when determining the variance of a 

standard regression estimator. For the target table considered here, the VRD 

variance estimator becomes reliable for effective cell sizes larger than 50-

100. 

�
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$SSHQGL[��UHVXOWV�IRU�WKH�WDEOH�>*�[�+�[�(@�[�$Y�:��

%LDV�

Tables 6 through 10 show the relative bias 7À /B̂sim.  of the SW, RW and RW+ 

estimators of the table [*�[�+�[�(]�x�Av(:)�for the various simulations. Significant 

biases are indicated in grey. 

7DEOH����5HODWLYH�ELDV�IRU�VLPXODWLRQ���

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less SW -2,8% -0,6% -0,2% 1,1% 0,2% -1,8% 1,5% 0,7% 0,7% 0,2%
RW 2,1% 2,3% 0,6% 0,9% 0,0% 1,5% 1,8% 0,7% 0,5% 0,2%
RW+ 0,9% 2,0% 0,6% 1,0% 0,0% 0,5% 1,4% 0,5% 0,4% 0,0%

Lower secondary SW -2,1% -0,9% 0,0% 0,8% 0,4% -3,3% 0,0% 0,5% 0,4% 0,6%
RW -1,0% 1,1% 0,7% 0,5% 0,3% 0,7% 0,0% 0,1% 0,1% 0,3%
RW+ -1,5% 1,0% 0,6% 0,6% 0,3% 0,2% -0,3% 0,2% 0,2% 0,4%

Upper secondary C SW -2,1% -2,8% -2,0% 0,4% 0,4% -3,1% 1,6% -0,2% -0,1% -0,1%
RW -1,4% -0,7% -1,3% 0,2% 0,1% -4,8% 1,1% -0,4% -0,4% -0,1%
RW+ -1,0% -0,7% -1,3% 0,4% 0,1% -4,7% 1,3% -0,3% -0,3% -0,3%

Upper secondary A/B SW -1,8% -0,2% -1,8% 1,0% -0,3% 2,5% -0,6% -0,3% 0,8% 1,1%
RW -0,1% 2,2% -0,8% 0,7% -0,4% 4,1% -0,7% -0,3% 0,5% 0,8%
RW+ -0,5% 2,0% -1,0% 0,8% -0,4% 3,9% -0,6% -0,3% 0,5% 0,9%

Tertiary C SW -1,8% -3,0% -0,4% 0,5% 0,2% -1,5% 0,8% 0,2% 0,3% 0,4%
RW -0,8% -2,1% 0,8% 0,3% 0,0% -0,6% 0,8% 0,1% 0,1% 0,2%
RW+ -0,6% -1,8% 0,8% 0,3% 0,1% -0,1% 0,7% 0,1% 0,1% 0,2%

Tertiary B SW 1,7% 1,2% 0,6% 0,6% 0,1% 0,0% -0,5% 0,6% 0,3% -0,3%
RW 5,8% 4,7% 1,5% 0,4% -0,1% 0,2% -1,0% 0,6% 0,0% -0,3%
RW+ 4,9% 4,8% 1,4% 0,4% -0,1% -0,3% -0,8% 0,6% 0,0% -0,3%

Tertiary A and higher SW 4,9% 0,4% 8,7% 1,7% -0,2% 3,7% -0,4% 0,6% 0,6% 0,0%
RW 10,7% 3,8% 9,5% 1,4% -0,4% 9,1% -2,0% 0,6% 0,4% -0,2%
RW+ 9,3% 3,2% 9,8% 1,5% -0,4% 8,1% -2,0% 0,5% 0,3% -0,1%

 

7DEOH���5HODWLYH�ELDV�IRU�VLPXODWLRQ�����

Gender x Working hours Male Female
Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+
Primary or less SW -0,31% -0,16% 0,29% -0,02% -0,03% -0,21% 0,06% 0,00% 0,04% 0,05%

RW -0,19% -0,16% 0,24% 0,01% -0,02% -0,17% 0,03% -0,02% 0,02% 0,06%
RW+ -0,21% -0,16% 0,24% 0,01% -0,02% -0,21% 0,03% -0,02% 0,02% 0,06%

Lower secondary SW -0,11% 0,04% -0,40% -0,04% 0,00% 0,60% -0,06% 0,05% 0,00% -0,06%
RW 0,10% 0,07% -0,41% -0,01% 0,01% 0,61% -0,08% 0,02% -0,02% -0,05%
RW+ 0,09% 0,06% -0,41% -0,02% 0,01% 0,59% -0,09% 0,02% -0,02% -0,05%

Upper secondary C SW -0,07% -0,27% 0,18% 0,00% 0,01% -0,29% -0,01% 0,06% 0,04% -0,04%
RW 0,07% -0,24% 0,18% 0,03% 0,02% -0,27% -0,04% 0,04% 0,02% -0,03%
RW+ 0,06% -0,24% 0,18% 0,03% 0,02% -0,26% -0,03% 0,04% 0,02% -0,03%

Upper secondary A/B SW -0,36% -0,23% -0,29% 0,09% -0,10% 0,17% 0,28% 0,06% 0,00% -0,10%
RW -0,22% -0,20% -0,30% 0,11% -0,08% 0,22% 0,26% 0,04% -0,03% -0,08%
RW+ -0,23% -0,20% -0,30% 0,12% -0,08% 0,21% 0,26% 0,04% -0,03% -0,09%

Tertiary C SW -0,07% -0,20% 0,10% 0,02% -0,03% -0,05% 0,02% 0,05% 0,03% -0,03%
RW 0,09% -0,18% 0,10% 0,04% -0,01% -0,03% 0,00% 0,03% 0,01% -0,02%
RW+ 0,10% -0,18% 0,09% 0,04% -0,01% -0,01% -0,01% 0,03% 0,01% -0,02%

Tertiary B SW -0,62% -0,09% -0,01% 0,02% 0,02% -0,08% 0,04% -0,06% 0,01% 0,00%
RW -0,36% -0,05% -0,03% 0,04% 0,03% -0,10% 0,01% -0,08% -0,01% 0,01%
RW+ -0,36% -0,05% -0,03% 0,05% 0,03% -0,09% 0,02% -0,08% -0,01% 0,01%

Tertiary A and higher SW -0,07% 0,03% 0,07% 0,13% 0,00% -0,02% 0,19% -0,05% 0,13% 0,05%
RW 0,04% 0,07% 0,02% 0,16% 0,01% 0,03% 0,10% -0,07% 0,11% 0,06%
RW+ 0,03% 0,09% 0,03% 0,15% 0,01% 0,01% 0,12% -0,06% 0,11% 0,06%

 

�

�
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7DEOH����5HODWLYH�ELDV�IRU�VLPXODWLRQ�����

Gender x Working hours Male Female
Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+
Primary or less SW 0,38% 0,29% 0,49% -0,09% -0,05% -0,11% 0,01% 0,14% -0,02% -0,05%

RW 0,21% 0,07% 0,45% -0,29% -0,05% -0,27% -0,10% 0,09% -0,08% -0,05%
RW+ 0,22% 0,05% 0,45% -0,28% -0,05% -0,31% -0,11% 0,08% -0,08% -0,06%

Lower secondary SW 0,21% -0,07% 0,10% 0,07% -0,09% 0,32% 0,12% -0,07% -0,02% -0,07%
RW 0,05% -0,24% 0,11% -0,12% -0,09% 0,02% 0,04% -0,14% -0,08% -0,08%
RW+ 0,03% -0,26% 0,09% -0,11% -0,09% -0,03% 0,03% -0,14% -0,07% -0,08%

Upper secondary C SW 0,01% 0,06% 0,26% 0,21% -0,12% 0,48% -0,10% -0,02% -0,08% -0,07%
RW -0,28% -0,11% 0,27% 0,01% -0,13% 0,05% -0,24% -0,08% -0,14% -0,08%
RW+ -0,29% -0,11% 0,27% 0,02% -0,12% 0,05% -0,23% -0,08% -0,13% -0,07%

Upper secondary A/B SW -0,40% 0,24% -0,62% 0,19% 0,03% 0,27% 0,21% 0,00% 0,01% -0,10%
RW -0,62% 0,16% -0,65% 0,00% 0,03% 0,06% 0,10% -0,06% -0,05% -0,11%
RW+ -0,60% 0,14% -0,65% 0,01% 0,04% 0,08% 0,08% -0,05% -0,05% -0,11%

Tertiary C SW 0,08% 0,07% 0,40% 0,05% -0,08% 0,34% 0,09% -0,02% -0,04% -0,02%
RW -0,15% -0,23% 0,38% -0,13% -0,08% 0,04% -0,01% -0,08% -0,09% -0,03%
RW+ -0,12% -0,22% 0,39% -0,14% -0,08% 0,04% -0,02% -0,07% -0,10% -0,03%

Tertiary B SW 0,49% -0,13% -0,01% -0,04% -0,08% 0,22% -0,18% 0,05% -0,02% -0,02%
RW 0,12% -0,32% -0,05% -0,23% -0,08% -0,09% -0,30% 0,01% -0,08% -0,03%
RW+ 0,17% -0,33% -0,04% -0,23% -0,09% -0,04% -0,30% 0,01% -0,08% -0,02%

Tertiary A and higher SW -1,40% 0,00% -0,21% 0,04% -0,08% -0,39% 0,18% 0,14% -0,11% -0,03%
RW -1,38% -0,30% -0,21% -0,14% -0,08% -0,56% -0,01% 0,09% -0,16% -0,03%
RW+ -1,52% -0,27% -0,22% -0,16% -0,09% -0,64% 0,03% 0,08% -0,16% -0,03%

 

7DEOH����5HODWLYH�ELDV�IRU�VLPXODWLRQ�����

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less SW 0,38% 0,29% 0,49% -0,09% -0,05% -0,11% 0,01% 0,14% -0,02% -0,05%
RW 0,28% 0,10% 0,25% -0,35% -0,12% -0,19% -0,11% 0,02% -0,15% -0,11%
RW+ 0,28% 0,08% 0,24% -0,35% -0,12% -0,20% -0,12% 0,01% -0,15% -0,11%

Lower secondary SW 0,21% -0,07% 0,10% 0,07% -0,09% 0,32% 0,12% -0,07% -0,02% -0,07%
RW 0,10% -0,24% -0,08% -0,18% -0,15% 0,18% 0,02% -0,22% -0,15% -0,13%
RW+ 0,10% -0,25% -0,09% -0,18% -0,15% 0,16% 0,01% -0,22% -0,14% -0,13%

Upper secondary C SW 0,01% 0,06% 0,26% 0,21% -0,12% 0,48% -0,10% -0,02% -0,08% -0,07%
RW -0,15% -0,09% 0,12% -0,05% -0,19% 0,29% -0,26% -0,18% -0,21% -0,13%
RW+ -0,15% -0,08% 0,12% -0,03% -0,18% 0,29% -0,25% -0,17% -0,19% -0,11%

Upper secondary A/B SW -0,40% 0,24% -0,62% 0,19% 0,03% 0,27% 0,21% 0,00% 0,01% -0,10%
RW -0,52% 0,14% -0,77% -0,06% -0,03% 0,17% 0,07% -0,14% -0,12% -0,16%
RW+ -0,51% 0,14% -0,76% -0,04% -0,02% 0,18% 0,07% -0,13% -0,11% -0,15%

Tertiary C SW 0,08% 0,07% 0,40% 0,05% -0,08% 0,34% 0,09% -0,02% -0,04% -0,02%
RW -0,06% -0,17% 0,22% -0,19% -0,14% 0,20% -0,03% -0,15% -0,16% -0,08%
RW+ -0,05% -0,17% 0,22% -0,19% -0,14% 0,20% -0,04% -0,15% -0,16% -0,08%

Tertiary B SW 0,49% -0,13% -0,01% -0,04% -0,08% 0,22% -0,18% 0,05% -0,02% -0,02%
RW 0,30% -0,28% -0,22% -0,27% -0,14% 0,08% -0,33% -0,06% -0,14% -0,07%
RW+ 0,31% -0,28% -0,22% -0,28% -0,14% 0,09% -0,32% -0,06% -0,15% -0,08%

Tertiary A and higher SW -1,40% 0,00% -0,21% 0,04% -0,08% -0,39% 0,18% 0,14% -0,11% -0,03%
RW -1,43% -0,21% -0,40% -0,19% -0,14% -0,47% -0,01% 0,02% -0,22% -0,08%
RW+ -1,48% -0,20% -0,41% -0,21% -0,15% -0,50% 0,01% 0,01% -0,23% -0,09%

 

 

7DEOH�����5HODWLYH�ELDV�IRU�VLPXODWLRQ�����

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less SW 0,50% -0,59% 0,64% 0,31% 0,04% -0,30% -0,13% 0,12% -0,07% 0,15%
RW 1,85% -0,45% 0,02% 0,14% -0,14% 0,89% -0,07% -0,02% -0,23% 0,06%
RW+ 1,49% -0,42% 0,09% 0,15% -0,14% 0,53% -0,10% -0,03% -0,25% 0,03%

Lower secondary SW -1,31% -0,55% -0,13% -0,18% 0,05% 0,39% -0,16% 0,12% 0,24% -0,04%
RW -1,61% -0,34% -0,51% -0,35% -0,12% 0,98% -0,09% -0,12% 0,05% -0,18%
RW+ -1,40% -0,43% -0,48% -0,36% -0,11% 0,92% -0,17% -0,08% 0,04% -0,18%

Upper secondary C SW -1,51% 0,49% 0,46% 0,36% -0,07% -0,39% 0,05% 0,11% 0,17% 0,04%
RW -1,62% 0,91% 0,18% 0,19% -0,27% -0,70% -0,07% -0,11% 0,01% -0,09%
RW+ -1,54% 0,82% 0,14% 0,20% -0,26% -0,44% -0,07% -0,10% 0,04% -0,05%

Upper secondary A/B SW -0,47% 0,29% 0,17% 0,52% -0,09% 0,05% 0,73% -0,08% 0,10% 0,43%
RW 0,39% 0,71% -0,21% 0,33% -0,24% 0,79% 0,64% -0,23% -0,07% 0,27%
RW+ 0,21% 0,63% -0,24% 0,35% -0,23% 0,61% 0,63% -0,24% -0,05% 0,31%

Tertiary C SW -0,47% -0,54% 0,47% 0,06% 0,04% -0,77% -0,07% 0,08% -0,03% 0,03%
RW -0,51% -0,62% 0,17% -0,07% -0,10% 0,17% -0,03% -0,08% -0,19% -0,10%
RW+ -0,47% -0,52% 0,14% -0,08% -0,10% 0,25% -0,01% -0,09% -0,19% -0,11%

Tertiary B SW 1,00% -0,56% 1,37% 0,02% 0,03% 0,09% 0,08% 0,11% -0,04% -0,06%
RW 2,71% 0,03% 0,93% -0,11% -0,14% -0,52% 0,02% 0,00% -0,21% -0,17%
RW+ 2,43% 0,03% 0,92% -0,09% -0,14% -0,55% 0,03% -0,01% -0,21% -0,18%

Tertiary A and higher SW 2,03% 1,02% 1,23% 0,48% 0,03% 0,53% -0,46% 0,10% 0,19% 0,09%
RW 3,23% 1,46% 0,63% 0,35% -0,14% 1,72% -0,90% -0,10% 0,03% -0,03%
RW+ 2,92% 1,32% 0,67% 0,34% -0,13% 1,35% -0,85% -0,09% 0,03% -0,03%

 



  35 

6WDQGDUG�GHYLDWLRQ�

Tables 11-15 show the relative standard deviation 7/Ŝ Á for the SW, RW and RW+ 

estimators of the table [*� [� +� [� (]� x�Av(:) in the five simulations. Significant 

differences between the RW and RW+ results are indicated by a grey RW and RW+ 

field, significant differences between SW and both RW and RW+ are indicated by a 

grey SW field. 

Figures 3-8 a) show the relative difference between the standard deviation of the SW 

and RW estimator, ( ) SWRWSW ŜŜŜ ααα ÂÂÂ − , for the 70 cells of [*�[�+�[�(]�x�Av(:). This 

quantity is plotted against the relative SW standard deviation α
α 7ÃSWŜ of the cells. 

The relative SW standard deviation can be considered as a measure for the quality of 

the cell. Figures 3-8 b) show the relative difference between the standard deviation 

of the RW and RW+ estimator for the cells, plotted against the same quantity. In 

both sets of figures, boxes indicate significant differences.
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Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less SW 29,2% 27,5% 24,0% 11,1% 3,9% 31,7% 12,9% 7,9% 5,4% 5,8%
RW 33,1% 27,0% 21,2% 10,3% 3,6% 36,3% 12,9% 7,5% 5,1% 5,7%
RW+ 34,9% 27,0% 22,2% 10,5% 3,6% 38,2% 13,3% 7,6% 5,2% 5,8%

Lower secondary SW 37,9% 27,5% 17,5% 8,7% 2,8% 24,0% 11,2% 7,6% 4,8% 5,6%
RW 28,1% 21,7% 15,5% 8,0% 2,7% 25,5% 10,3% 6,1% 4,3% 4,6%
RW+ 30,3% 22,7% 16,0% 8,1% 2,6% 27,2% 10,8% 6,4% 4,4% 5,0%

Upper secondary C SW 44,6% 24,7% 16,9% 12,2% 5,7% 42,5% 17,1% 8,6% 5,1% 5,2%
RW 33,3% 23,6% 16,7% 11,9% 4,9% 27,5% 14,9% 7,7% 4,9% 4,8%
RW+ 38,4% 23,9% 17,3% 12,2% 4,9% 29,3% 15,7% 7,8% 4,9% 5,1%

Upper secondary A/B SW 41,2% 25,7% 20,7% 13,5% 5,1% 41,6% 20,1% 9,2% 6,1% 7,4%
RW 40,3% 25,5% 20,9% 12,7% 4,9% 37,7% 18,8% 9,0% 5,9% 6,4%
RW+ 40,8% 25,9% 21,4% 12,9% 4,8% 40,2% 19,7% 9,0% 6,0% 6,8%

Tertiary C SW 30,8% 21,6% 11,8% 5,6% 1,6% 21,3% 8,1% 4,0% 2,4% 2,9%
RW 21,2% 14,2% 10,2% 4,4% 1,3% 15,2% 6,6% 3,2% 2,0% 2,0%
RW+ 23,7% 14,7% 10,4% 4,5% 1,3% 16,5% 7,1% 3,2% 2,0% 2,2%

Tertiary B SW 39,3% 23,2% 17,8% 7,1% 2,4% 39,2% 13,0% 5,2% 3,5% 3,4%
RW 39,1% 22,7% 16,5% 6,7% 2,2% 22,5% 10,8% 4,7% 3,1% 3,1%
RW+ 42,9% 23,4% 16,7% 6,9% 2,2% 23,5% 11,4% 4,8% 3,2% 3,2%

Tertiary A and higher SW 40,7% 27,8% 25,1% 10,1% 3,3% 27,1% 24,6% 9,3% 5,4% 6,6%
RW 67,5% 28,0% 24,4% 9,4% 3,2% 35,5% 14,7% 9,0% 5,3% 5,6%
RW+ 67,6% 28,7% 25,5% 9,8% 3,1% 36,9% 16,6% 9,1% 5,4% 6,2%  

 

ÄÆÅ

Ç Å
-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0 0,1 0,2 0,3 0,4 0,5

                                                                                                                                                                         

α
α ÈÉSWŜ
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7DEOH�����5HODWLYH�VWDQGDUG�GHYLDWLRQ�IRU�VLPXODWLRQ�����

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less SW 7,85% 5,36% 5,78% 2,74% 0,80% 7,00% 3,27% 1,98% 1,33% 1,44%
RW 7,73% 5,17% 5,48% 2,68% 0,79% 6,89% 3,20% 1,96% 1,30% 1,42%
RW+ 7,73% 5,17% 5,49% 2,68% 0,79% 6,88% 3,21% 1,96% 1,30% 1,42%

Lower secondary SW 6,91% 4,30% 4,24% 2,27% 0,58% 6,24% 2,47% 1,59% 1,07% 1,12%
RW 6,85% 4,14% 4,11% 2,21% 0,56% 5,99% 2,41% 1,54% 1,03% 1,08%
RW+ 6,85% 4,13% 4,10% 2,21% 0,56% 6,00% 2,42% 1,54% 1,03% 1,09%

Upper secondary C SW 8,26% 4,58% 5,27% 3,11% 1,09% 6,88% 2,92% 1,95% 1,29% 1,22%
RW 7,96% 4,52% 5,23% 3,05% 1,08% 6,85% 2,82% 1,92% 1,28% 1,20%
RW+ 7,93% 4,51% 5,24% 3,05% 1,08% 6,86% 2,83% 1,91% 1,27% 1,20%

Upper secondary A/B SW 8,34% 4,99% 6,68% 3,47% 1,05% 7,43% 3,33% 2,34% 1,55% 1,33%
RW 8,22% 4,96% 6,60% 3,41% 1,05% 7,34% 3,28% 2,31% 1,52% 1,31%
RW+ 8,21% 4,96% 6,59% 3,42% 1,05% 7,35% 3,28% 2,32% 1,52% 1,31%

Tertiary C SW 5,48% 3,26% 2,75% 1,36% 0,34% 3,55% 1,42% 0,89% 0,59% 0,62%
RW 4,94% 2,94% 2,63% 1,22% 0,33% 3,23% 1,30% 0,80% 0,54% 0,55%
RW+ 4,93% 2,94% 2,63% 1,22% 0,33% 3,23% 1,30% 0,80% 0,54% 0,55%

Tertiary B SW 9,23% 4,25% 4,60% 1,89% 0,54% 5,42% 2,10% 1,08% 0,83% 0,84%
RW 9,21% 4,13% 4,47% 1,84% 0,52% 5,11% 1,99% 1,03% 0,78% 0,81%
RW+ 9,22% 4,13% 4,46% 1,84% 0,52% 5,09% 2,00% 1,03% 0,78% 0,81%

Tertiary A and higher SW 10,23% 6,73% 6,27% 2,49% 0,77% 9,18% 4,54% 1,92% 1,38% 1,31%
RW 10,06% 6,64% 6,09% 2,43% 0,75% 9,22% 4,46% 1,90% 1,36% 1,31%
RW+ 10,07% 6,63% 6,10% 2,43% 0,76% 9,24% 4,47% 1,91% 1,36% 1,31%  
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(
)

SW
R

W
SW

Ŝ
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Ŝ

Ŝ
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7DEOH�����5HODWLYH�VWDQGDUG�GHYLDWLRQ�IRU�VLPXODWLRQ�����

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less SW 9,22% 6,03% 6,67% 3,16% 0,91% 7,52% 3,29% 2,30% 1,54% 1,67%
RW 9,62% 6,57% 6,77% 3,18% 0,94% 7,93% 3,31% 2,29% 1,55% 1,74%
RW+ 9,50% 6,42% 6,71% 3,17% 0,94% 7,93% 3,36% 2,31% 1,56% 1,77%

Lower secondary SW 7,19% 5,12% 5,13% 2,37% 0,67% 8,40% 2,73% 1,76% 1,21% 1,31%
RW 8,25% 5,71% 5,38% 2,39% 0,70% 8,92% 2,83% 1,79% 1,22% 1,33%
RW+ 8,09% 5,56% 5,34% 2,38% 0,69% 9,00% 2,87% 1,80% 1,22% 1,33%

Upper secondary C SW 8,85% 5,28% 6,04% 3,65% 1,22% 7,45% 2,94% 2,21% 1,46% 1,41%
RW 9,70% 5,40% 6,17% 3,65% 1,21% 8,45% 3,17% 2,26% 1,47% 1,44%
RW+ 9,83% 5,49% 6,21% 3,66% 1,21% 8,33% 3,12% 2,27% 1,47% 1,44%

Upper secondary A/B SW 9,51% 5,78% 7,15% 3,95% 1,24% 7,95% 3,87% 2,63% 1,73% 1,54%
RW 9,78% 6,11% 7,13% 3,95% 1,25% 8,08% 4,04% 2,62% 1,71% 1,57%
RW+ 9,73% 6,21% 7,12% 3,95% 1,27% 8,13% 4,00% 2,64% 1,72% 1,56%

Tertiary C SW 5,95% 3,82% 3,44% 1,51% 0,38% 4,41% 1,68% 0,97% 0,68% 0,64%
RW 7,46% 4,36% 3,50% 1,53% 0,43% 5,15% 1,87% 1,05% 0,69% 0,69%
RW+ 7,59% 4,30% 3,53% 1,54% 0,43% 5,18% 1,94% 1,04% 0,69% 0,69%

Tertiary B SW 10,04% 4,96% 5,49% 2,23% 0,64% 5,34% 2,44% 1,27% 0,95% 0,89%
RW 11,08% 5,22% 5,36% 2,21% 0,66% 6,04% 2,65% 1,30% 0,95% 0,93%
RW+ 11,29% 5,39% 5,39% 2,24% 0,66% 5,97% 2,61% 1,30% 0,94% 0,94%

Tertiary A and higher SW 12,44% 8,30% 7,16% 3,04% 0,87% 11,10% 5,50% 2,26% 1,53% 1,53%
RW 13,56% 8,19% 7,18% 3,03% 0,86% 11,33% 5,57% 2,26% 1,56% 1,53%
RW+ 12,91% 8,20% 7,15% 3,03% 0,86% 11,39% 5,57% 2,27% 1,58% 1,54%  
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Ŝ

Ŝ
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7DEOH�����5HODWLYH�VWDQGDUG�GHYLDWLRQ�IRU�VLPXODWLRQ�����

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less SW 9,22% 6,03% 6,67% 3,16% 0,91% 7,52% 3,29% 2,30% 1,54% 1,67%
RW 9,15% 6,04% 6,54% 3,12% 0,91% 7,49% 3,23% 2,26% 1,52% 1,67%
RW+ 9,14% 6,01% 6,54% 3,12% 0,91% 7,48% 3,24% 2,26% 1,53% 1,67%

Lower secondary SW 7,19% 5,12% 5,13% 2,37% 0,67% 8,40% 2,73% 1,76% 1,21% 1,31%
RW 7,26% 5,12% 5,08% 2,32% 0,67% 8,37% 2,70% 1,72% 1,19% 1,29%
RW+ 7,23% 5,10% 5,07% 2,33% 0,66% 8,38% 2,70% 1,72% 1,19% 1,29%

Upper secondary C SW 8,85% 5,28% 6,04% 3,65% 1,22% 7,45% 2,94% 2,21% 1,46% 1,41%
RW 8,79% 5,18% 5,99% 3,61% 1,21% 7,40% 2,93% 2,18% 1,45% 1,39%
RW+ 8,81% 5,18% 6,00% 3,61% 1,20% 7,38% 2,93% 2,19% 1,45% 1,39%

Upper secondary A/B SW 9,51% 5,78% 7,15% 3,95% 1,24% 7,95% 3,87% 2,63% 1,73% 1,54%
RW 9,40% 5,82% 7,07% 3,90% 1,23% 7,84% 3,87% 2,60% 1,70% 1,52%
RW+ 9,40% 5,84% 7,05% 3,90% 1,23% 7,85% 3,87% 2,61% 1,71% 1,52%

Tertiary C SW 5,95% 3,82% 3,44% 1,51% 0,38% 4,41% 1,68% 0,97% 0,68% 0,64%
RW 5,99% 3,63% 3,29% 1,44% 0,38% 4,34% 1,65% 0,95% 0,66% 0,62%
RW+ 6,01% 3,63% 3,29% 1,44% 0,38% 4,34% 1,65% 0,95% 0,67% 0,62%

Tertiary B SW 10,04% 4,96% 5,49% 2,23% 0,64% 5,34% 2,44% 1,27% 0,95% 0,89%
RW 10,02% 4,90% 5,29% 2,18% 0,63% 5,28% 2,41% 1,24% 0,92% 0,88%
RW+ 10,05% 4,92% 5,29% 2,18% 0,63% 5,29% 2,42% 1,24% 0,93% 0,88%

Tertiary A and higher SW 12,44% 8,30% 7,16% 3,04% 0,87% 11,10% 5,50% 2,26% 1,53% 1,53%
RW 12,60% 8,11% 7,04% 3,00% 0,86% 11,10% 5,39% 2,23% 1,53% 1,51%
RW+ 12,47% 8,11% 7,03% 3,00% 0,86% 11,10% 5,41% 2,23% 1,54% 1,51%  

 
Û_Ü

Ý Ü
-0,02

-0,01

0

0,01

0,02

0,03

0,04

0,05

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14

(
)

SW
R

W
SW

Ŝ
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-0,006

-0,004

-0,002

0

0,002

0,004

0,006

0,008

0,01

0,012

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14

(
)

SW
R

W
SW

Ŝ
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7DEOH�����5HODWLYH�VWDQGDUG�GHYLDWLRQ�IRU�VLPXODWLRQ�����

Gender x Working hours Male Female

Education Level <4 4-12 12-20 20-35 35+ <4 4-12 12-20 20-35 35+

Primary or less SW 18,81% 14,03% 13,12% 5,77% 1,75% 15,81% 6,32% 3,89% 2,47% 2,84%
RW 19,01% 13,18% 11,87% 5,52% 1,72% 16,39% 6,07% 3,79% 2,42% 2,81%
RW+ 18,93% 13,18% 12,00% 5,53% 1,71% 16,45% 6,13% 3,84% 2,43% 2,83%

Lower secondary SW 23,92% 12,99% 8,73% 4,08% 1,29% 18,65% 4,83% 3,90% 2,18% 2,67%
RW 19,38% 12,10% 8,10% 3,87% 1,21% 17,72% 4,73% 3,48% 2,05% 2,53%
RW+ 20,40% 12,12% 8,10% 3,88% 1,21% 17,76% 4,80% 3,54% 2,06% 2,54%

Upper secondary C SW 24,13% 12,68% 10,31% 6,06% 2,43% 25,48% 7,86% 4,49% 2,45% 3,11%
RW 20,64% 12,39% 9,92% 5,99% 2,33% 21,09% 7,32% 4,26% 2,31% 2,89%
RW+ 21,54% 12,36% 9,98% 6,01% 2,32% 21,79% 7,37% 4,28% 2,32% 2,92%

Upper secondary A/B SW 22,85% 12,19% 15,03% 6,92% 2,42% 21,08% 11,20% 4,26% 2,91% 3,41%
RW 22,32% 12,02% 14,46% 6,69% 2,38% 20,51% 10,44% 4,17% 2,82% 3,14%
RW+ 22,59% 12,04% 14,60% 6,72% 2,37% 20,58% 10,58% 4,18% 2,83% 3,20%

Tertiary C SW 16,86% 10,26% 6,76% 2,68% 0,78% 10,59% 3,50% 1,97% 1,20% 1,44%
RW 12,61% 7,84% 5,75% 2,31% 0,67% 9,00% 3,10% 1,64% 1,01% 1,14%
RW+ 13,12% 7,87% 5,80% 2,31% 0,67% 9,13% 3,15% 1,65% 1,02% 1,15%

Tertiary B SW 21,28% 11,46% 9,31% 3,82% 1,22% 20,37% 6,45% 2,29% 1,64% 1,74%
RW 21,36% 11,06% 8,74% 3,63% 1,09% 15,51% 5,59% 2,18% 1,54% 1,60%
RW+ 21,76% 11,23% 8,76% 3,66% 1,09% 15,81% 5,68% 2,19% 1,55% 1,63%

Tertiary A and higher SW 25,95% 18,38% 14,40% 5,09% 1,86% 16,21% 12,20% 5,45% 2,69% 3,17%
RW 26,83% 18,07% 13,81% 4,98% 1,74% 17,00% 10,41% 5,01% 2,67% 3,02%
RW+ 26,34% 18,07% 13,77% 5,01% 1,74% 17,01% 10,82% 5,07% 2,68% 3,04%  
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95'�FRYHUDJH�SUREDELOLW\�

Figures 8-12 show, for each cell of the table [*�[�+�[�(]�x�Av(:), what percentage 
VRD

cell3 of the 600 estimates made in the simulation were accurate to within the margin 

calculated by VRD. The coverage probability VRD
cell3 is plotted versus the relative SW 

standard deviation of the cell. Boxes indicate significant deviations of VRD
cell3 from the 

nominal value of 95%. In figure 13, the coverage probability for all five simulations 

is plotted as a function of the effective cell size. 
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