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Chapter 1 Introduction

Measurement error is a problem inherent to all data sources, in spite of countless 
attempts to reduce it and address its causes (Alwin, 2007; Biemer et al., 1991; Kuha & 
Skinner, 1997). Its presence often leads to biased and inconsistent statistical estimates 
and, as a consequence, to erroneous findings and conclusions. Such errors can also 
lower the precision of obtained estimates and reduce the power of statistical tests 
(Biemer & Wiesen, 2002). It is therefore crucial to understand, account, and correct 
for measurement error to ensure research validity (Fuller, 2009; Grace, 2017; Kuha & 
Skinner, 1997). What is more, in the context of official statistics, measurement error 
is particularly problematic as it has the potential to cause bias in both the descriptive 
statistics of a single variable and in the estimates of the relationships between multiple 
variables. This in turn hinders the production of reliable and accurate estimates by 
National Statistics Institutes (NSIs) (Boeschoten, 2019).

To provide a few illustrative examples, Pavlopoulos and Vermunt (2015) show that, 
due to measurement error, survey and register data for the same sample provide 
substantially different estimates of the distribution of employment contract types in the 
Netherlands. After correcting for this error, the authors find that permanent contracts 
are significantly overestimated in the survey data, while they are underestimated in 
the register data; however, the situation is reversed for temporary contracts (which are 
underestimated in the survey and overestimated in the register). The authors further 
demonstrate that “dynamic”, over-time statistics are also affected by measurement 
error (and this effect is likely to be more severe than for “static”, cross-sectional 
estimates) by showing that the 3-monthly transition rates from temporary to permanent 
employment are substantially inflated in both data sources. That is, according to the 
survey data, the transition rate is equal to 0.057, while according to the register records 
it is 0.085. When correcting for measurement error, the authors estimate the transition 
probability to be much lower than both data sources, amounting to just 0.032. This in 
turn implies that approximately half of the observed transitions are not in fact true 
transitions (Pavlopoulos & Vermunt, 2015). In a more general setup, Pavlopoulos et al. 
(2012) show that when a dichotomous random variable X is measured with a constant 
0.05 misclassification rate across two time points (t1 and t2), the observed transition 
between t1 and t2 is overestimated by as much as a factor of 2.73. More specifically, the 
authors demonstrate that, if the true, error-free transition probability is set to 0.05, the 
transition probability estimated from data containing measurement error is inflated 
and amounts to 0.135.

Studies correcting for measurement error in continuous variables reach equally 
striking conclusions. For instance, Gottschalk (2005) reveals that the observed 
downward adjustments of nominal wages in the absence of a job change are highly 
overestimated due to measurement error. That is, the authors show that the fraction of 
individuals who reported a lower wage in t than in t , as observed in the cross-tabulation 
of the two surveys considered, is overstated by a factor of 3, compared to the error-
corrected estimates (i.e. 17 vs. at most 5 percent). Using US and Irish data O’Neill and 
Sweetman (2013) show that the relationship between self-reported BMI and income 

(calculated using a least squares estimator) is severely overestimated due to (non-
random) measurement error in the provided BMI values. The reported biases range 
from 6 to 20 percent depending on the models and data used. In the context of official 
statistics, Scholtus et al. (2015) use structural equation modelling to demonstrate that 
measurement error in the administrative VAT data leads to a relative bias of 3 to 19 
percent in the estimates of the 2012/2013 annual turnover levels (by NACE group) for 
the Netherlands. As a consequence, the uncorrected estimates substantially under- or 
overestimate the contributions of several NACE groups to the Dutch economy.

In general, measurement error occurs when the observed value of a random variable 
differs from its true (unobserved) value. For continuous data, this means that we do not 
observe a true random variable X directly, but rather we observe its measurement Y, 
which is the sum of the true value X and random noise variable ε (Gustafson, 2003):
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et al., 1991; Saris & Gallhofer, 2007) or respondent effects (Sudman et al., 1997; Tourangeau et al., 

2000). In contrast, research on measurement error in register data is scarce. Despite this, however, it 

is well-known that administrative register data often contain errors (Bakker, 2012; Oberski et al., 2017; 
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In surveys, measurement error is a well-studied phenomenon that is caused 
primarily by inadequate questionnaire design, incorrect data collection procedures, 
interviewer effects (Alwin, 2007; Biemer et al., 1991; Saris & Gallhofer, 2007) or 
respondent effects (Sudman et al., 1997; Tourangeau et al., 2000). In contrast, research 
on measurement error in register data is scarce. Despite this, however, it is well-known 
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patterns, or systematic, i.e. occurring consistently over-time or with a probability of 
occurring that depends on covariates (Crocker & Algina, 1986; Scholtus, 2018).

The biasing effects of measurement error on model estimates specifically depend on 
a number of factors, including: (i) the complexity of the model under consideration, (ii) 
whether the estimates are cross-sectional or longitudinal, and (iii) the joint distribution 
of the error and the variables included in the model. Overall, the magnitude of these 
effects is particularly high when estimates are based on complex rather than simple 
(e.g. linear) models, when they are longitudinal, and when the errors are correlated with 
the variables included in the model. Depending on its severity, measurement error can 
reduce the efficiency of estimates, over- or under-estimate the relationships between 
variables and even reverse the signs of these relationships, obscure real effects, and/
or lead to the emergence of spurious effects (Bound et al., 2001).

An increasingly popular approach that allows for the estimation of and correction 
for measurement error (without the need for gold standard data) relies on the use of 
latent variable modelling. This method has been applied broadly in a variety of settings, 
for instance, in a cross-sectional setup it was applied to categorical data by Biemer and 
Wiesen (2002), Flaherty (2002) and Pickles et al. (1995); it was also applied to continuous 
data by Bakker (2012) and to mixed type data by Oberski et al. (2017). In a longitudinal 
context, it was also used by Lugtig and Lensvelt-Mulders (2014) for continuous data 
and by Biemer and Bushery (2000) and Pavlopoulos and Vermunt (2015) for categorical 
data. Latent variable models (LVMs), unlike alternative measurement-error-correction 
techniques, do not make use of error-free validation data that are rarely available in 
practice. Instead LVMs make use of the availability of repeated indicators of the same 
variable, either cross-sectionally from various sources or over time from the same 
source, to extract information about measurement error directly from the data (Biemer 
& Bushery, 2000).

A group of LVMs that are applied to categorical, longitudinal data specifically 
(with t ≥ 3), and which are the main focus of this thesis, are hidden Markov models 
(HMMs) (Biemer, 2004, 2011; Oberski et al., 2017; Pavlopoulos & Vermunt, 2015). The 
basic HMM operates under the assumption that, at each time point t, the observed 
data Yt is generated independently with some probability P(Yt│Xt ) from the true, but 
unobserved, value Xt, where both X and Y have L categories. Assuming the generation 
of Yt  to only involve Xt and to be independent of all other observed and true values, 
the observed distribution factorizes as:
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𝑡𝑡=0
)𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑘𝑘)

𝐾𝐾

𝑘𝑘=1
             (1.4) 
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(1.5) 

The full model then is:

𝑃𝑃(𝑌𝑌) = ∑ ∑ …
𝐿𝐿

𝑥𝑥1=1
∑ 𝑃𝑃(𝑋𝑋0)

𝐿𝐿

𝑥𝑥𝑇𝑇=1

𝐿𝐿

𝑥𝑥0=1
∏ 𝑃𝑃(𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡−1)

𝑇𝑇

𝑡𝑡=1
∏ 𝑃𝑃(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡)

𝑇𝑇

𝑡𝑡=0
 

                   

(1.6) 

where, P(Y) and P(X) denote the observed path and the true, latent path, 
respectively.

As Xt is unobserved, the observed data are marginalized over the true data:
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where K = LT enumerates all possible patterns of X over the entire time period and 
xk 

denotes a realized unobserved path. Classification error occurs when for any of the 
categories of the observed variable — Yt — the response probability — P(Yt│Xt ) — 

does 
not equal 1 for a unique category of X.

The unobserved true values (latent states) are assumed to follow a (first-order) 
Markov process, in which each value carries over partly to the next time point:
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The parameters to be estimated for this model, typically in the form of a logit, are 
the structural parameters, i.e. the initial state probabilities — P(X0), the latent transition 
probabilities

 
—P(Xt│Xt-1), and the classification or measurement error probabilities 

(often referred to as the measurement error probabilities) — P(Yt│Xt). A one indicator 
HMM, where Y denotes the observed variable and X refers to the “true” (or latent) 
state, is illustrated in Figure 1.1.
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Figure 1.1 - Standard one- indicator hidden Markov model graph
Note: Rectangles denote the true variable X and ovals the observed variable Y; absence of arrows 
indicate independence and their presence dependence
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Chapter 1 Introduction

patterns, or systematic, i.e. occurring consistently over-time or with a probability of 
occurring that depends on covariates (Crocker & Algina, 1986; Scholtus, 2018).

The biasing effects of measurement error on model estimates specifically depend on 
a number of factors, including: (i) the complexity of the model under consideration, (ii) 
whether the estimates are cross-sectional or longitudinal, and (iii) the joint distribution 
of the error and the variables included in the model. Overall, the magnitude of these 
effects is particularly high when estimates are based on complex rather than simple 
(e.g. linear) models, when they are longitudinal, and when the errors are correlated with 
the variables included in the model. Depending on its severity, measurement error can 
reduce the efficiency of estimates, over- or under-estimate the relationships between 
variables and even reverse the signs of these relationships, obscure real effects, and/
or lead to the emergence of spurious effects (Bound et al., 2001).

An increasingly popular approach that allows for the estimation of and correction 
for measurement error (without the need for gold standard data) relies on the use of 
latent variable modelling. This method has been applied broadly in a variety of settings, 
for instance, in a cross-sectional setup it was applied to categorical data by Biemer and 
Wiesen (2002), Flaherty (2002) and Pickles et al. (1995); it was also applied to continuous 
data by Bakker (2012) and to mixed type data by Oberski et al. (2017). In a longitudinal 
context, it was also used by Lugtig and Lensvelt-Mulders (2014) for continuous data 
and by Biemer and Bushery (2000) and Pavlopoulos and Vermunt (2015) for categorical 
data. Latent variable models (LVMs), unlike alternative measurement-error-correction 
techniques, do not make use of error-free validation data that are rarely available in 
practice. Instead LVMs make use of the availability of repeated indicators of the same 
variable, either cross-sectionally from various sources or over time from the same 
source, to extract information about measurement error directly from the data (Biemer 
& Bushery, 2000).

A group of LVMs that are applied to categorical, longitudinal data specifically 
(with t ≥ 3), and which are the main focus of this thesis, are hidden Markov models 
(HMMs) (Biemer, 2004, 2011; Oberski et al., 2017; Pavlopoulos & Vermunt, 2015). The 
basic HMM operates under the assumption that, at each time point t, the observed 
data Yt is generated independently with some probability P(Yt│Xt ) from the true, but 
unobserved, value Xt, where both X and Y have L categories. Assuming the generation 
of Yt  to only involve Xt and to be independent of all other observed and true values, 
the observed distribution factorizes as:
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(1.6) 

where, P(Y) and P(X) denote the observed path and the true, latent path, 
respectively.

As Xt is unobserved, the observed data are marginalized over the true data:
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where K = LT enumerates all possible patterns of X over the entire time period and 
xk 

denotes a realized unobserved path. Classification error occurs when for any of the 
categories of the observed variable — Yt — the response probability — P(Yt│Xt ) — 

does 
not equal 1 for a unique category of X.

The unobserved true values (latent states) are assumed to follow a (first-order) 
Markov process, in which each value carries over partly to the next time point:
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Chapter 1 Introduction

The standard, single-indicator HMM relies on the local independence assumption 
for identifiability, which requires that the errors in the repeated measures occur 
independently. While necessary, this assumption is often viewed as highly restrictive 
and unrealistic, as it does not allow for the modelling of the presence of systematic 
errors without risking poor model identifiability. To overcome this challenge, it is 
possible to use extended, multiple-indicator versions of HMMs. The use of such models, 
in particular when the indicators come from different (independent) sources, makes 
the local independence assumption plausible across sources, while allowing for local 
dependence within sources (Bassi et al., 2000). Pavlopoulos and Vermunt (2015), for 
instance, use such an extended, two-indicator HMM to correct for measurement error 
in both survey and register data on the employment contract type in the Netherlands. 
Formally, the single-indicator HMM can be extended to multiple indicators by replacing 
P(Y│X) above with P(Y1,Y2│X) = P(Y1│X)P(Y2│X). While using multiple indicator 
extensions of HMMs is an attractive solution for the aforementioned problem, it 
also introduces some new challenges. Most importantly, record linkage might lead to 
linkage error – a new potential source of bias. Furthermore, the implementation of such 
extended models tends to be complex and time-consuming.

Given the potentially strong, adverse effects of measurement error and the possibility 
of minimizing these using HMMs, the aim of this thesis is twofold: first to understand 
in more detail the problem of measurement error and second to investigate whether 
it can be resolved using hidden Markov models. More specifically, the thesis examines 
whether and under what circumstances measurement error causes non-negligible 
bias (using clustering as an illustrative example), and whether error dependency (i.e. 
the presence of systematic error) is an important factor that needs to be considered. 
Building on from this foundation, the focus of the thesis then turns to whether extended 
HMMs that are applied to linked data can be used for error correction and whether this 
method can be feasibly implemented.

Thesis outline

The remainder of the thesis is structured as follows. Chapters 2 and 3 illustrate the 
problem introduced by measurement error by showing its potential biasing effects 
and demonstrating its presence in different data sources. Chapter 2 investigates the 
bias introduced by measurement error in the context of clustering using a simulation 
study. In other words, it examines the extent to which error impacts the estimation of 
quantities of interest, and, in a related way, underlines the importance of correcting for 
it. In doing so, we test the sensitivity of the results of two commonly used model- and 
density-based clustering algorithms (i.e. GMMs and DBSCAN) to the presence of various 
degrees of random and systematic measurement error. More specifically, we assess the 
similarity of the clusters obtained using an error-free dataset to those obtained once 
error is introduced. We also compare the number of clusters found in the presence and 

absence of error to determine whether measurement error obscures clusters and/or 
leads to the emergence of spurious clusters.

Chapter 3 then examines the effect of a major change in the data collection process 
(in this case a switch in the interviewing regime) on the nature and magnitude of 
measurement error. In this analysis we apply a two-indicator HMM to a linked survey and 
administrative data, which enables the modelling of error dependency in both sources. 
This paper provides a more detailed understanding of the problem of error dependency, 
as it assesses the extent to which dependent (systematic) errors are present in survey 
and administrative data and, what is more, whether error dependency is a by-product of 
specific data collection processes. This, in turn, goes some way towards answering the 
question of whether such error needs to be specifically accounted for when correcting 
for measurement error using HMMs.

Chapters 4 and 5 focus on the applicability of the discussed method, i.e. on the 
feasibility of using extended HMMs to correct for measurement error. As mentioned 
above, the use of multiple-indicator HMMs, which allow for the relaxing of the local 
independence assumption within sources, requires linking data sources at the micro 
level. However, such record linkage might lead to linkage error and, consequently, to 
biased estimates. Therefore, chapter 4 directly tests the sensitivity of the structural 
parameter estimates of a two-indicator HMM to varying degrees of false-positive 
and false-negative linkage error. Chapter 5 then attempts to resolve a more practical 
problem, that is the complexity of the implementation of multiple-indicator HMMs. The 
use of these models requires performing record linkage followed by model re-estimation 
for each new survey wave or administrative time period. While it is theoretically possible 
to run the analysis periodically and use the obtained error parameter estimates as a 
correction factor for a number of years, this practice is conditioned on the assumption 
that the size and structure of the error parameters are constant for the relevant time 
period. In Chapter 5 we therefore examine whether parameter estimates can be carried 
forward for a number of years, provided that no major changes in the data collection 
processes occurred.
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measurement error on clustering algorithms. Unpublished manuscript.

Abstract

Clustering consists of a popular set of techniques used across the sciences to separate 
data into interesting groups for further analysis or interpretation. Many data sources 
on which clustering is performed are well-known to contain random and systematic 
measurement errors. Such errors may in turn adversely affect clustering – for instance, 
by producing spurious clusters or by obscuring useful clusters. Several techniques have 
been developed to deal with this problem, for example by merging partition-based 
mixture components, or by including a noise component in density-based clustering. 
However, little is known about the effectiveness of these commonly used solutions 
across a range of measurement error conditions. Moreover, no work to-date has 
examined the effect of systematic (non-independent and non-identically distributed 
(i.i.d.) and non-centered) errors on clustering solutions.

In this paper, we perform a Monte Carlo study to investigate the sensitivity of two 
commonly used model- and density-based clustering algorithms, GMMs with merging 
and DBSCAN, to differing magnitudes of both random and systematic error. We evaluate 
the number of clusters found, cluster stability, and the similarity of obtained clusters 
to the ones obtained in the absence of measurement error. We find that measurement 
error is particularly problematic when it is systematic as opposed to random, and 
when it affects all variables in the dataset. For the conditions considered here, we 
also find that the partition-based GMM with merged components is less sensitive to 
measurement error than the density-based DBSCAN procedure.
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2.1	 Introduction

Clustering is a popular set of statistical techniques widely applied in various scientific 
disciplines that allows for the separation of data into interesting groups for further 
analysis or interpretation (Aldenderfer & Blashfield, 1984; Dave, 1991; Tan et al., 2019). 
Its main goal is to divide observations, according to their degree of similarity, into a 
small number of relatively homogenous groups (Bailey, 1975). To illustrate, sociologists 
and economists often use clustering to group career paths and family trajectories, while 
in psychology and medicine it is commonly applied to identify different variations of an 
illness or to detect patterns in the spatial or temporal distribution of a disease (McVicar & 
Anyadike‐Danes, 2002; Piccarreta & Billari, 2007; Tan et al., 2019). In the business world, 
clustering is performed in the context of customer/market segmentation, a process that 
divides the market into groups of customers with distinct needs, characteristics, and/
or behaviors (Goyat, 2011; Tan et al., 2019). In addition, clustering is also frequently 
used in the fields of pattern recognition, information retrieval, machine learning, and 
data mining (Tan et al., 2019).

While clustering overall is an important and useful tool (Bailey, 1975), traditional 
clustering algorithms tend to assume the data are free from measurement error (Kumar 
& Patel, 2007). However, as is well-known, this is an unrealistic assumption. For example, 
surveys and registers are acknowledged to contain nonnegligible measurement 
error (Kumar & Patel, 2007; Pankowska et al., 2018, 2020). In surveys, measurement 
error is known to result from flaws in the survey response process, the process of 
data collection, processing, and editing, and from interviewer or respondent effects 
(Biemer, 2004; Sudman et al., 1997). Errors in register data can be caused by similar 
factors, but additionally suffer from administrative delay, definition error, and errors 
caused by administrative incentives (Bakker & Daas, 2012; Zhang, 2012). Other data 
sources, such as for instance, weblog data, also contain measurement errors (which 
are often referred to as “noise”) due to the presence of, among other things, online 
advertisements, navigation panels, copyrights notices, or webpage links from external 
websites (Onyancha et al., 2017). All such errors can be considered to have a random 
(centered i.i.d.) component, as well as a systematic component (location shift and 
dependence). For example, survey respondents tend to make the same (dependent) 
errors over time when answering questions (Pankowska et al., 2020).

How do random and systematic measurement error distort conclusions derived 
from data analysis? For regression and classification, it is well-known how errors bias 
parameter estimates of interest (see Carroll et al., 2006; Fuller, 2009; Gustafson, 2003). 
For example, Pavlopoulos and Vermunt (2015) and Pankowska et al. (2018) demonstrate 
that estimates of longitudinal turnover in people’s employment contracts differ by 
more than 300 percent —depending on whether measurement error is accounted for 
or not (estimated turnover proportion decreased from 0.07 to 0.02). However, in the 
context of clustering, little is known about such effects. On the one hand, errors have 
the potential to obscure existing clusters, or to produce spurious clusters. On the other, 

clusters found may still be useful for the purposes at hand – for example interpretation, 
or relations to external covariates. Indeed, it is difficult to apply the concept of “bias” 
to the idea of clustering, since this method does not have a universally accepted single 
purpose (Hennig, 2015). In short, while it is clear that data used for clustering have 
errors, it is not obvious how these errors affect clustering results.

Among the few studies that have investigated the relationship between 
measurement error and clustering are Dave (1991), which demonstrated the impact 
of outliers on clustering, and Milligan (1980), which examined the effect of outliers, 
random error, and nonlinear distortion on clustering. Both concluded that cluster 
solutions were severely affected, although systematic error was not included in their 
studies. The effect of systematic error has been investigated in one very specific case, 
namely in medical diagnostic testing without a gold standard. This field has applied 
the two-class confirmatory latent class model, in which cluster interpretability is not 
explored, but assumed (Oberski, 2016). In the case in question here, the biasing effects 
of systematic error on model parameters of interest are well-documented (Hadgu et al., 
2012; Torrance‐Rynard & Walter, 1997; Vacek, 1985; Van Smeden et al., 2016). However, 
this work does not extend to more exploratory techniques, which may be focused on 
interpreting clusters and/or employing them for further analysis.

The observation that errors may affect clustering motivated the development of new 
techniques, including fuzzy c-means clustering (Bezdek et al., 1984), noise clustering 
(Banfield & Raftery, 1993; Dave, 1991), outlier-robust partition-based clustering (Davé 
& Krishnapuram, 1997; Gallegos & Ritter, 2005; García-Escudero et al., 2008), noise-
robust density-based clustering (Ester et al., 1996), and other “noise-aware” clustering 
algorithms (see Aggarwal and Reddy, 2013, Ch. 18, for a review). In recent years, the 
application of (semi-) supervised and unsupervised deep neural networks to noisy data 
has sparked a literature on general noise-aware learning algorithms (e.g. Goldberger 
& Ben-Reuven, 2016; Malach & Shalev-Shwartz, 2017); these methods have been 
adapted to clustering as well, with a focus on improving classification performance 
after clustering (see Jindal et al., 2019, for an overview). Currently, however, we still 
lack an understanding of (i) the degree to which systematic — i.e. non-i.i.d. and/or 
uncentered — error affects traditional clustering techniques, and (ii) the degree to 
which interpretation-oriented purposes of clustering are affected.

In this paper, we perform a Monte Carlo study to investigate the sensitivity of two 
commonly used clustering algorithms, the Gaussian mixture model (GMM) and DBSCAN, 
to differing magnitudes and types of random and systematic measurement errors. 
These techniques were selected because GMMs are a key member of the model-based 
clustering family (Bouveyron et al., 2019), and DBSCAN was motivated specifically by 
the desire to handle noise (Ester et al., 1996), and therefore provides an interesting 
comparison. Additionally, DBSCAN, unlike GMMs, can handle non- spherical clusters 
such as moon-shaped clusters. We describe how measurement error affects the number 
of clusters found and the stability of the clusters, two criteria that lie at the basis 
of cluster interpretation (Hennig, 2015). We also evaluate the similarity to clusters 
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obtained in the absence of measurement error, a measure that can be conceived of as 
similar to that of “bias” in other techniques.

The remainder of the paper is structured as follows: section 2.2 first provides some 
background information on clustering techniques in general and on the GMM and 
DBSCAN algorithms in particular; it then discusses the topic of measurement error 
and its potential implications for clustering results. Section 2.3 explains the simulation 
setup and section 2.4 discusses the results of the analysis. Finally, section 2.5 offers 
some concluding remarks.

2.2	 Background

2.2.1	 Clustering
Cluster analysis is an umbrella term for a variety of algorithms and methods that are 
used to discover which observations in a dataset are similar and which dissimilar, 
given a combination of (measured) characteristics (Romensburg, 2004). Thus, the aim 
of clustering is to group cases such that observations belonging to the same cluster 
are more alike than those belonging to different clusters (Figueiredo Filho et al., 2014; 
Hair et al., 2014). As clustering can be seen as a classification problem with unobserved 
outcomes, it is an “unsupervised” learning problem (Jain, 2010; Bouveyron et al. 2019). 
Other applications include the use of clustering to help generate interesting research 
questions or hypotheses, as well as for strategic decision making in the management 
field (Romensburg, 2004).

There are numerous clustering algorithms available in the literature. Two commonly 
used approaches are density-based and model-based clustering (Maimon & Rokach, 
2005). Model-based clustering is a probabilistic approach that assumes that the 
observed data was generated from a mixture of component models, where each of 
these component models is a probability distribution (Bouveyron et al., 2019). This 
clustering method requires predefining the number of clusters (Sammut & Webb, 2011). 
On the other hand, density-based clustering is a deterministic method that defines 
clusters in a data space as contiguous regions with high point density. Clusters are 
separated from each other by regions of low point density and data points lying in 
these low-density regions may be classified as outliers or noise. In the density-based 
clustering literature, the mixture models described above are also known as partition-
based clustering. Unlike model-based methods, density-based clustering algorithms 
do not require the number of clusters as an input parameter (Kriegel et al., 2011), nor 
do they require the clusters to have a parametrically specified, usually convex, shape 
– they can therefore be seen as “nonparametric” clustering techniques (Kriegel et al., 
2011; Maimon & Rokach, 2005).

The following two subsections provide an overview of the GMM and DBSCAN 
algorithms, two highly popular model- and density- based clustering algorithms that 
we use in our study.

Gaussian mixture models
Gaussian mixture models (GMMs) are among the most commonly used model-

based clustering algorithms (Yeung et al., 2001). They belong to the family of latent 
variable models and can be defined as a parametric probability density function 
consisting of a weighted sum of Gaussian component densities (Reynolds, 2009). In 
other words, GMMs assume that data points are generated from a mixture of a finite 
(predetermined) number, K, of Gaussian distributions with unknown mean parameters, 
variance-covariance matrices, and cluster sizes (weights).

GMM seek to estimate a vector of parameters θk = {μk, Σk, wk} for each of the K 
d-dimensional multivariate Gaussian distributions that correspond to the clusters of 
interest, z. Conditional on the component z = k, the observed data vector x is assumed 
to follow the multivariate normal distribution,
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The marginal density of the observed variables is simply a weighted sum of these 𝐾𝐾 densities: 

𝑝𝑝(𝐱𝐱 | 𝜽𝜽) =  Σ𝑘𝑘=1
𝐾𝐾 𝑤𝑤𝑘𝑘𝑓𝑓(𝐱𝐱 | 𝝁𝝁𝑘𝑘, 𝚺𝚺𝑘𝑘)      (2.2)                  

Where x is a 𝑑𝑑-dimensional vector of continuous data, 𝑤𝑤𝑘𝑘 is a weight parameter for distribution 𝑘𝑘 

(Σ𝑘𝑘=1
𝐾𝐾 𝑤𝑤𝑘𝑘 = 1), 𝜇𝜇𝑘𝑘 is a 𝑑𝑑-length vector of means and Σ𝑘𝑘 is a 𝑑𝑑 x 𝑑𝑑 variance-covariance matrix. 

Constraints can be imposed on this variance-covariance matrix. Common choices are to restrict it to a 

diagonal matrix (spherical components), to set all within-component covariance matrices equal, Σ𝑘𝑘 =

The marginal density of the observed variables is simply a weighted sum of these 
K densities:

 

21 
 

 

 

a data space as contiguous regions with high point density. Clusters are separated from each other by 

regions of low point density and data points lying in these low-density regions may be classified as 

outliers or noise. In the density-based clustering literature, the mixture models described above are 

also known as partition-based clustering. Unlike model-based methods, density-based clustering 

algorithms do not require the number of clusters as an input parameter (Kriegel et al., 2011), nor do 

they require the clusters to have a parametrically specified, usually convex, shape – they can therefore 

be seen as “nonparametric” clustering techniques (Kriegel et al., 2011; Maimon & Rokach, 2005).  

The following two subsections provide an overview of the GMM and DBSCAN algorithms, two highly 

popular model- and density- based clustering algorithms that we use in our study.  

Gaussian mixture models  

Gaussian mixture models (GMMs) are among the most commonly used model-based clustering 

algorithms (Yeung et al., 2001). They belong to the family of latent variable models and can be defined 

as a parametric probability density function consisting of a weighted sum of Gaussian component 

densities (Reynolds, 2009). In other words, GMMs assume that data points are generated from a 

mixture of a finite (predetermined) number, 𝐾𝐾, of Gaussian distributions with unknown mean 

parameters, variance-covariance matrices, and cluster sizes (weights).  

GMM seek to estimate a vector of parameters 𝜽𝜽𝑘𝑘 = {𝝁𝝁𝑘𝑘, 𝚺𝚺𝑘𝑘, 𝑤𝑤𝑘𝑘} for each of the 𝐾𝐾 𝑑𝑑-dimensional 

multivariate Gaussian distributions that correspond to the clusters of interest, 𝑧𝑧. Conditional on the 

component 𝑧𝑧 = 𝑘𝑘, the observed data vector 𝐱𝐱 is assumed to follow the multivariate normal 

distribution, 

𝑓𝑓(𝒙𝒙|𝝁𝝁𝑘𝑘, 𝜮𝜮𝑘𝑘) =  1

(2𝜋𝜋)
𝐷𝐷
2 |𝜮𝜮𝑘𝑘|

1
2

𝑒𝑒𝑒𝑒𝑒𝑒 {− 1
2 (𝒙𝒙 − 𝝁𝝁𝑘𝑘)′𝜮𝜮𝑘𝑘

−1(𝒙𝒙 − 𝝁𝝁𝑘𝑘)} (2.1)                  

The marginal density of the observed variables is simply a weighted sum of these 𝐾𝐾 densities: 

𝑝𝑝(𝐱𝐱 | 𝜽𝜽) =  Σ𝑘𝑘=1
𝐾𝐾 𝑤𝑤𝑘𝑘𝑓𝑓(𝐱𝐱 | 𝝁𝝁𝑘𝑘, 𝚺𝚺𝑘𝑘)      (2.2)                  

Where x is a 𝑑𝑑-dimensional vector of continuous data, 𝑤𝑤𝑘𝑘 is a weight parameter for distribution 𝑘𝑘 

(Σ𝑘𝑘=1
𝐾𝐾 𝑤𝑤𝑘𝑘 = 1), 𝜇𝜇𝑘𝑘 is a 𝑑𝑑-length vector of means and Σ𝑘𝑘 is a 𝑑𝑑 x 𝑑𝑑 variance-covariance matrix. 

Constraints can be imposed on this variance-covariance matrix. Common choices are to restrict it to a 

diagonal matrix (spherical components), to set all within-component covariance matrices equal, Σ𝑘𝑘 =

Where x is a d-dimensional vector of continuous data, wk is a weight parameter for 
distribution k (Σk=1

K   wk = 1), μk is a d-length vector of means and Σk is a d x d variance-
covariance matrix. Constraints can be imposed on this variance-covariance matrix. 
Common choices are to restrict it to a diagonal matrix (spherical components), to set 
all within-component covariance matrices equal, Σk = Σ (equal shapes), or to specify a 
reduced-rank decomposition Σk = ΛΛ’+ Ψ (mixture of factor analyzers) (Bouveyron et 
al., 2019; McLachlan & Peel, 2004).

GMM parameters are estimated by fitting a pre-specified number of multivariate 
normal distributions to the data using the EM algorithm, iterating between estimating 
the posterior
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𝑝𝑝(𝐱𝐱 | 𝜽̂𝜽(𝒕𝒕−𝟏𝟏))  (2.3)                  

and maximizing the expected likelihood  

𝜽̂𝜽(𝒕𝒕) = arg max 𝜽𝜽 𝔼𝔼𝑝𝑝(𝑡𝑡)(𝑧𝑧=𝑘𝑘|𝐱𝐱)[𝑝𝑝(𝑧𝑧, 𝐱𝐱 |𝜽𝜽)]   (2.4)                  

These two steps are iterated until convergence of —  𝜽̂𝜽(𝒕𝒕) — the marginal likelihood (McLachlan & 

Peel, 2004; Reynolds, 2009). Note that the posterior estimates 𝑝̂𝑝(𝑡𝑡)(𝑧𝑧 = 𝑘𝑘 | 𝐱𝐱) produced as a by-

product of this procedure form a soft (“fuzzy”) classification procedure for the discrete latent 

components variable, z. Direct optimization of the marginal likelihood 𝑝𝑝(𝐱𝐱 | 𝜽𝜽) is possible as well, 

although usually avoided for stability reasons. Bayesian solutions to the estimation problem can be 

found in Frühwirth-Schnatter (2006). 

The Gaussian parametric form restricts within-component shapes to “fuzzy” ellipses, whose contours 

decline exponentially. Fuzziness in clustering has been suggested in the literature to deal with random 

noise (e.g. Bezdek et al., 1984). In cases where the original clusters are elliptical, one might therefore 

expect that GMMs should be robust to (Gaussian) random errors. However, even in such ideal cases, 

systematic errors can easily distort their shape. For example, mean-regressive measurement error will 

create nonconvex clusters, which cannot be accounted for. 

DBSCAN 

DBSCAN – “Density-Based Spatial Clustering of Applications with Noise” – is a nonparametric, 

deterministic clustering algorithm which groups together points that are close to each other. The 

algorithm, developed by Ester, Kriegel, Sander and Xu (1996) requires two hyperparameters:  

(i) ε (Eps)- the maximum distance between two points for them to be considered neighbors;  

(ii) (minPoints)- the minimum number of neighboring points required to form a so- called 

dense region.  

Using these two hyperparameters, the algorithm identifies the following: 

and maximizing the expected likelihood
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obtained in the absence of measurement error, a measure that can be conceived of as 
similar to that of “bias” in other techniques.

The remainder of the paper is structured as follows: section 2.2 first provides some 
background information on clustering techniques in general and on the GMM and 
DBSCAN algorithms in particular; it then discusses the topic of measurement error 
and its potential implications for clustering results. Section 2.3 explains the simulation 
setup and section 2.4 discusses the results of the analysis. Finally, section 2.5 offers 
some concluding remarks.

2.2	 Background

2.2.1	 Clustering
Cluster analysis is an umbrella term for a variety of algorithms and methods that are 
used to discover which observations in a dataset are similar and which dissimilar, 
given a combination of (measured) characteristics (Romensburg, 2004). Thus, the aim 
of clustering is to group cases such that observations belonging to the same cluster 
are more alike than those belonging to different clusters (Figueiredo Filho et al., 2014; 
Hair et al., 2014). As clustering can be seen as a classification problem with unobserved 
outcomes, it is an “unsupervised” learning problem (Jain, 2010; Bouveyron et al. 2019). 
Other applications include the use of clustering to help generate interesting research 
questions or hypotheses, as well as for strategic decision making in the management 
field (Romensburg, 2004).

There are numerous clustering algorithms available in the literature. Two commonly 
used approaches are density-based and model-based clustering (Maimon & Rokach, 
2005). Model-based clustering is a probabilistic approach that assumes that the 
observed data was generated from a mixture of component models, where each of 
these component models is a probability distribution (Bouveyron et al., 2019). This 
clustering method requires predefining the number of clusters (Sammut & Webb, 2011). 
On the other hand, density-based clustering is a deterministic method that defines 
clusters in a data space as contiguous regions with high point density. Clusters are 
separated from each other by regions of low point density and data points lying in 
these low-density regions may be classified as outliers or noise. In the density-based 
clustering literature, the mixture models described above are also known as partition-
based clustering. Unlike model-based methods, density-based clustering algorithms 
do not require the number of clusters as an input parameter (Kriegel et al., 2011), nor 
do they require the clusters to have a parametrically specified, usually convex, shape 
– they can therefore be seen as “nonparametric” clustering techniques (Kriegel et al., 
2011; Maimon & Rokach, 2005).

The following two subsections provide an overview of the GMM and DBSCAN 
algorithms, two highly popular model- and density- based clustering algorithms that 
we use in our study.

Gaussian mixture models
Gaussian mixture models (GMMs) are among the most commonly used model-

based clustering algorithms (Yeung et al., 2001). They belong to the family of latent 
variable models and can be defined as a parametric probability density function 
consisting of a weighted sum of Gaussian component densities (Reynolds, 2009). In 
other words, GMMs assume that data points are generated from a mixture of a finite 
(predetermined) number, K, of Gaussian distributions with unknown mean parameters, 
variance-covariance matrices, and cluster sizes (weights).

GMM seek to estimate a vector of parameters θk = {μk, Σk, wk} for each of the K 
d-dimensional multivariate Gaussian distributions that correspond to the clusters of 
interest, z. Conditional on the component z = k, the observed data vector x is assumed 
to follow the multivariate normal distribution,
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The marginal density of the observed variables is simply a weighted sum of these 𝐾𝐾 densities: 

𝑝𝑝(𝐱𝐱 | 𝜽𝜽) =  Σ𝑘𝑘=1
𝐾𝐾 𝑤𝑤𝑘𝑘𝑓𝑓(𝐱𝐱 | 𝝁𝝁𝑘𝑘, 𝚺𝚺𝑘𝑘)      (2.2)                  

Where x is a 𝑑𝑑-dimensional vector of continuous data, 𝑤𝑤𝑘𝑘 is a weight parameter for distribution 𝑘𝑘 

(Σ𝑘𝑘=1
𝐾𝐾 𝑤𝑤𝑘𝑘 = 1), 𝜇𝜇𝑘𝑘 is a 𝑑𝑑-length vector of means and Σ𝑘𝑘 is a 𝑑𝑑 x 𝑑𝑑 variance-covariance matrix. 

Constraints can be imposed on this variance-covariance matrix. Common choices are to restrict it to a 

diagonal matrix (spherical components), to set all within-component covariance matrices equal, Σ𝑘𝑘 =

The marginal density of the observed variables is simply a weighted sum of these 
K densities:
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covariance matrix. Constraints can be imposed on this variance-covariance matrix. 
Common choices are to restrict it to a diagonal matrix (spherical components), to set 
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components variable, z. Direct optimization of the marginal likelihood 𝑝𝑝(𝐱𝐱 | 𝜽𝜽) is possible as well, 

although usually avoided for stability reasons. Bayesian solutions to the estimation problem can be 
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The Gaussian parametric form restricts within-component shapes to “fuzzy” ellipses, whose contours 

decline exponentially. Fuzziness in clustering has been suggested in the literature to deal with random 
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DBSCAN – “Density-Based Spatial Clustering of Applications with Noise” – is a nonparametric, 

deterministic clustering algorithm which groups together points that are close to each other. The 

algorithm, developed by Ester, Kriegel, Sander and Xu (1996) requires two hyperparameters:  

(i) ε (Eps)- the maximum distance between two points for them to be considered neighbors;  
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Using these two hyperparameters, the algorithm identifies the following: 

and maximizing the expected likelihood

 

22 
 

 

 

Σ  (equal shapes), or to specify a reduced-rank decomposition Σ𝑘𝑘 = ΛΛ′ + Ψ (mixture of factor 

analyzers) (Bouveyron et al., 2019; McLachlan & Peel, 2004).  

GMM parameters are estimated by fitting a pre-specified number of multivariate normal distributions 

to the data using the EM algorithm, iterating between estimating the posterior  

𝑝̂𝑝(𝑡𝑡)(𝑧𝑧 = 𝑘𝑘 | 𝐱𝐱) = 𝑝𝑝(𝐱𝐱 | 𝜽̂𝜽(𝒕𝒕−𝟏𝟏),   𝑧𝑧 = 𝑘𝑘)
𝑝𝑝(𝐱𝐱 | 𝜽̂𝜽(𝒕𝒕−𝟏𝟏))  (2.3)                  

and maximizing the expected likelihood  

𝜽̂𝜽(𝒕𝒕) = arg max 𝜽𝜽 𝔼𝔼𝑝𝑝(𝑡𝑡)(𝑧𝑧=𝑘𝑘|𝐱𝐱)[𝑝𝑝(𝑧𝑧, 𝐱𝐱 |𝜽𝜽)]   (2.4)                  

These two steps are iterated until convergence of —  𝜽̂𝜽(𝒕𝒕) — the marginal likelihood (McLachlan & 

Peel, 2004; Reynolds, 2009). Note that the posterior estimates 𝑝̂𝑝(𝑡𝑡)(𝑧𝑧 = 𝑘𝑘 | 𝐱𝐱) produced as a by-

product of this procedure form a soft (“fuzzy”) classification procedure for the discrete latent 

components variable, z. Direct optimization of the marginal likelihood 𝑝𝑝(𝐱𝐱 | 𝜽𝜽) is possible as well, 

although usually avoided for stability reasons. Bayesian solutions to the estimation problem can be 

found in Frühwirth-Schnatter (2006). 

The Gaussian parametric form restricts within-component shapes to “fuzzy” ellipses, whose contours 

decline exponentially. Fuzziness in clustering has been suggested in the literature to deal with random 

noise (e.g. Bezdek et al., 1984). In cases where the original clusters are elliptical, one might therefore 

expect that GMMs should be robust to (Gaussian) random errors. However, even in such ideal cases, 

systematic errors can easily distort their shape. For example, mean-regressive measurement error will 

create nonconvex clusters, which cannot be accounted for. 

DBSCAN 

DBSCAN – “Density-Based Spatial Clustering of Applications with Noise” – is a nonparametric, 

deterministic clustering algorithm which groups together points that are close to each other. The 

algorithm, developed by Ester, Kriegel, Sander and Xu (1996) requires two hyperparameters:  

(i) ε (Eps)- the maximum distance between two points for them to be considered neighbors;  

(ii) (minPoints)- the minimum number of neighboring points required to form a so- called 

dense region.  

Using these two hyperparameters, the algorithm identifies the following: 
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although usually avoided for stability reasons. Bayesian solutions to the estimation problem can be 

found in Frühwirth-Schnatter (2006). 

The Gaussian parametric form restricts within-component shapes to “fuzzy” ellipses, whose contours 

decline exponentially. Fuzziness in clustering has been suggested in the literature to deal with random 

noise (e.g. Bezdek et al., 1984). In cases where the original clusters are elliptical, one might therefore 
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produced as a by-product of this procedure form a soft (“fuzzy”) 
classification procedure for the discrete latent components variable, z. Direct 
optimization of the marginal likelihood p(x|θ) is possible as well, although usually 
avoided for stability reasons. Bayesian solutions to the estimation problem can be 
found in Frühwirth-Schnatter (2006).

The Gaussian parametric form restricts within-component shapes to “fuzzy” ellipses, 
whose contours decline exponentially. Fuzziness in clustering has been suggested in 
the literature to deal with random noise (e.g. Bezdek et al., 1984). In cases where the 
original clusters are elliptical, one might therefore expect that GMMs should be robust 
to (Gaussian) random errors. However, even in such ideal cases, systematic errors can 
easily distort their shape. For example, mean-regressive measurement error will create 
nonconvex clusters, which cannot be accounted for.

DBSCAN
DBSCAN – “Density-Based Spatial Clustering of Applications with Noise” – is a 

nonparametric, deterministic clustering algorithm which groups together points that 
are close to each other. The algorithm, developed by Ester, Kriegel, Sander and Xu (1996) 
requires two hyperparameters:
(i)	 ε (Eps)- the maximum distance between two points for them to be considered 

neighbors;
(ii)	 (minPoints)- the minimum number of neighboring points required to form a 

so- called dense region.
Using these two hyperparameters, the algorithm identifies the following:
a.	 ε-neighborhood. The ε-neighborhood of point p consists of all points q in the 

dataset D which are within an ε distance from p, which is determined using a 
distance function such as the Manhattan Distance or the Euclidean Distance; 
formally this can be defined by 
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a. 𝛆𝛆𝛆𝛆 -neighborhood. The ε -neighborhood of point 𝑝𝑝 consists of all points 𝑞𝑞 in the dataset 

𝒟𝒟 which are within an ε distance from 𝑝𝑝, which is determined using a distance function such 

as the Manhattan Distance or the Euclidean Distance; formally this can be defined by 

b.  {𝑞𝑞 ∈ 𝒟𝒟  |dist(𝑝𝑝, 𝑞𝑞) ≤ ε} ; 

c. Core object/point. A core point is one that contains a number of points equal to or greater 

than minPoints in its ε -neighborhood;  

d. Directly density- reachable points. Point 𝑞𝑞 is defined as directly density-reachable if it is within 

the ε -neighborhood of 𝑝𝑝, and 𝑝𝑝 is a core point;  

e. Density-reachable points. Point 𝑞𝑞 is density reachable from point 𝑝𝑝 if for a chain of objects 

𝑝𝑝1 , … , 𝑝𝑝𝑛𝑛 , where 𝑝𝑝1  = 𝑝𝑝 and 𝑝𝑝𝑛𝑛  = 𝑞𝑞,  𝑝𝑝𝑖𝑖+1 is directly density-reachable from 𝑝𝑝𝑖𝑖 , given ε and 

minPoints, for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. If 𝑞𝑞 is density- reachable for a core point 𝑝𝑝 but is not itself a core 

point, it is defined as a border point; 

f. Density connected points. Points 𝑝𝑝 and 𝑞𝑞 are density connected if there exists an object 𝑜𝑜 ∈
 𝐷𝐷 which is a density-reachable point, given ε and minPoints, for both 𝑝𝑝 and 𝑞𝑞; 

g. (Density-based) cluster. A cluster 𝐶𝐶 is a non-empty sub-set of 𝒟𝒟  that satisfies the following 

conditions:  

• ∀ 𝑝𝑝, 𝑞𝑞:  if 𝑝𝑝 ∈ 𝐶𝐶 and 𝑞𝑞 is density-reachable from 𝑝𝑝, given ε and minPoints, then  

𝑞𝑞 ∈ 𝐶𝐶 (the so called “maximality” requirement) 

• ∀ 𝑝𝑝, 𝑞𝑞 ∈ 𝐶𝐶: 𝑝𝑝 is density-connected to 𝑞𝑞, given ε and minPoints.  

h. Noise. The noise cluster contains the set of points in dataset 𝒟𝒟  that do not belong to any of 

the clusters {𝐶𝐶1, … , 𝐶𝐶𝑖𝑖}; noise = {𝑝𝑝 ∈ 𝒟𝒟  |∀ 𝑖𝑖 ∶ 𝑝𝑝 ∉ 𝐶𝐶𝑖𝑖}; 

Put simply, given the above, the algorithm starts by randomly selecting a core point 𝑝𝑝 ∈ 𝒟𝒟  as a seed. 

It then finds all points in the dataset that are density-reachable from that seed and forms a cluster 

from a combination of the seed and these points. This process is repeated until all points in the dataset 

are assigned to a cluster or are classified as noise. DBSCAN is widely used, particularly in the data 

mining community, due to its flexibility, as it does not require the clusters to be of any specific shape 

or form (Birant & Kut, 2007; Ester et al., 1996).  

2.2.2 Measurement error and its impact on clustering  

Measurement error, which is often referred to as “noise” in the data science literature, occurs when 

the measured or observed value of a variable differs from its true value (Everitt & Skrondal, 2002). 

;
b.	 Core object/point. A core point is one that contains a number of points equal 

to or greater than minPoints in its ε-neighborhood;
c.	 Directly density- reachable points. Point q is defined as directly density-

reachable if it is within the ε-neighborhood of p, and p is a core point;
d.	 Density-reachable points. Point q is density reachable from point p if for a 

chain of objects p1,…,pn, where p1 = p and pn = q, pi+1 is directly density-
reachable from pi, given ε and minPoints, for 1 ≤ i ≤ n. If q is density- reachable 
for a core point p but is not itself a core point, it is defined as a border point;

e.	 Density connected points. Points p and q are density connected if there exists 
an object
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from a combination of the seed and these points. This process is repeated until all points in the dataset 

are assigned to a cluster or are classified as noise. DBSCAN is widely used, particularly in the data 

mining community, due to its flexibility, as it does not require the clusters to be of any specific shape 

or form (Birant & Kut, 2007; Ester et al., 1996).  
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Measurement error, which is often referred to as “noise” in the data science literature, occurs when 
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D  which is a density-reachable point, given ε and minPoints, 
for both p and q;

f.	 (Density-based) cluster. A cluster C is a non-empty sub-set of D that satisfies 
the following conditions:
•	
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𝑝𝑝1 , … , 𝑝𝑝𝑛𝑛 , where 𝑝𝑝1  = 𝑝𝑝 and 𝑝𝑝𝑛𝑛  = 𝑞𝑞,  𝑝𝑝𝑖𝑖+1 is directly density-reachable from 𝑝𝑝𝑖𝑖 , given ε and 

minPoints, for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. If 𝑞𝑞 is density- reachable for a core point 𝑝𝑝 but is not itself a core 

point, it is defined as a border point; 

e. Density connected points. Points 𝑝𝑝 and 𝑞𝑞 are density connected if there exists an object 𝑜𝑜 ∈
 𝐷𝐷 which is a density-reachable point, given ε and minPoints, for both 𝑝𝑝 and 𝑞𝑞; 

f. (Density-based) cluster. A cluster 𝐶𝐶 is a non-empty sub-set of 𝒟𝒟  that satisfies the following 

conditions:  

• ∀ 𝑝𝑝, 𝑞𝑞:  if 𝑝𝑝 ∈ 𝐶𝐶 and 𝑞𝑞 is density-reachable from 𝑝𝑝, given ε and minPoints, then  

𝑞𝑞 ∈ 𝐶𝐶 (the so called “maximality” requirement) 

• ∀ 𝑝𝑝, 𝑞𝑞 ∈ 𝐶𝐶: 𝑝𝑝 is density-connected to 𝑞𝑞, given ε and minPoints.  

g. Noise. The noise cluster contains the set of points in dataset 𝒟𝒟  that do not belong to any of 

the clusters {𝐶𝐶1, … , 𝐶𝐶𝑖𝑖}; noise = {𝑝𝑝 ∈ 𝒟𝒟  |∀ 𝑖𝑖 ∶ 𝑝𝑝 ∉ 𝐶𝐶𝑖𝑖}; 

Put simply, given the above, the algorithm starts by randomly selecting a core point 𝑝𝑝 ∈ 𝒟𝒟  as a seed. 

It then finds all points in the dataset that are density-reachable from that seed and forms a cluster 

from a combination of the seed and these points. This process is repeated until all points in the dataset 

are assigned to a cluster or are classified as noise. DBSCAN is widely used, particularly in the data 

mining community, due to its flexibility, as it does not require the clusters to be of any specific shape 

or form (Birant & Kut, 2007; Ester et al., 1996).  

2.2.2 Measurement error and its impact on clustering  

Measurement error, which is often referred to as “noise” in the data science literature, occurs when 

the measured or observed value of a variable differs from its true value (Everitt & Skrondal, 2002). 

: p is density-connected to q, given ε and minPoints.
g.	 Noise. The noise cluster contains the set of points in dataset D that do not 

belong to any of the clusters {c1, ..., ci}; noise = 
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Measurement error, which is often referred to as “noise” in the data science literature, occurs when 

the measured or observed value of a variable differs from its true value (Everitt & Skrondal, 2002). 

 D as a seed. It then finds all points in the dataset that are density-reachable 
from that seed and forms a cluster from a combination of the seed and these points. 
This process is repeated until all points in the dataset are assigned to a cluster or are 
classified as noise. DBSCAN is widely used, particularly in the data mining community, 
due to its flexibility, as it does not require the clusters to be of any specific shape or 
form (Birant & Kut, 2007; Ester et al., 1996).

2.2.2	 Measurement error and its impact on clustering
Measurement error, which is often referred to as “noise” in the data science literature, 
occurs when the measured or observed value of a variable differs from its true value 
(Everitt & Skrondal, 2002). Thus, in the context of continuous variables, measurement 
error can be defined as the difference between the true and measured/observed 
value of a variable. The error can be either random, i.e. occurring by chance without a 
specific pattern, or systematic, e.g. such that either consistently under- or overestimates 
the values of a variable, is dependent on certain characteristics, or is subject to 
autocorrelation. Overall, measurement error has been shown to severely affect model 
estimates and lead to biased results (Crocker & Algina, 1986; Pankowska et al., 2018, 
2020).

Formally, for a given random variable X and its observed counterpart Y, e.g. an 
individual characteristic such as income that is measured using a survey question, 
measurement error can be conceptualized in the following way:
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Thus, in the context of continuous variables, measurement error can be defined as the difference 

between the true and measured/observed value of a variable. The error can be either random, i.e. 

occurring by chance without a specific pattern, or systematic, e.g. such that either consistently under- 

or overestimates the values of a variable, is dependent on certain characteristics, or is subject to 

autocorrelation. Overall, measurement error has been shown to severely affect model estimates and 

lead to biased results (Crocker & Algina, 1986; Pankowska et al., 2018, 2020). 

Formally, for a given random variable 𝑋𝑋 and its observed counterpart 𝑌𝑌, e.g. an individual 

characteristic such as income that is measured using a survey question, measurement error can be 

conceptualized in the following way:  

𝑌𝑌 = 𝑋𝑋 +  𝜀𝜀   (2.5)                  

Where 𝜀𝜀 is the measurement error term and, thus, in the absence of measurement error 𝑌𝑌 = 𝑋𝑋. When 

measurement error is random, we can think of 𝜀𝜀 as a normally distributed random quantity that is 

uncorrelated with 𝑋𝑋 and is i.i.d, i.e. 𝜀𝜀~𝑁𝑁(0, 𝜎𝜎)and so 𝐸𝐸[𝑌𝑌] = 𝐸𝐸[𝑋𝑋]. This is to say that in the presence 

of random measurement error, the observed value of random variable 𝑋𝑋 differs from its true value in 

a way that is uncorrelated with 𝑋𝑋 and which does not exhibit any specific patterns. In the survey 

context, such error occurs, for instance, when some individuals due to chance only either over- or 

underreport their income.  

Systematic error (also referred to as systematic bias) can occur for a number of reasons. To illustrate, 

some survey respondents might systematically overreport their income due to social desirability bias 

(Hariri & Lassen, 2017). In this case 𝜀𝜀 can be defined as a normally distributed random variable that is 

independent of 𝑋𝑋 and i.i.d but such that 𝐸𝐸[𝑌𝑌] > 𝐸𝐸[𝑋𝑋]; that is 𝜀𝜀~𝑁𝑁 (𝜇𝜇, 𝜎𝜎), where 𝜇𝜇 ≠ 0.  

When the probability of making an error depends on a covariate 𝑍𝑍 that is uncorrelated with 𝑋𝑋, e.g. 

when the likelihood of overreporting one’s income depends on whether the interview was conducted 

by proxy, we can think of 𝜀𝜀 as no longer an i.i.d random variable but rather one whose distribution 

parameters are some function of 𝑍𝑍. In other words, while 𝜀𝜀 remains independent of 𝑋𝑋 it is only i.i.d 

conditional on 𝑍𝑍 and can be defined as follows: 

𝜀𝜀~ {𝑁𝑁(𝜇𝜇0, 𝜎𝜎0) 𝑖𝑖𝑖𝑖 𝑍𝑍 = 0
𝑁𝑁(𝜇𝜇1, 𝜎𝜎1) 𝑖𝑖𝑖𝑖 𝑍𝑍 = 1 , where 𝜇𝜇1 > 𝜇𝜇0               (2.6)                  

Finally, if the probability of misreporting income depends on the level of income itself, then 𝜀𝜀 is both 

no longer independent of 𝑋𝑋 nor is it i.i.d. In this case, the relationship 𝜀𝜀~𝑁𝑁(𝜇𝜇, 𝜎𝜎) still holds, but is 

Where ε is the measurement error term and, thus, in the absence of measurement 
error Y = X. When measurement error is random, we can think of ε as a normally 
distributed random quantity that is uncorrelated with X and is i.i.d, i.e. ε~N(0,σ) and 
so E[Y] = E[X]. This is to say that in the presence of random measurement error, 
the observed value of random variable X differs from its true value in a way that is 
uncorrelated with X and which does not exhibit any specific patterns. In the survey 
context, such error occurs, for instance, when some individuals due to chance only 
either over- or underreport their income.

Systematic error (also referred to as systematic bias) can occur for a number of 
reasons. To illustrate, some survey respondents might systematically overreport their 



22 23

Chapter 2 The effect of measurement error on clustering algorithms

2

These two steps are iterated until convergence of — 

 

22 
 

 

 

Σ  (equal shapes), or to specify a reduced-rank decomposition Σ𝑘𝑘 = ΛΛ′ + Ψ (mixture of factor 

analyzers) (Bouveyron et al., 2019; McLachlan & Peel, 2004).  

GMM parameters are estimated by fitting a pre-specified number of multivariate normal distributions 

to the data using the EM algorithm, iterating between estimating the posterior  

𝑝̂𝑝(𝑡𝑡)(𝑧𝑧 = 𝑘𝑘 | 𝐱𝐱) = 𝑝𝑝(𝐱𝐱 | 𝜽̂𝜽(𝒕𝒕−𝟏𝟏),   𝑧𝑧 = 𝑘𝑘)
𝑝𝑝(𝐱𝐱 | 𝜽̂𝜽(𝒕𝒕−𝟏𝟏))  (2.3)                  

and maximizing the expected likelihood  

𝜽̂𝜽(𝒕𝒕) = arg max 𝜽𝜽 𝔼𝔼𝑝𝑝(𝑡𝑡)(𝑧𝑧=𝑘𝑘|𝐱𝐱)[𝑝𝑝(𝑧𝑧, 𝐱𝐱 |𝜽𝜽)]   (2.4)                  

These two steps are iterated until convergence of —  𝜽̂𝜽(𝒕𝒕) — the marginal likelihood (McLachlan & 

Peel, 2004; Reynolds, 2009). Note that the posterior estimates 𝑝̂𝑝(𝑡𝑡)(𝑧𝑧 = 𝑘𝑘 | 𝐱𝐱) produced as a by-

product of this procedure form a soft (“fuzzy”) classification procedure for the discrete latent 

components variable, z. Direct optimization of the marginal likelihood 𝑝𝑝(𝐱𝐱 | 𝜽𝜽) is possible as well, 

although usually avoided for stability reasons. Bayesian solutions to the estimation problem can be 

found in Frühwirth-Schnatter (2006). 

The Gaussian parametric form restricts within-component shapes to “fuzzy” ellipses, whose contours 

decline exponentially. Fuzziness in clustering has been suggested in the literature to deal with random 

noise (e.g. Bezdek et al., 1984). In cases where the original clusters are elliptical, one might therefore 

expect that GMMs should be robust to (Gaussian) random errors. However, even in such ideal cases, 

systematic errors can easily distort their shape. For example, mean-regressive measurement error will 

create nonconvex clusters, which cannot be accounted for. 

DBSCAN 

DBSCAN – “Density-Based Spatial Clustering of Applications with Noise” – is a nonparametric, 

deterministic clustering algorithm which groups together points that are close to each other. The 

algorithm, developed by Ester, Kriegel, Sander and Xu (1996) requires two hyperparameters:  

(i) ε (Eps)- the maximum distance between two points for them to be considered neighbors;  

(ii) (minPoints)- the minimum number of neighboring points required to form a so- called 

dense region.  

Using these two hyperparameters, the algorithm identifies the following: 

 — the marginal likelihood 
(McLachlan & Peel, 2004; Reynolds, 2009). Note that the posterior estimates
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Σ  (equal shapes), or to specify a reduced-rank decomposition Σ𝑘𝑘 = ΛΛ′ + Ψ (mixture of factor 

analyzers) (Bouveyron et al., 2019; McLachlan & Peel, 2004).  

GMM parameters are estimated by fitting a pre-specified number of multivariate normal distributions 

to the data using the EM algorithm, iterating between estimating the posterior  
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and maximizing the expected likelihood  

𝜽̂𝜽(𝒕𝒕) = arg max 𝜽𝜽 𝔼𝔼𝑝𝑝(𝑡𝑡)(𝑧𝑧=𝑘𝑘|𝐱𝐱)[𝑝𝑝(𝑧𝑧, 𝐱𝐱 |𝜽𝜽)]   (2.4)                  

These two steps are iterated until convergence of —  𝜽̂𝜽(𝒕𝒕) — the marginal likelihood (McLachlan & 

Peel, 2004; Reynolds, 2009). Note that the posterior estimates 𝑝̂𝑝(𝑡𝑡)(𝑧𝑧 = 𝑘𝑘 | 𝐱𝐱) produced as a by-

product of this procedure form a soft (“fuzzy”) classification procedure for the discrete latent 

components variable, z. Direct optimization of the marginal likelihood 𝑝𝑝(𝐱𝐱 | 𝜽𝜽) is possible as well, 

although usually avoided for stability reasons. Bayesian solutions to the estimation problem can be 

found in Frühwirth-Schnatter (2006). 

The Gaussian parametric form restricts within-component shapes to “fuzzy” ellipses, whose contours 

decline exponentially. Fuzziness in clustering has been suggested in the literature to deal with random 

noise (e.g. Bezdek et al., 1984). In cases where the original clusters are elliptical, one might therefore 

expect that GMMs should be robust to (Gaussian) random errors. However, even in such ideal cases, 

systematic errors can easily distort their shape. For example, mean-regressive measurement error will 

create nonconvex clusters, which cannot be accounted for. 

DBSCAN 

DBSCAN – “Density-Based Spatial Clustering of Applications with Noise” – is a nonparametric, 

deterministic clustering algorithm which groups together points that are close to each other. The 

algorithm, developed by Ester, Kriegel, Sander and Xu (1996) requires two hyperparameters:  

(i) ε (Eps)- the maximum distance between two points for them to be considered neighbors;  

(ii) (minPoints)- the minimum number of neighboring points required to form a so- called 

dense region.  

Using these two hyperparameters, the algorithm identifies the following: 

produced as a by-product of this procedure form a soft (“fuzzy”) 
classification procedure for the discrete latent components variable, z. Direct 
optimization of the marginal likelihood p(x|θ) is possible as well, although usually 
avoided for stability reasons. Bayesian solutions to the estimation problem can be 
found in Frühwirth-Schnatter (2006).

The Gaussian parametric form restricts within-component shapes to “fuzzy” ellipses, 
whose contours decline exponentially. Fuzziness in clustering has been suggested in 
the literature to deal with random noise (e.g. Bezdek et al., 1984). In cases where the 
original clusters are elliptical, one might therefore expect that GMMs should be robust 
to (Gaussian) random errors. However, even in such ideal cases, systematic errors can 
easily distort their shape. For example, mean-regressive measurement error will create 
nonconvex clusters, which cannot be accounted for.

DBSCAN
DBSCAN – “Density-Based Spatial Clustering of Applications with Noise” – is a 

nonparametric, deterministic clustering algorithm which groups together points that 
are close to each other. The algorithm, developed by Ester, Kriegel, Sander and Xu (1996) 
requires two hyperparameters:
(i)	 ε (Eps)- the maximum distance between two points for them to be considered 

neighbors;
(ii)	 (minPoints)- the minimum number of neighboring points required to form a 

so- called dense region.
Using these two hyperparameters, the algorithm identifies the following:
a.	 ε-neighborhood. The ε-neighborhood of point p consists of all points q in the 

dataset D which are within an ε distance from p, which is determined using a 
distance function such as the Manhattan Distance or the Euclidean Distance; 
formally this can be defined by 
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a. 𝛆𝛆𝛆𝛆 -neighborhood. The ε -neighborhood of point 𝑝𝑝 consists of all points 𝑞𝑞 in the dataset 

𝒟𝒟 which are within an ε distance from 𝑝𝑝, which is determined using a distance function such 

as the Manhattan Distance or the Euclidean Distance; formally this can be defined by 

b.  {𝑞𝑞 ∈ 𝒟𝒟  |dist(𝑝𝑝, 𝑞𝑞) ≤ ε} ; 

c. Core object/point. A core point is one that contains a number of points equal to or greater 

than minPoints in its ε -neighborhood;  

d. Directly density- reachable points. Point 𝑞𝑞 is defined as directly density-reachable if it is within 

the ε -neighborhood of 𝑝𝑝, and 𝑝𝑝 is a core point;  

e. Density-reachable points. Point 𝑞𝑞 is density reachable from point 𝑝𝑝 if for a chain of objects 

𝑝𝑝1 , … , 𝑝𝑝𝑛𝑛 , where 𝑝𝑝1  = 𝑝𝑝 and 𝑝𝑝𝑛𝑛  = 𝑞𝑞,  𝑝𝑝𝑖𝑖+1 is directly density-reachable from 𝑝𝑝𝑖𝑖 , given ε and 

minPoints, for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. If 𝑞𝑞 is density- reachable for a core point 𝑝𝑝 but is not itself a core 

point, it is defined as a border point; 

f. Density connected points. Points 𝑝𝑝 and 𝑞𝑞 are density connected if there exists an object 𝑜𝑜 ∈
 𝐷𝐷 which is a density-reachable point, given ε and minPoints, for both 𝑝𝑝 and 𝑞𝑞; 
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c.	 Directly density- reachable points. Point q is defined as directly density-
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D  which is a density-reachable point, given ε and minPoints, 
for both p and q;

f.	 (Density-based) cluster. A cluster C is a non-empty sub-set of D that satisfies 
the following conditions:
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: p is density-connected to q, given ε and minPoints.
g.	 Noise. The noise cluster contains the set of points in dataset D that do not 

belong to any of the clusters {c1, ..., ci}; noise = 
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are assigned to a cluster or are classified as noise. DBSCAN is widely used, particularly in the data 

mining community, due to its flexibility, as it does not require the clusters to be of any specific shape 

or form (Birant & Kut, 2007; Ester et al., 1996).  
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value of a variable. The error can be either random, i.e. occurring by chance without a 
specific pattern, or systematic, e.g. such that either consistently under- or overestimates 
the values of a variable, is dependent on certain characteristics, or is subject to 
autocorrelation. Overall, measurement error has been shown to severely affect model 
estimates and lead to biased results (Crocker & Algina, 1986; Pankowska et al., 2018, 
2020).

Formally, for a given random variable X and its observed counterpart Y, e.g. an 
individual characteristic such as income that is measured using a survey question, 
measurement error can be conceptualized in the following way:
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conditional on 𝑍𝑍 and can be defined as follows: 
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Where ε is the measurement error term and, thus, in the absence of measurement 
error Y = X. When measurement error is random, we can think of ε as a normally 
distributed random quantity that is uncorrelated with X and is i.i.d, i.e. ε~N(0,σ) and 
so E[Y] = E[X]. This is to say that in the presence of random measurement error, 
the observed value of random variable X differs from its true value in a way that is 
uncorrelated with X and which does not exhibit any specific patterns. In the survey 
context, such error occurs, for instance, when some individuals due to chance only 
either over- or underreport their income.

Systematic error (also referred to as systematic bias) can occur for a number of 
reasons. To illustrate, some survey respondents might systematically overreport their 
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income due to social desirability bias (Hariri & Lassen, 2017). In this case ε can be defined 
as a normally distributed random variable that is independent of X and i.i.d but such 
that E[Y] > E[X]; that is ε~N (0,σ), where μ ≠ 0.

When the probability of making an error depends on a covariate Z
 

that is 
uncorrelated with X, e.g. when the likelihood of overreporting one’s income depends 
on whether the interview was conducted by proxy, we can think of ε as no longer an 
i.i.d random variable but rather one whose distribution parameters are some function 
of Z. In other words, while ε remains independent of X it is only i.i.d conditional on Z 
and can be defined as follows:
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itself, then ε is both no longer independent of X nor is it i.i.d. In this case, the relationship 
ε~N (0,σ) still holds, but is extended in such a way that μ could be some monotonic 
function of X, with the substantive implication being that higher income individuals are 
more likely to misreport their income:
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The impact of the aforementioned types of measurement error on clustering specifically has not been 
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concerns solely random types of errors), does argue that clustering algorithms are likely to be 
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Patel, 2007). One of the few papers actually examining this impact is by Milligan (1980). The author 

investigates the effects of different types of error perturbation on the results of two types of clustering 

(hierarchical and k-means) and concludes that in many cases the presence of error in the data leads 

to a degradation in cluster recovery.  This analysis, however, focuses predominantly on random 

error/noise and does not investigate the impact of systematic errors.  

As mentioned above, given the lack of comprehensive evidence regarding the effects of measurement 

error on clustering, our simulation study looks at how different types and magnitudes of both random 

and systematic errors affect two aspects of clustering results. More specifically, we look at the number 

of clusters, as well as the similarity of the clusters to the “original” ones (i.e. those obtained in the 

absence of error). The choice of the GMM and DBSCAN algorithms (in addition to being driven by their 

popularity and wide application) is motivated by their potential to mitigate some of the effects of 

measurement error. More specifically, the attractiveness of GMMs is linked to the fact that they are 

probabilistic models and so can account for some of the uncertainty introduced by measurement 

error. The DBSCAN algorithm is used in our analysis as it includes a noise cluster, which might 

potentially capture (some of the) observations that contain measurement error and leave the 

substantial clusters, to an extent, intact. The setup of the simulation study is discussed in detail in the 

next subsection.  

2.3 Simulation setup 

As stated above, we use a simulation analysis to demonstrate the effect of different degrees and types 

of measurement error on DBSCAN and GMM estimates. In more detail, our approach is to first 

generate a “baseline” dataset containing no measurement error, and then to compare model 

outcomes on that and error-induced datasets. These steps will be explained in more detail below. 

Also, as an illustration, Appendix 2.A provides pseudocode for generating the “baseline” dataset and 

introducing measurement error according to one condition.  

The impact of the aforementioned types of measurement error on clustering 
specifically has not been studied extensively. Although the overall research on the topic 
is scarce, the literature available (which concerns solely random types of errors), does 
argue that clustering algorithms are likely to be (substantially) affected by measurement 
error (Dave, 1991; Frigui & Krishnapuram, 1996; Kumar & Patel, 2007). One of the few 
papers actually examining this impact is by Milligan (1980). The author investigates the 
effects of different types of error perturbation on the results of two types of clustering 
(hierarchical and k-means) and concludes that in many cases the presence of error in 
the data leads to a degradation in cluster recovery. This analysis, however, focuses 
predominantly on random error/noise and does not investigate the impact of systematic 
errors.

As mentioned above, given the lack of comprehensive evidence regarding the 
effects of measurement error on clustering, our simulation study looks at how different 
types and magnitudes of both random and systematic errors affect two aspects of 
clustering results. More specifically, we look at the number of clusters, as well as the 
similarity of the clusters to the “original” ones (i.e. those obtained in the absence of 
error). The choice of the GMM and DBSCAN algorithms (in addition to being driven by 
their popularity and wide application) is motivated by their potential to mitigate some 
of the effects of measurement error. More specifically, the attractiveness of GMMs is 
linked to the fact that they are probabilistic models and so can account for some of 
the uncertainty introduced by measurement error. The DBSCAN algorithm is used in 

our analysis as it includes a noise cluster, which might potentially capture (some of 
the) observations that contain measurement error and leave the substantial clusters, 
to an extent, intact. The setup of the simulation study is discussed in detail in the next 
subsection.

2.3	 Simulation setup

As stated above, we use a simulation analysis to demonstrate the effect of different 
degrees and types of measurement error on DBSCAN and GMM estimates. In more 
detail, our approach is to first generate a “baseline” dataset containing no measurement 
error, and then to compare model outcomes on that and error-induced datasets. 
These steps will be explained in more detail below. Also, as an illustration, Appendix 
2.A provides pseudocode for generating the “baseline” dataset and introducing 
measurement error according to one condition.

Step I: Simulating the “baseline” dataset and performing clustering
First, we generated the initial/original, error-free dataset. In essence, our aim was 

to create a simple dataset consisting of a mixture of multivariate Gaussians, which 
will ensure strong internal cohesion (homogeneity) and external isolation (separation) 
of estimated clusters. A more complex data structure could negatively affect cluster 
recovery and lead to a situation wherein the algorithms produce different results for 
the same dataset, even in the absence of measurement error, due to random model 
variability. In this case, it would be difficult if not impossible for us to separate the effect 
of the data structure from that of introducing measurement error on the clustering 
results. As such, we drew n = 1000 observations from a mixture of three multivariate 
normal (MVN) distributions, with deterministic proportions of 0.4, 0.35, 0.25. To 
rephrase, this is to say that the first 400 observations were drawn from MVN A, the 
next 350 from MVN B, and the final 250 were taken from MVN C. As each MVN had 
dimensionality of three (corresponding to variables X1, X2 and X3), the end result was 
a (1000, 3) matrix of random variables. To ensure the aforementioned separation of 
sample clusters, we used the following population parameters for our simulation1:

1	 It is worthwhile noting that these population parameters were selected at random; the only consider-
ation was obtaining spherical, fully separated clusters in the absence of measurement error.
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income due to social desirability bias (Hariri & Lassen, 2017). In this case ε can be defined 
as a normally distributed random variable that is independent of X and i.i.d but such 
that E[Y] > E[X]; that is ε~N (0,σ), where μ ≠ 0.

When the probability of making an error depends on a covariate Z
 

that is 
uncorrelated with X, e.g. when the likelihood of overreporting one’s income depends 
on whether the interview was conducted by proxy, we can think of ε as no longer an 
i.i.d random variable but rather one whose distribution parameters are some function 
of Z. In other words, while ε remains independent of X it is only i.i.d conditional on Z 
and can be defined as follows:

 

24 
 

 

 

Thus, in the context of continuous variables, measurement error can be defined as the difference 

between the true and measured/observed value of a variable. The error can be either random, i.e. 

occurring by chance without a specific pattern, or systematic, e.g. such that either consistently under- 

or overestimates the values of a variable, is dependent on certain characteristics, or is subject to 

autocorrelation. Overall, measurement error has been shown to severely affect model estimates and 

lead to biased results (Crocker & Algina, 1986; Pankowska et al., 2018, 2020). 

Formally, for a given random variable 𝑋𝑋 and its observed counterpart 𝑌𝑌, e.g. an individual 

characteristic such as income that is measured using a survey question, measurement error can be 

conceptualized in the following way:  

𝑌𝑌 = 𝑋𝑋 +  𝜀𝜀   (2.5)                  

Where 𝜀𝜀 is the measurement error term and, thus, in the absence of measurement error 𝑌𝑌 = 𝑋𝑋. When 

measurement error is random, we can think of 𝜀𝜀 as a normally distributed random quantity that is 

uncorrelated with 𝑋𝑋 and is i.i.d, i.e. 𝜀𝜀~𝑁𝑁(0, 𝜎𝜎)and so 𝐸𝐸[𝑌𝑌] = 𝐸𝐸[𝑋𝑋]. This is to say that in the presence 

of random measurement error, the observed value of random variable 𝑋𝑋 differs from its true value in 

a way that is uncorrelated with 𝑋𝑋 and which does not exhibit any specific patterns. In the survey 

context, such error occurs, for instance, when some individuals due to chance only either over- or 

underreport their income.  

Systematic error (also referred to as systematic bias) can occur for a number of reasons. To illustrate, 

some survey respondents might systematically overreport their income due to social desirability bias 

(Hariri & Lassen, 2017). In this case 𝜀𝜀 can be defined as a normally distributed random variable that is 

independent of 𝑋𝑋 and i.i.d but such that 𝐸𝐸[𝑌𝑌] > 𝐸𝐸[𝑋𝑋]; that is 𝜀𝜀~𝑁𝑁 (𝜇𝜇, 𝜎𝜎), where 𝜇𝜇 ≠ 0.  

When the probability of making an error depends on a covariate 𝑍𝑍 that is uncorrelated with 𝑋𝑋, e.g. 

when the likelihood of overreporting one’s income depends on whether the interview was conducted 

by proxy, we can think of 𝜀𝜀 as no longer an i.i.d random variable but rather one whose distribution 

parameters are some function of 𝑍𝑍. In other words, while 𝜀𝜀 remains independent of 𝑋𝑋 it is only i.i.d 

conditional on 𝑍𝑍 and can be defined as follows: 

𝜀𝜀~ {𝑁𝑁(𝜇𝜇0, 𝜎𝜎0) 𝑖𝑖𝑖𝑖 𝑍𝑍 = 0
𝑁𝑁(𝜇𝜇1, 𝜎𝜎1) 𝑖𝑖𝑖𝑖 𝑍𝑍 = 1 , where 𝜇𝜇1 > 𝜇𝜇0               (2.6)                  

Finally, if the probability of misreporting income depends on the level of income itself, then 𝜀𝜀 is both 

no longer independent of 𝑋𝑋 nor is it i.i.d. In this case, the relationship 𝜀𝜀~𝑁𝑁(𝜇𝜇, 𝜎𝜎) still holds, but is 
Finally, if the probability of misreporting income depends on the level of income 

itself, then ε is both no longer independent of X nor is it i.i.d. In this case, the relationship 
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function of X, with the substantive implication being that higher income individuals are 
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detail, our approach is to first generate a “baseline” dataset containing no measurement 
error, and then to compare model outcomes on that and error-induced datasets. 
These steps will be explained in more detail below. Also, as an illustration, Appendix 
2.A provides pseudocode for generating the “baseline” dataset and introducing 
measurement error according to one condition.

Step I: Simulating the “baseline” dataset and performing clustering
First, we generated the initial/original, error-free dataset. In essence, our aim was 

to create a simple dataset consisting of a mixture of multivariate Gaussians, which 
will ensure strong internal cohesion (homogeneity) and external isolation (separation) 
of estimated clusters. A more complex data structure could negatively affect cluster 
recovery and lead to a situation wherein the algorithms produce different results for 
the same dataset, even in the absence of measurement error, due to random model 
variability. In this case, it would be difficult if not impossible for us to separate the effect 
of the data structure from that of introducing measurement error on the clustering 
results. As such, we drew n = 1000 observations from a mixture of three multivariate 
normal (MVN) distributions, with deterministic proportions of 0.4, 0.35, 0.25. To 
rephrase, this is to say that the first 400 observations were drawn from MVN A, the 
next 350 from MVN B, and the final 250 were taken from MVN C. As each MVN had 
dimensionality of three (corresponding to variables X1, X2 and X3), the end result was 
a (1000, 3) matrix of random variables. To ensure the aforementioned separation of 
sample clusters, we used the following population parameters for our simulation1:

1	 It is worthwhile noting that these population parameters were selected at random; the only consider-
ation was obtaining spherical, fully separated clusters in the absence of measurement error.
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The draws from these multivariate Gaussians (constituting the dataset) correspond to the visualization 

depicted in Figure 2.1.  
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Next, we performed clustering on the simulated dataset (i.e. the” baseline” dataset) 

using a Gaussian mixture model (GMM) and DBSCAN clustering. When fitting GMMs, 
we fit several models with the number of clusters, k, varying from 1 to 10 and chose 
the model with the best model fit, i.e. the lowest BIC. When using DBSCAN, we set 
the minimum number of neighboring points to be four for all conditions (as it is 
recommended that minPoints = no. of dimensions + 1), while we allowed ε to vary 
per condition and chose the appropriate distance based on a visual inspection of the 
k-nearest neighbor distance plot.

Step II: Introducing measurement error into the “baseline” dataset and performing 
clustering

Having fit the models to the “baseline” dataset, we then introduced various types 
and levels of measurement error into this data. In doing so, we considered a total of  
36 conditions, each bootstrapped 100 times. 
As illustrated in Figure 2.2, the following factors were varied in the conditions 
considered:
•	 Measurement error rate/ proportion of observations subject to error: 0.1, 0.2 vs. 

0.4 (3 levels);
•	 Number of variables containing measurement error: 1 vs. 3 (i.e. all) (2 levels);
•	 Type of measurement error: random vs. systematic (2 levels);
•	 The magnitude of measurement error: low, medium vs. high (3 levels).
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Figure 2.2- Outline of simulation setup/ simulation conditions

In more detail, for each condition we first randomly selected 0.1, 0.2, or 0.4 of the 
observations in the dataset. For these observations, we then introduced errors in either 
one or all three variables. When simulating random error in one of the variables (i.e. 
only in X1), we added a draw from a normal distribution with μ = 0, σ = {4,8 ,16}. The 
different σ’s represent varying degrees of error severity (i.e. low, medium, and high). 
When introducing systematic error to X1, we added a draw with μ = 2.5,5,10 ,σ = {2} 
wherein the μ's represent the three different error magnitudes. This is equivalent to 
the first type of systematic error which is discussed in section 2.2 (i.e. where the error 
term can be defined as follows: ε~N(0,σ), where μ ≠ 0). For the conditions where random 
error affects all three variables, we added draws normal distributions where:

μx1 = 0, σx1 = {4, 8, 16}

μx2 = 0, σx2 = {2, 4, 16}

μx2 = 0, σx2 = {6, 12, 24}

For systematic error we used the following:

μx1 = {2.5,5,10}, σx1 = {2}

μx2 = {-2.5,-5,-10}, σx2 = {2}

μx3 = {1.25,2.5,5}, σx3 = {2}

Figure 2.3 visually shows how the introduction of measurement error affects the 
simulated dataset, using the following four conditions as illustrative examples: (i) 
random error affecting one variable with rate of 0.4 and high magnitude; (ii) random 
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In more detail, for each condition we first randomly selected 0.1, 0.2, or 0.4 of the 
observations in the dataset. For these observations, we then introduced errors in either 
one or all three variables. When simulating random error in one of the variables (i.e. 
only in X1), we added a draw from a normal distribution with μ = 0, σ = {4,8 ,16}. The 
different σ’s represent varying degrees of error severity (i.e. low, medium, and high). 
When introducing systematic error to X1, we added a draw with μ = 2.5,5,10 ,σ = {2} 
wherein the μ's represent the three different error magnitudes. This is equivalent to 
the first type of systematic error which is discussed in section 2.2 (i.e. where the error 
term can be defined as follows: ε~N(0,σ), where μ ≠ 0). For the conditions where random 
error affects all three variables, we added draws normal distributions where:
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simulated dataset, using the following four conditions as illustrative examples: (i) 
random error affecting one variable with rate of 0.4 and high magnitude; (ii) random 
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error affecting three variables with rate of 0.4 and high magnitude; (iii) systematic 
error affecting one variable with rate of 0.4 and high magnitude; (iv) systematic error 
affecting three variables with rate of 0.4 and high magnitude.2

Figure 2.3- 3D scatterplot of datasets containing measurement error

As can be seen from the figure, when random measurement error affects one of 
the variables in the dataset, even though it is characterized by high error rate and 
severe magnitude, the resultant data structure still largely corresponds to the one 
in the absence of error. That is, even though the groups present in the data appear 
more “stretched out” and there are some outliers, the data is still characterized by the 
presence of three, clearly separated groups, which overall seem similar to the original 

2	 The selection of the more extreme conditions (i.e. high error rate and magnitude) was motivated by 
the fact that their influence on the dataset and subsequently the clustering results is expected to be 
substantial and highly visible.

ones. When the random error affects all three variables, on the other hand, the original, 
three fully separated groups largely overlap; this overlap is likely to impede the recovery 
of the original clusters. With regards to the condition wherein systematic error affects 
one variable, as can be deduced from Figure 2.3, the algorithms are likely to return 
results that also include spurious clusters. However, as these additional error-driven 
clusters appear very similar to the original ones, which can still be largely observed in 
the data, merging the clusters based on similarity (a procedure which is explained in 
more detail below) might mitigate the impact of this error. Finally, when systematic 
error affects all three variables, the clusters overlap to such an extent that the clustering 
algorithms are likely to produce highly dissimilar results to those obtained using the 
error-free dataset.

Having introduced the error, we then performed clustering on the resultant datasets, 
using GMM and DBSCAN. In doing so, we followed the same steps as when performing 
clustering on the “baseline” dataset. Finally, we compared the results to those obtained 
when no measurement error was introduced (i.e. when using the “baseline” dataset).

Step III: Comparing clustering results in the absence and presence of measurement 
error

When comparing the results, we focused on two specific metrics: the number of 
clusters obtained and the similarity of the clusters. While we consider similarity to 
be of much greater substantive importance, we also look at the number of clusters 
to understand whether different types of measurement error either obscure clusters 
or lead to spurious clusters. The importance of the similarity criterion stems from the 
fact that when the clusters obtained in the presence of measurement error are largely 
similar to those obtained in its absence, regardless of the number of clusters returned 
the results can be used for further research or interpretation, and the inferences made 
should be largely unbiased.

The examination of the number of clusters was relatively straightforward and 
involved simply comparing the number of the clusters obtained in the absence and 
presence of measurement error. The evaluation of cluster similarity was carried out 
based on the adjusted Rand index. The Rand index is a commonly used measure of 
the similarity between two clusters which varies from 0 to 1, where 0 implies perfect 
dissimilarity and 1 perfect match (Rand, 1971).

The Rand Index can be formalized as follows:
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2)
                 (2.8)                  

Where 𝑎𝑎 is the sum of the number of paired observations that are grouped together in the same 

cluster for both clustering results and 𝑏𝑏 is the number of paired observations that are ungrouped and 

belong to different clusters for both clustering results. (𝑛𝑛
2) represents the sum of all possible 

unordered pairs (Rand, 1971). The adjusted Rand index is in principle similar to the original index but 

in addition it accounts for the fact that pairs of observations can be correctly grouped or ungrouped 

due to chance; it is bounded between ±1 (Hubert & Arabie, 1985). 

Where a is the sum of the number of paired observations that are grouped together in 
the same cluster for both clustering results and b is the number of paired observations 
that are ungrouped and belong to different clusters for both clustering results.
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in addition it accounts for the fact that pairs of observations can be correctly grouped or ungrouped 

due to chance; it is bounded between ±1 (Hubert & Arabie, 1985). 
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index is in principle similar to the original index but in addition it accounts for the fact 
that pairs of observations can be correctly grouped or ungrouped due to chance; it is 
bounded between ±1 (Hubert & Arabie, 1985).

In addition to considering the number and similarity of the clusters obtained directly 
from the fitted GMM (the so-called mixture components), we also examined the clusters 
obtained by merging the mixture components. Such merging is a common practice that 
is applied when the resultant mixture components are not separated sufficiently from 
one another for them to be interpretable and meaningful. The process is performed in 
a hierarchical order, whereby the value of a given merging criterion is computed for all 
pairs of components and the pair with the highest value is merged. Criterion values are 
then recomputed for the resultant clusters and the merging process continues until the 
highest criterion value obtained is below a predefined cut-off value. In our application, 
we use the Bhattacharyya distance as our criterion value and apply a threshold of 0.1. 
For further details regarding the merging process and the criterion used we refer to 
Hennig (2010).

For DBSCAN, we also compare the numbers and similarity of the “baseline” clusters 
with a subset of the clusters obtained in the presence of error that includes only stable 
clusters. To calculate stability, we resampled the datasets for each condition using 
bootstrapping (50 iterations) and compared the clustering results of the bootstrapped 
samples to those obtained on the original erroneous datasets. In doing so, we used 
the Jaccard similarity coefficient, which is defined as the size of the intersection of two 
clusters divided by the size of the union of these clusters. We considered a cluster to 
be stable if on average, given the 50 bootstraps we run, the Jaccard coefficient was 
higher than 0.7. For further details regarding the calculations of cluster stability and 
the criterion used we refer to Hennig (2007).

The analysis was carried out using the R environment for statistical computing 
(version 3.4.4). When fitting the algorithms to the datasets as well as when merging the 
GMM components and checking for cluster stability for the DBSCAN results, we used 
predominantly the Flexible Procedures for Clustering (fpc) package (Hennig, 2015).

2.4	 Results

2.4.1	 Clustering in the absence of measurement error
The clustering results obtained in the absence of measurement error (i.e. using the 
“baseline” dataset) for both GMM and DBSCAN almost perfectly recover the population 
parameters used to simulate the data. However, as the population parameters were 
set to ensure the emergence of three distinct, perfectly separated clusters, this was 
to be expected. More specifically, for GMM, the model that fits the data best (i.e. has 
the lowest BIC) correctly classifies all 1,000 observations in the dataset and returns 
the following three clusters (which are extremely similar to the Gaussian distributions 
used to simulate the data):
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𝐺𝐺1 ~ 𝑵𝑵( 𝝁𝝁𝟏̂𝟏, 𝚺𝚺𝟏̂𝟏) where   𝝁𝝁𝟏̂𝟏 = [
 −1.93
   8.99
11.99

] and 𝚺𝚺𝟏̂𝟏 =   [
1.63 0.36 0.36
0.36 0.99 0.14
0.36 0.14 1.52

]; 𝑛𝑛1 = 400 

𝐺𝐺2 ~ 𝑵𝑵( 𝝁𝝁𝟐̂𝟐, 𝚺𝚺𝟐̂𝟐) where  𝝁𝝁𝟐̂𝟐 =  [ 
   4.95
10.98
17.99

] and 𝚺𝚺𝟐̂𝟐 =   [
1.78 0.32 0.22
0.32 1.41 0.26
0.22 0.26 0.95

]; 𝑛𝑛2 = 350 

𝐺𝐺3  ~ 𝑵𝑵( 𝝁𝝁𝟑̂𝟑, 𝚺𝚺𝟑̂𝟑) where  𝝁𝝁𝟑̂𝟑 = [    
4.12
4.01
5.06

]  and  𝚺𝚺𝟑̂𝟑 = [
1.21 0.47 0.26
0.47 1.40 0.28
0.26 0.28 1.53

]; 𝑛𝑛3 = 250 

The DBSCAN results return four clusters: three substantive ones and a noise cluster. The centroids of 

the substantive clusters (calculated based on cluster membership) are as follows: 

𝐶𝐶1  =  [
−1.91
   9.02
 12.01

]; 𝑛𝑛1 = 391 

𝐶𝐶2  =  [
   4.91
11.02
18.00

]; 𝑛𝑛2 = 331 

𝐶𝐶3   = [  
 4.10
3.98
5.00

]; 𝑛𝑛3 = 242 

The algorithm assigns 36 observations to the noise cluster, all remaining observations (96.4 percent) 

are classified correctly.  

2.4.2 Clustering in the presence of measurement error  

GMM estimates 

The results obtained when fitting the GMM algorithm to the datasets containing measurement error 

(for all 36 conditions) are displayed in Table 2.1 and Figures 2.4 and 2.5. As can be seen, overall, the 

number of clusters as well as cluster similarity (calculated based on the Adjusted Rand Index) remain 

largely unaffected by random measurement error, provided that only one of the variables in the 

dataset is subject to error and that magnitude of this error is relatively low or of medium magnitude. 

The effect of the error rate appears negligible in this case. When error severity is high, on the other 

hand, we can observe the emergence of spurious clusters, although cluster similarity remains 

relatively high. Random measurement error also leads to spurious clusters when it affects all three 

variables, regardless of its magnitude and the error rate. The similarity between the clusters obtained 

for these conditions and the “original” ones is inversely related to the error rate and its magnitude 

(i.e. as the error rate and/or magnitude increase, the similarity between the aforementioned clusters 

decreases).  

The DBSCAN results return four clusters: three substantive ones and a noise cluster. 
The centroids of the substantive clusters (calculated based on cluster membership) 
are as follows:
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The algorithm assigns 36 observations to the noise cluster, all remaining observations (96.4 percent) 

are classified correctly.  

2.4.2 Clustering in the presence of measurement error  

GMM estimates 

The results obtained when fitting the GMM algorithm to the datasets containing measurement error 

(for all 36 conditions) are displayed in Table 2.1 and Figures 2.4 and 2.5. As can be seen, overall, the 

number of clusters as well as cluster similarity (calculated based on the Adjusted Rand Index) remain 

largely unaffected by random measurement error, provided that only one of the variables in the 

dataset is subject to error and that magnitude of this error is relatively low or of medium magnitude. 

The effect of the error rate appears negligible in this case. When error severity is high, on the other 

hand, we can observe the emergence of spurious clusters, although cluster similarity remains 

relatively high. Random measurement error also leads to spurious clusters when it affects all three 

variables, regardless of its magnitude and the error rate. The similarity between the clusters obtained 

for these conditions and the “original” ones is inversely related to the error rate and its magnitude 

(i.e. as the error rate and/or magnitude increase, the similarity between the aforementioned clusters 

decreases).  

The algorithm assigns 36 observations to the noise cluster, all remaining observations 
(96.4 percent) are classified correctly.

2.4.2	 Clustering in the presence of measurement error

GMM estimates
The results obtained when fitting the GMM algorithm to the datasets containing 

measurement error (for all 36 conditions) are displayed in Table 2.1 and Figures 2.4 
and 2.5. As can be seen, overall, the number of clusters as well as cluster similarity 
(calculated based on the Adjusted Rand Index) remain largely unaffected by random 
measurement error, provided that only one of the variables in the dataset is subject to 
error and that magnitude of this error is relatively low or of medium magnitude. The 
effect of the error rate appears negligible in this case. When error severity is high, on 
the other hand, we can observe the emergence of spurious clusters, although cluster 
similarity remains relatively high. Random measurement error also leads to spurious 
clusters when it affects all three variables, regardless of its magnitude and the error 
rate. The similarity between the clusters obtained for these conditions and the “original” 
ones is inversely related to the error rate and its magnitude (i.e. as the error rate and/or 
magnitude increase, the similarity between the aforementioned clusters decreases).
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index is in principle similar to the original index but in addition it accounts for the fact 
that pairs of observations can be correctly grouped or ungrouped due to chance; it is 
bounded between ±1 (Hubert & Arabie, 1985).

In addition to considering the number and similarity of the clusters obtained directly 
from the fitted GMM (the so-called mixture components), we also examined the clusters 
obtained by merging the mixture components. Such merging is a common practice that 
is applied when the resultant mixture components are not separated sufficiently from 
one another for them to be interpretable and meaningful. The process is performed in 
a hierarchical order, whereby the value of a given merging criterion is computed for all 
pairs of components and the pair with the highest value is merged. Criterion values are 
then recomputed for the resultant clusters and the merging process continues until the 
highest criterion value obtained is below a predefined cut-off value. In our application, 
we use the Bhattacharyya distance as our criterion value and apply a threshold of 0.1. 
For further details regarding the merging process and the criterion used we refer to 
Hennig (2010).

For DBSCAN, we also compare the numbers and similarity of the “baseline” clusters 
with a subset of the clusters obtained in the presence of error that includes only stable 
clusters. To calculate stability, we resampled the datasets for each condition using 
bootstrapping (50 iterations) and compared the clustering results of the bootstrapped 
samples to those obtained on the original erroneous datasets. In doing so, we used 
the Jaccard similarity coefficient, which is defined as the size of the intersection of two 
clusters divided by the size of the union of these clusters. We considered a cluster to 
be stable if on average, given the 50 bootstraps we run, the Jaccard coefficient was 
higher than 0.7. For further details regarding the calculations of cluster stability and 
the criterion used we refer to Hennig (2007).

The analysis was carried out using the R environment for statistical computing 
(version 3.4.4). When fitting the algorithms to the datasets as well as when merging the 
GMM components and checking for cluster stability for the DBSCAN results, we used 
predominantly the Flexible Procedures for Clustering (fpc) package (Hennig, 2015).

2.4	 Results

2.4.1	 Clustering in the absence of measurement error
The clustering results obtained in the absence of measurement error (i.e. using the 
“baseline” dataset) for both GMM and DBSCAN almost perfectly recover the population 
parameters used to simulate the data. However, as the population parameters were 
set to ensure the emergence of three distinct, perfectly separated clusters, this was 
to be expected. More specifically, for GMM, the model that fits the data best (i.e. has 
the lowest BIC) correctly classifies all 1,000 observations in the dataset and returns 
the following three clusters (which are extremely similar to the Gaussian distributions 
used to simulate the data):
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𝐶𝐶3   = [  
 4.10
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]; 𝑛𝑛3 = 242 

The algorithm assigns 36 observations to the noise cluster, all remaining observations (96.4 percent) 

are classified correctly.  

2.4.2 Clustering in the presence of measurement error  

GMM estimates 

The results obtained when fitting the GMM algorithm to the datasets containing measurement error 

(for all 36 conditions) are displayed in Table 2.1 and Figures 2.4 and 2.5. As can be seen, overall, the 

number of clusters as well as cluster similarity (calculated based on the Adjusted Rand Index) remain 

largely unaffected by random measurement error, provided that only one of the variables in the 

dataset is subject to error and that magnitude of this error is relatively low or of medium magnitude. 

The effect of the error rate appears negligible in this case. When error severity is high, on the other 

hand, we can observe the emergence of spurious clusters, although cluster similarity remains 

relatively high. Random measurement error also leads to spurious clusters when it affects all three 

variables, regardless of its magnitude and the error rate. The similarity between the clusters obtained 

for these conditions and the “original” ones is inversely related to the error rate and its magnitude 

(i.e. as the error rate and/or magnitude increase, the similarity between the aforementioned clusters 

decreases).  

The DBSCAN results return four clusters: three substantive ones and a noise cluster. 
The centroids of the substantive clusters (calculated based on cluster membership) 
are as follows:
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2.4.2 Clustering in the presence of measurement error  

GMM estimates 

The results obtained when fitting the GMM algorithm to the datasets containing measurement error 

(for all 36 conditions) are displayed in Table 2.1 and Figures 2.4 and 2.5. As can be seen, overall, the 

number of clusters as well as cluster similarity (calculated based on the Adjusted Rand Index) remain 

largely unaffected by random measurement error, provided that only one of the variables in the 

dataset is subject to error and that magnitude of this error is relatively low or of medium magnitude. 

The effect of the error rate appears negligible in this case. When error severity is high, on the other 

hand, we can observe the emergence of spurious clusters, although cluster similarity remains 

relatively high. Random measurement error also leads to spurious clusters when it affects all three 

variables, regardless of its magnitude and the error rate. The similarity between the clusters obtained 

for these conditions and the “original” ones is inversely related to the error rate and its magnitude 

(i.e. as the error rate and/or magnitude increase, the similarity between the aforementioned clusters 

decreases).  

The algorithm assigns 36 observations to the noise cluster, all remaining observations 
(96.4 percent) are classified correctly.

2.4.2	 Clustering in the presence of measurement error

GMM estimates
The results obtained when fitting the GMM algorithm to the datasets containing 

measurement error (for all 36 conditions) are displayed in Table 2.1 and Figures 2.4 
and 2.5. As can be seen, overall, the number of clusters as well as cluster similarity 
(calculated based on the Adjusted Rand Index) remain largely unaffected by random 
measurement error, provided that only one of the variables in the dataset is subject to 
error and that magnitude of this error is relatively low or of medium magnitude. The 
effect of the error rate appears negligible in this case. When error severity is high, on 
the other hand, we can observe the emergence of spurious clusters, although cluster 
similarity remains relatively high. Random measurement error also leads to spurious 
clusters when it affects all three variables, regardless of its magnitude and the error 
rate. The similarity between the clusters obtained for these conditions and the “original” 
ones is inversely related to the error rate and its magnitude (i.e. as the error rate and/or 
magnitude increase, the similarity between the aforementioned clusters decreases).
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The effect of systematic error on the clustering results appears significantly more 
severe. Namely, virtually all 18 conditions can be characterized by the emergence of 
spurious clusters. What is more, the similarity measure is only truly high when the 
error affects one variable and is low in magnitude (regardless of the error rate). The 
remaining conditions return clusters that are substantially different from those in the 
“baseline” dataset.

When merging the obtained mixture components into more meaningful clusters, a 
highly optimistic picture regarding the robustness of GMMs to random measurement 
error emerges. More specifically, the number of clusters appears largely unaffected 
by measurement error with the exception of two rather extreme conditions, i.e. when 
the error affects all three variables, its rate is 0.4, and it is either medium or large in 
magnitude. In the case of these two scenarios measurement error obscures clusters. 
The resultant clusters are also in most cases highly similar to those obtained in the 
absence of error. Again, the two above specified conditions are an exception and lead to 
the emergence of dissimilar clusters. The clusters obtained under the condition wherein 
a high in magnitude random error affects all three variables and 0.2 of the observations 
are also dissimilar to the “original” ones, albeit to a lesser extent.

While merging also improves the clustering results for datasets that contain 
systematic error, it does so to a lesser extent. That is, systematic error distorts the 
number of clusters for half of the conditions considered, i.e. when the error affects 
one variable and is large in magnitude or when it affects all three variables and its 
severity is either medium or high. Likewise, cluster similarity can also be considered 
dissatisfactory for these conditions. It is worth mentioning that the adjusted Rand index 
is particularly low when three variables are subject to medium systematic error and 40 
percent of observations are affected, or when the error is large and 20 or 40 percent 
of the cases are affected.
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The effect of systematic error on the clustering results appears significantly more 
severe. Namely, virtually all 18 conditions can be characterized by the emergence of 
spurious clusters. What is more, the similarity measure is only truly high when the 
error affects one variable and is low in magnitude (regardless of the error rate). The 
remaining conditions return clusters that are substantially different from those in the 
“baseline” dataset.

When merging the obtained mixture components into more meaningful clusters, a 
highly optimistic picture regarding the robustness of GMMs to random measurement 
error emerges. More specifically, the number of clusters appears largely unaffected 
by measurement error with the exception of two rather extreme conditions, i.e. when 
the error affects all three variables, its rate is 0.4, and it is either medium or large in 
magnitude. In the case of these two scenarios measurement error obscures clusters. 
The resultant clusters are also in most cases highly similar to those obtained in the 
absence of error. Again, the two above specified conditions are an exception and lead to 
the emergence of dissimilar clusters. The clusters obtained under the condition wherein 
a high in magnitude random error affects all three variables and 0.2 of the observations 
are also dissimilar to the “original” ones, albeit to a lesser extent.

While merging also improves the clustering results for datasets that contain 
systematic error, it does so to a lesser extent. That is, systematic error distorts the 
number of clusters for half of the conditions considered, i.e. when the error affects 
one variable and is large in magnitude or when it affects all three variables and its 
severity is either medium or high. Likewise, cluster similarity can also be considered 
dissatisfactory for these conditions. It is worth mentioning that the adjusted Rand index 
is particularly low when three variables are subject to medium systematic error and 40 
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Figure 2.4- (top) Number of clusters and (bottom) cluster similarity for GMM mixture components
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Figure 2.4- (top) Number of clusters and (bottom) cluster similarity for GMM mixture components
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Figure 2.5- (top) Number of clusters and (bottom) cluster similarity for GMM merged clusters

DBSCAN estimates
The DBSCAN results presented in Table 2.2 and Figure 2.6 suggest that this clustering 

algorithm performs worse than GMM in the presence of measurement error. This is 
particularly striking when looking at cluster similarity. In more detail, when looking at 
the mean number of clusters obtained in each condition, it can be observed that for 
most conditions the presence of measurement error does not lead to (many) spurious 
clusters nor does it obscure clusters. The number of clusters is strongly inflated 
primarily when the error is systematic and high in magnitude (regardless of the number 
of variables affected and the error rate).

The degree of similarity of the clusters, however, appears more sensitive to 
measurement error. That is, DBSCAN returns substantially dissimilar clusters when 
it is applied to datasets containing random or systematic errors that affect all three 
variables (with the exception of the conditions in which the error rate is 0.1 and the 
magnitude low). In other words, for the aforementioned conditions the resultant 
clusters have very little in common with the ones obtained using the error-free data. 
Overall, the results do not substantially differ when considering only stable clusters.3 
Furthermore, as can be seen in Figure 2.7, contrary to expectations the noise cluster 
does not appear to capture observations that are subject to measurement error. This is 
the case even when the error is random and of very high magnitude, i.e. when the error 
is anticipated to lead to outliers, which should theoretically be assigned to the noise 
cluster. More specifically, Figure 2.7 provides an overview of the size cluster for each of 
the 36 simulation conditions. For most conditions, the number of observations included 
in the noise cluster is only slightly higher than the number of observations included in 
that cluster in the absence of measurement error. More specifically, in most cases the 
noise cluster size does not exceed 50, while for the error-free data this cluster consists 
of 36 observations. Therefore, it can be concluded that most observations that were 
subject to measurement error (i.e. a total of 200 or 400, depending on the condition) 
were not classified as noise.

3	 It is worthwhile mentioning that for all 36 conditions the noise cluster was unstable for most bootstraps.
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Table 2.2- DBSCAN clustering results by simulation condition

Error type

Variables 
incl. 
error Magnitude

Error 
rate

Number 
of 
clusters

Adjusted 
R Index

Number 
of stable 
clusters

Adjusted 
R Index 
of stable 
clusters

Size of 
noise 
cluster

Random

one

low
0.1 4.3 0.965 3.0 0.992 44.0
0.2 4.2 0.946 3.1 0.971 33.0
0.4 4.3 0.934 3.1 0.966 35.7

medium
0.1 4.3 0.946 3.2 0.975 41.6
0.2 4.6 0.924 3.2 0.957 35.7
0.4 4.7 0.889 3.0 0.896 34.0

high
0.1 4.5 0.922 3.6 0.942 44.2
0.2 5.2 0.879 3.2 0.909 34.3
0.4 4.8 0.685 2.3 0.537 30.8

three

low
0.1 4.4 0.909 3.5 0.938 47.4
0.2 4.0 0.623 2.2 0.514 38.4
0.4 3.6 0.412 2.0 0.381 40.8

medium
0.1 3.7 0.574 2.8 0.560 26.8
0.2 3.8 0.392 2.3 0.395 35.6
0.4 2.9 0.054 1.3 0.049 36.9

high
0.1 4.9 0.620 2.9 0.671 56.2
0.2 3.7 0.148 1.8 0.149 43.5
0.4 2.7 0.006 1.3 0.002 38.0

Systematic

one

low
0.1 4.7 0.951 3.1 0.991 52.6
0.2 4.4 0.944 3.0 0.962 28.7
0.4 4.2 0.934 3.0 0.943 29.6

medium
0.1 5.8 0.871 3.0 0.879 39.7
0.2 4.3 0.785 2.5 0.694 31.3
0.4 3.7 0.700 2.1 0.522 30.3

high
0.1 8.5 0.822 4.2 0.914 42.6
0.2 7.5 0.699 5.4 0.736 31.8
0.4 7.0 0.530 5.5 0.626 29.6

three

low
0.1 4.8 0.893 3.2 0.934 54.0
0.2 3.9 0.656 2.1 0.518 33.5
0.4 3.2 0.409 1.6 0.330 30.6

medium
0.1 4.4 0.527 1.8 0.365 40.2
0.2 3.5 0.233 1.4 0.228 42.4
0.4 2.6 0.015 1.0 0.000 35.1

high
0.1 8.8 0.306 6.2 0.410 38.0
0.2 9.7 0.075 5.2 0.096 34.2
0.4 4.3 0.062 2.3 0.074 16.5

Figure 2.6- (top) Number of clusters and (bottom) cluster similarity for DBSCAN
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Figure 2.7- Noise cluster size by simulation condition (where the original noise cluster size = 36)

2.5	 Discussion and conclusions

Clustering is a commonly applied method used in numerous disciplines that allows 
for the separation of observations into interesting groups, based on a predefined 
similarity measure. While an important and useful tool, this technique also suffers 
from an important shortcoming. Namely, in most cases, the clustering algorithms used 
disregard the problem of measurement error, which is both unrealistic and problematic. 
It is unrealistic as few, if any, data sources can be truly considered error-free, and 
it is problematic as measurement error is known to have the potential to severely 
bias estimates. In the context of clustering, measurement error can, for instance, 
produce spurious clusters or obscure clusters; it can also affect their shape, form, and 
stability.

Despite the threat that measurement error poses to the validity of clustering results, 
research available on the matter is scarce. Therefore, in this paper, we investigated the 
sensitivity of two commonly used model- and density-based clustering algorithms (i.e. 
GMMs and DBSCAN) to various types, severities, and levels of measurement error. In 
doing so, we examined how error affects the number of clusters found, the stability 
of the clusters, and their similarity to the clusters obtained in the absence of error.

Our results indicate that measurement error is particularly problematic and leads to 
unreliable clustering results when it is systematic as opposed to random, when it affects 
all (three) variables rather than only one, and, as expected, when its magnitude and/
or rate is high. We also show that, overall, GMM is less sensitive to measurement error 
than DBSCAN, especially when looking at the merged clusters rather than the mixture 
components. DBSCAN appears highly sensitive to measurement error, in particular 
with regards to cluster (dis)similarity, regardless of whether all clusters or only stable 
clusters are considered. It also appears that, contrary to expectations, the noise cluster 
of the DBSCAN algorithm does not capture observations with measurement error.

The lower relative sensitivity of GMM estimates to measurement error is a rather 
surprising result. That is, while GMM can be viewed as the more restrictive clustering 
algorithm of the two (as, unlike DBSCAN, it makes an explicit assumption about the 
parametric form of the clusters), it seems to fare better in the presence of measurement 
error. These findings, however, should be treated with caution given the data structure 
of the simulated dataset. More specifically, in our analysis we simulated three almost 
perfectly spherical clusters and GMM algorithms are known to perform well when 
the clusters have such round shapes. DBSCAN, on the other hand, tends to be the 
preferred clustering method when the shapes of the clusters are arbitrary. Therefore, 
it is advisable to repeat the analysis using more complex data structures. This will 
also allow for the investigation of the impact of measurement error in a more realistic 
setup, as real-world data clusters tend to have various shapes and forms and are rarely 
perfectly separable.

It is also worthwhile mentioning that, while our analysis focuses on two important 
and popular types of clustering, it does not investigate the effect of measurement 
error on hierarchical clustering, a method which is widely used in particular in the 
social sciences. Therefore, future research should also examine how measurement error 
impacts such algorithms as Ward. We have also only focused on one type of systematic 
error, i.e. where the values of a variable are systematically over- or underestimated for 
some randomly selected subset of observations. It would be interesting to also look at 
how the two other types of systematic error, i.e. errors dependent on covariates or on 
the true value of the variable itself, affect clustering results.

Finally, given the strong potential implications of measurement error on clustering 
results, future research should also focus on investigating solutions that allow for the 
mitigation of its effects. Furthermore, new ways of performing error-aware clustering 
should consider the diverse nature of measurement error and account for both random 
and systematic type of errors.
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Appendix 2.A Pseudocode illustrating the simulation 
design

Below we provide an example pseudocode illustrating the simulation design, which 
corresponds to the condition wherein all three variables contain systematic error that 
is small in magnitude and that affects 10 percent of the observations. The pseudocode 
includes the steps taken to simulate the “baseline” dataset and those taken to introduce 
measurement error according to the condition discussed above.

Step I: Simulate “baseline” dataset and perform clustering
1. Draw n1 = 400  observations from the following MVN distribution:
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   9
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0.15 0.25 1.00 

] 

3. Draw 𝑛𝑛3 = 400 observations from the following MVN distribution: 
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5. Set the measurement error threshold4 to 0.1 for all observations (that is t = 0.1) 

 
4 The threshold corresponds to the probability of being subject to measurement error.  

2. Draw n2 = 400 observations from the following MVN distribution:
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4. Perform clustering: fit GMM/ DBSCAN algorithms to the resultant dataset
a. 	 For GMM: fit models with number of clusters – k – varying from 1 to 10 and 

chose the model with lowest BIC
b. 	 For DBSCAN: set the minimum number of neighboring points to be four; choose 

the appropriate ε based on the k-nearest neighbor distance plot

Step II: Introduce measurement error into the “baseline” dataset and perform cluster-
ing (100 iterations)
5. Set the measurement error threshold4 to 0.1 for all observations (that is t = 0.1)
6. For each observation in the dataset, draw a random number from a standard uniform 
distribution –Ui~U(0,1)
7. If Ui ≤t, add random draws to X1,i,X2,i and X3,i from the following normal distributions 
μx1 = 2.5  and σx1 = 2 ,μx2 = -2.5 and σx2 = 2, and μx3 = 1.25 and σx3 = 2
8. Perform clustering using GMM/DBSCAN (as described in (4))

4	 The threshold corresponds to the probability of being subject to measurement error.

a. 	 For GMM: also merge mixture components into clusters using a threshold of 
0.1 for the Bhattacharyya distance

b. 	 FOR DBSCAN: also calculate cluster stability using a threshold of 0.7 for the 
Jaccard coefficient (50 iterations)

Step III: Compare clustering results in the absence and presence of measurement error
9. Compare clustering results obtained in (4) and (8)

a. 	 Compare number of clusters
b.	 Compare cluster similarity using the Adjusted Rand Index
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corresponds to the condition wherein all three variables contain systematic error that 
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includes the steps taken to simulate the “baseline” dataset and those taken to introduce 
measurement error according to the condition discussed above.
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4 The threshold corresponds to the probability of being subject to measurement error.  

2. Draw n2 = 400 observations from the following MVN distribution:
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4 The threshold corresponds to the probability of being subject to measurement error.  

4. Perform clustering: fit GMM/ DBSCAN algorithms to the resultant dataset
a. 	 For GMM: fit models with number of clusters – k – varying from 1 to 10 and 

chose the model with lowest BIC
b. 	 For DBSCAN: set the minimum number of neighboring points to be four; choose 

the appropriate ε based on the k-nearest neighbor distance plot

Step II: Introduce measurement error into the “baseline” dataset and perform cluster-
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5. Set the measurement error threshold4 to 0.1 for all observations (that is t = 0.1)
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a. 	 For GMM: also merge mixture components into clusters using a threshold of 
0.1 for the Bhattacharyya distance

b. 	 FOR DBSCAN: also calculate cluster stability using a threshold of 0.7 for the 
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Step III: Compare clustering results in the absence and presence of measurement error
9. Compare clustering results obtained in (4) and (8)
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b.	 Compare cluster similarity using the Adjusted Rand Index



DEPENDENT INTERVIEWING: 
A REMEDY OR A CURSE FOR 
MEASUREMENT ERROR IN 
SURVEYS?
This chapter is based on: Pankowska, P., Bakker, B. F. M., Oberski, D. L.., & Pavlopoulos, 
D. (2019). Dependent interviewing: a remedy or a curse for measurement error in 
surveys. Manuscript submitted for publication (invited for resubmission after minor 
revisions).

Abstract

Longitudinal surveys often rely on dependent interviewing (DI) to decrease the level 
of random measurement error in survey data and reduce the incidence of spurious 
change. DI refers to a data collection technique that incorporates information from prior 
interview rounds into subsequent waves. While this method is considered an effective 
remedy for random measurement error, it can also introduce more systematic errors, 
in particular when respondents are first reminded of their previously provided answer 
and then asked about their current status. The aim of this paper is to assess the impact 
of DI on measurement error in employment mobility. We take advantage of a unique 
experimental situation that was created by the roll-out of dependent interviewing in 
the Dutch Labour Force Survey (LFS). We apply a hidden Markov model (HMM) to linked 
LFS and Employment Register (ER) data that cover a period before and after dependent 
interviewing was abolished, which in turn enables the modelling of systematic errors in 
the LFS data. Our results indicate that DI lowered the probability of obtaining random 
measurement error but had no significant effect on the systematic component of the 
error. The lack of a significant effect might be partially due to the fact that the baseline 
probability of repeating the same error was extremely high (i.e. when using standard, 
independent interviewing); therefore, the use of DI could not increase this probability 
any further. 
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Chapter 3  Dependent interviewing: a remedy or a curse for measurement error in surveys?

3.1	 Introduction

Measurement error in survey data is a well-known and well-documented phenomenon. 
A large volume of literature confirms that, if left unaccounted for, such error often 
biases estimates and can lead to inaccurate inferences and predictions (Alwin, 2007; 
Pankowska et al., 2018; Saris & Gallhofer, 2014; West & Blom, 2016). The magnitude of 
this problem is particularly high when using longitudinal survey data to estimate change 
or stability over time, as such second-order statistics have been shown to be severely 
affected by (random) measurement error (Bound et al., 2001; Fuller, 2009; Hagenaars, 
1990, 1994; Van de Pol & De Leeuw, 1986). More specifically, when measurement 
error is random, observed over time changes are often inflated as they not only reflect 
true changes but also include changes in the error (Jäckle & Eckman, 2019). For this 
reason, survey methodologists have applied various tools to minimize the occurrence 
of measurement errors by improving data collection processes in longitudinal surveys 
(Groves et al., 2011).

One tool in particular that has been widely implemented is dependent interviewing 
(DI) — a method that uses prior information from responses provided in previous 
interview rounds to modify the phrasing and routing of questions in subsequent 
survey waves, as well as to facilitate within-interview edit checks (Jäckle, 2009; Jäckle 
et al., 2007; Mathiowetz & McGonagle, 2000). This interviewing technique has been 
widely implemented in various large-scale longitudinal surveys worldwide, such as the 
British Household Panel Survey (BHPS), the Dutch Labour Force Survey (LFS), and the 
US Current Population Survey (CPS) (Jäckle et al., 2007).

However, while DI is a promising tool to potentially reduce random measurement 
error, it also has some potential adverse implications for systematic measurement 
error, in particular when used proactively (Lynn et al., 2006). With proactive dependent 
interviewing (PDI), the interviewer first reminds the respondents of the answer they 
provided in the previous round and then inquiries about their current state.5 PDI has 
been shown to reduce spurious change (Hoogendoorn, 2004; Jäckle & Eckman, 2019; 
Lynn et al., 2006) as well as to lower the occurrence of the seam effect (Brüderl et 
al., 2017; Moore et al., 2009) — a phenomenon wherein between-wave change is 
overestimated while within-wave change is underestimated (Jäckle & Eckman, 2019). 
This interviewing setup, however, through various processes, might also lead to more 
autocorrelated errors (Eggs & Jäckle, 2015; Jäckle & Eckman, 2019). That is, when 
reminded of their previous answer, individuals might falsely confirm that this answer 
still holds. Such a false report of “no change” might lead to spurious stability if a true 

5	 DI can also be used reactively (RDI), whereby respondents are first asked the question independent-
ly and then, if an inconsistency is detected between the current and previous answer, a follow-up 
question is raised to verify whether a change occurred (Jäckle & Eckman, 2019; Uhrig & Sala, 2011). 
As RDI is primarily applied to numeric responses (Jäckle & Eckman, 2019) and is not expected to have 
strong implications for systematic error (Lynn et al., 2006), our paper focuses on the effect of PDI on 
measurement error.

change did occur. It can also lead to the copying over of an error across waves if no 
change occurred and the previously provided answer was wrong (Eggs & Jäckle, 2015; 
Hoogendoorn, 2004; Jäckle & Eckman, 2019).

Therefore, the overall effect of PDI on data quality appears uncertain and remains 
an issue for empirical investigation: on the one hand, this interviewing technique could 
reduce random error, but, on the other hand, it can increase the incidence of systematic 
error (as shown e.g. by Lugtig and Lensvelt-Mulders, 2014). From the perspective of 
substantive researchers, it appears that decreasing spurious change through the use 
of PDI might come at the expense of increasing spurious stability.

Given the two contradictory effects, and the lack of consensus in the literature 
regarding the overall utility of DI, this paper aims to disentangle the effect of PDI 
on random and systematic measurement error and in this way, to assess the overall 
effect of PDI on measurement error. For this purpose, rather than conducting our own 
experiment, we leverage the replacement of PDI with independent interviewing (INDI) 
which took place at the beginning of 2010 in the Dutch LFS. The questionnaire was 
changed as the routing in the former version was too complex, leading to mistakes in the 
interview. As no other major changes in the survey data collection process occurred in 
the time period under study, this change provides a natural experiment, which allows for 
an investigation of the impact of PDI on measurement error while treating independent 
interviewing (INDI) as the counterfactual.

To assess the magnitude of measurement error in the corresponding survey question, 
we use hidden Markov models (HMMs), a group of latent class models that allow for 
the estimation and correction of measurement error in categorical, longitudinal data, 
provided that the model is specified correctly (Biemer, 2004; Pankowska et al., 2018; 
Pavlopoulos & Vermunt, 2015). The main advantage of these models is that they do not 
require a “gold-standard”, error-free data source, which would serve as a benchmark 
for the survey data (Biemer, 2011; Vermunt & Magidson, 2002). To model systematic 
measurement error in the survey data without having to impose unwanted restrictions 
and risk poor identifiability, we use an extended, two-indicator version of HMMs (Bassi 
et al., 2000). These two indicators are obtained by linking data from the Dutch LFS and 
the Dutch Employment Register (ER).

The remainder of the paper is structured as follows: section 3.2 elaborates further 
on the use PDI and its effects on random and systematic measurement error; it then 
describes the roll-out of PDI in the Dutch LFS. Section 3.3 discusses the use of HMMs 
to assess and correct for measurement error as well as the model and data used in 
the analysis. Section 3.4 discusses the results obtained and, finally, section 3.5 offers 
concluding remarks.
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The remainder of the paper is structured as follows: section 3.2 elaborates further 
on the use PDI and its effects on random and systematic measurement error; it then 
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3.2	 Dependent interviewing (DI) and its effect on 
measurement error

3.2.1	 Background
Dependent interviewing (DI) is an interviewing technique in which information provided 
by a respondent in prior interview rounds is used in subsequent waves; when using DI 
proactively, the wording of the question is tailored based on the previously provided 
response(s) (Jäckle, 2009). In this design, interviewees can be asked the question in three 
distinct manners: in “remind, continue” respondents are reminded of their previous 
answer and then asked the standard independent question; in “remind, still” they are 
asked whether the situation described still holds; in “remind, confirm” interviewees 
are asked to confirm whether their previous response is correct (Hoogendoorn, 2004; 
Jäckle, 2008, 2009; Jäckle et al., 2007; Jäckle & Eckman, 2019; Lugtig & Lensvelt-Mulders, 
2014; Mathiowetz & McGonagle, 2000).

PDI is used in longitudinal surveys for two main reasons: (i) it has the potential to 
improve data quality by achieving higher longitudinal consistency and lower levels of 
random error (Jäckle, 2009; Mathiowetz & McGonagle, 2000) and (ii) it can increase 
survey efficiency and reduce respondent burden (Eggs & Jäckle, 2015; Jäckle, 2008). 
The importance of improving data quality is related to the fact that, as mentioned 
previously, longitudinal surveys in most cases suffer from random measurement error, 
which has the potential to severely inflate change estimates (Jäckle, 2009; Jäckle & Lynn, 
2007; Lugtig & Lensvelt-Mulders, 2014; Lynn et al., 2006; Van de Pol & De Leeuw, 1986). 
Previous studies show that PDI has been effective in reducing spurious change and the 
seam effect in numerous different panel surveys (Jäckle & Eckman, 2019). The need to 
increase the efficiency of the interviewing process and to reduce respondent burden 
is tied to common complaints made by interviewees about having to answer the same 
question recurrently even when their circumstances have not changed. PDI reduces the 
need to repeatedly answer the same question and thus is thought to reduce respondent 
burden. Furthermore, tailoring the question to the respondents’ specific situation and 
reminding them of their previously provided answers was shown to improve the flow 
of the interview and simplify the response task (Sala et al., 2011). These efficiency gains 
have also been linked to lower rates of (random) measurement error (Hoogendoorn, 
2004; Jäckle, 2009; Lynn et al., 2006).

Overall, PDI is potentially an effective technique that can address several challenges 
faced by survey methodologists when dealing with repeated longitudinal surveys; 
however, it is not free of shortcomings, as there is some concern that PDI might lead 
to more systematic measurement through two main mechanisms. First, PDI might 
increase the incidence of error due to the phenomenon of (cognitive) satisficing, 
wherein respondents, rather than providing a well-thought-out, appropriate answer, 
tend to opt for the easy, credible response. In the context of PDI, this would imply falsely 
confirming that the previous answer still holds (Eggs & Jäckle, 2015; Hoogendoorn, 
2004; Jäckle & Eckman, 2019; Lugtig & Lensvelt-Mulders, 2014). Second, PDI might also 

have an adverse effect on the error due to the presence of motivated misreporting, a 
phenomenon whereby individuals, to shorten the duration of the interview, provide 
inaccurate answers that allow them to omit follow-up questions. This implies that when 
using PDI respondents will be inclined to report that the previous information still 
holds, as this will likely allow them to skip questions about their current state (Eggs & 
Jäckle, 2015).

Therefore, while there is some consensus that PDI improves survey efficiency and 
reduces respondent burden, its effect on data quality in general and measurement error 
in particular remains ambiguous. In short, lower levels of random error may come at 
the cost of higher probability of systematic error. Therefore, this paper investigates the 
nature of this relationship by examining the effects of the PDI, “remind, still” design on 
the measurement of the contract type question in the Dutch LFS.

3.2.2	 Dependent interviewing (DI) in the Dutch Labour Force Survey (LFS)
The Dutch Labour Force Survey (LFS) is an address-based sample survey that 
provides information on the labor market characteristics of individuals residing in the 
Netherlands. It is carried out by Statistics Netherlands and, as of the end of 1999, it 
is a quarterly rotating panel survey consisting of five waves. For the contract related 
question (which is the focus of our analysis), dependent interviewing (DI), and more 
specifically the “remind, still” style of proactive DI (PDI), was in use in the LFS from the 
beginning until the end of 2009; at the beginning of 2010 it was replaced by independent 
interviewing (INDI). Survey respondents were asked about their employment contract 
using PDI if they met two conditions: (i) they reported in the previous wave that they 
had a temporary contract and (ii) they indicated that they did not change their job since 
the previous wave. Respondents who fulfilled both criteria were asked the following 
question regarding their contract type: “Last time you were in temporary employment. 
Is this still the case?”6. Individuals who changed jobs or those who did not experience 
a job change but had indicated previously that they had “other” position on the labor 
market (i.e. those that were not in paid employment) were asked the question in an 
independent fashion as follows: “Are you currently in permanent employment?”7. The 
contract question was skipped for respondents who in the previous wave reported 
having a permanent contract and who did not experience a job change; instead, these 
individuals’ responses from the previous wave were copied forward.8

This setup, which is summarized in the flowchart of Figure 3.1, results in three 
possible scenarios: (i) an individual is subject to INDI if either (a) they indicated that 
a job change occurred, (b) they reported having “other” type of employment in the 
previous survey round or, (c) they first participated in the LFS after the end of 2009; (ii) 
an individual is asked the contract question using PDI if they (a) did not change their 

6	 In Dutch: “De vorige keer was u in tijdelijke dienst. Is dat nog zo?”
7	 In Dutch: “Bent u op dit moment in vaste dienst?”
8	 https://www.cbs.nl/en-gb/our-services/methods/surveys/korteonderzoeksbeschrijvingen/dutch-la-

bour-force-survey–lfs–
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interviewing (INDI). Survey respondents were asked about their employment contract 
using PDI if they met two conditions: (i) they reported in the previous wave that they 
had a temporary contract and (ii) they indicated that they did not change their job since 
the previous wave. Respondents who fulfilled both criteria were asked the following 
question regarding their contract type: “Last time you were in temporary employment. 
Is this still the case?”6. Individuals who changed jobs or those who did not experience 
a job change but had indicated previously that they had “other” position on the labor 
market (i.e. those that were not in paid employment) were asked the question in an 
independent fashion as follows: “Are you currently in permanent employment?”7. The 
contract question was skipped for respondents who in the previous wave reported 
having a permanent contract and who did not experience a job change; instead, these 
individuals’ responses from the previous wave were copied forward.8

This setup, which is summarized in the flowchart of Figure 3.1, results in three 
possible scenarios: (i) an individual is subject to INDI if either (a) they indicated that 
a job change occurred, (b) they reported having “other” type of employment in the 
previous survey round or, (c) they first participated in the LFS after the end of 2009; (ii) 
an individual is asked the contract question using PDI if they (a) did not change their 

6	 In Dutch: “De vorige keer was u in tijdelijke dienst. Is dat nog zo?”
7	 In Dutch: “Bent u op dit moment in vaste dienst?”
8	 https://www.cbs.nl/en-gb/our-services/methods/surveys/korteonderzoeksbeschrijvingen/dutch-la-

bour-force-survey–lfs–
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job since the previous survey wave, (b) they reported being employed on a temporary 
basis in the previous round and, (c) they first took part in the survey before the end of 
2009; (iii) the contract question is not asked altogether if (a) no job change occurred 
and (b) the individual previously reported being employed permanently.

 

Figure 3.1- Summary of the interviewing setup in the LFS contract question

While all three scenarios occur in our dataset, our analysis focuses on comparing 
the levels of random and systematic errors when PDI was used with those when INDI 
was used, but PDI would had been applicable if it was not abolished at the end of 
2009. This allows us to take advantage of the natural experiment setup caused by the 
replacement of PDI with INDI at the beginning of 2010. More specifically, we compare 
scenario ii (3.31 percent of cases in our sample), which we refer to as the treatment 
group, to a subset of scenario iii (2.28 percent of cases in our sample) - wherein no job 
change occurred, a temporary contract was reported in the previous wave, and the 
first round of the LFS was conducted after the end of 2009 - which we refer to as the 
counterfactual or the control group.

3.3	 Methodology

3.3.1	 Assessing and correcting for measurement error using hidden Markov 
models (HMMs)
Hidden Markov models (HMMs) are a latent variable modelling technique that can be 
applied to evaluate measurement error in categorical longitudinal survey data (Biemer, 
2011; Pankowska et al., 2018; Pavlopoulos & Vermunt, 2015). Their rise in popularity can 
be attributed to the fact that, unlike other commonly used error assessment methods, 
they do not require the availability of error-free, “gold-standard” validation data that 
are most often unattainable in practice (Biemer & Wiesen, 2002; Pankowska et al., 
2020). In this context, HMMs are used when the (dynamic) quantity of interest, e.g. 
over-time employment transitions, is measured in the panel survey with some degree 
of error. The models allow for the separation of true change from measurement error 
which, in turn, can produce error-corrected estimates of the quantity of interest as 
well as assessing the level of measurement error in the corresponding survey question 
(Biemer, 2011; Pankowska et al., 2018).

The standard HMM, which can be fit to surveys with at least three panel waves, 
consists of two components: (i) the structural component that models the true (latent) 
initial state probabilities X0 and the true (latent) transition probabilities between Xt-1 and 
Xt, where t = 1, ..., T ; and (ii) the measurement component that models the interactions 
of the survey observations (which contain error) At with the true values Xt at each wave 
t = 1, ..., T. The two components are estimated simultaneously. The model relies on two 
basic assumptions: first, the probability of a specific value of X occurring at time t only 
depends on its value in the previous time point, Xt-1 – the so-called Markov assumption. 
This assumption can be stated formally as follows:
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Xt  taking on a specific 

value xt out of k possible categories. Second, the probability of observing a specific 
value of A at time t only depends on the true value at the same time point – Xt – the 
so-called local independence assumption or — using a term that is more appropriate for 
longitudinal data — independent classification error (ICE) assumption. This assumption 
can be stated formally, as follows:
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probabilities, which satisfy the local independence assumption and are used to estimate question 

reliability in surveys (Bassi et al., 2000; Biemer, 2011; Pankowska et al., 2018, 2020; Pavlopoulos & 

Vermunt, 2015). 

If only three time-points are available, in addition to the two assumptions specified above, further 

restrictions in the form of time-invariant/constant misclassification (measurement error) rates and 

latent transitions rates are required to obtain model identification (Pankowska et al., 2018, 2020; Van 

de Pol & De Leeuw, 1986). Given these assumptions and restrictions, which are required to obtain 

identifiability, the standard, one-indicator HMM can be seen as rather limited in its capacity to model 

realistic error scenarios. While it is possible to relax some of the assumptions when using richer survey 

data (i.e. with more than three data points), the practical applicability of the model remains rather 

limited. To illustrate, even with multiple (𝑡𝑡 >  3) survey waves, one cannot simultaneously model 

both local dependence, which allows for the occurrence of systematic error, as well as time-varying 

measurement and/or structural parameters. It is worthwhile noting that, even models that only 

account for the occurrence of systematic error often suffer from identifiability issues (i.e. are “poorly 

identifiable”). As a result of these limitations, survey researchers have increasingly started using 

extended, multiple-indicators versions of the standard HMM, which are more flexible and allow for 

where Pr(A1 = a1,...,AT = aT) denotes the probability of observing a specific path or 
sequence of survey states, where each state – A1, ..., AT – takes on a specific value – 

a1, ..., aT – out of k possible categories. Combining the Markov and local independence 
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job since the previous survey wave, (b) they reported being employed on a temporary 
basis in the previous round and, (c) they first took part in the survey before the end of 
2009; (iii) the contract question is not asked altogether if (a) no job change occurred 
and (b) the individual previously reported being employed permanently.

 

Figure 3.1- Summary of the interviewing setup in the LFS contract question

While all three scenarios occur in our dataset, our analysis focuses on comparing 
the levels of random and systematic errors when PDI was used with those when INDI 
was used, but PDI would had been applicable if it was not abolished at the end of 
2009. This allows us to take advantage of the natural experiment setup caused by the 
replacement of PDI with INDI at the beginning of 2010. More specifically, we compare 
scenario ii (3.31 percent of cases in our sample), which we refer to as the treatment 
group, to a subset of scenario iii (2.28 percent of cases in our sample) - wherein no job 
change occurred, a temporary contract was reported in the previous wave, and the 
first round of the LFS was conducted after the end of 2009 - which we refer to as the 
counterfactual or the control group.

3.3	 Methodology

3.3.1	 Assessing and correcting for measurement error using hidden Markov 
models (HMMs)
Hidden Markov models (HMMs) are a latent variable modelling technique that can be 
applied to evaluate measurement error in categorical longitudinal survey data (Biemer, 
2011; Pankowska et al., 2018; Pavlopoulos & Vermunt, 2015). Their rise in popularity can 
be attributed to the fact that, unlike other commonly used error assessment methods, 
they do not require the availability of error-free, “gold-standard” validation data that 
are most often unattainable in practice (Biemer & Wiesen, 2002; Pankowska et al., 
2020). In this context, HMMs are used when the (dynamic) quantity of interest, e.g. 
over-time employment transitions, is measured in the panel survey with some degree 
of error. The models allow for the separation of true change from measurement error 
which, in turn, can produce error-corrected estimates of the quantity of interest as 
well as assessing the level of measurement error in the corresponding survey question 
(Biemer, 2011; Pankowska et al., 2018).

The standard HMM, which can be fit to surveys with at least three panel waves, 
consists of two components: (i) the structural component that models the true (latent) 
initial state probabilities X0 and the true (latent) transition probabilities between Xt-1 and 
Xt, where t = 1, ..., T ; and (ii) the measurement component that models the interactions 
of the survey observations (which contain error) At with the true values Xt at each wave 
t = 1, ..., T. The two components are estimated simultaneously. The model relies on two 
basic assumptions: first, the probability of a specific value of X occurring at time t only 
depends on its value in the previous time point, Xt-1 – the so-called Markov assumption. 
This assumption can be stated formally as follows:
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treatment group, to a subset of scenario iii (2.28 percent of cases in our sample) - wherein no job 

change occurred, a temporary contract was reported in the previous wave, and the first round of the 

LFS was conducted after the end of 2009 - which we refer to as the counterfactual or the control group. 

3.3 Methodology 

3.3.1 Assessing and correcting for measurement error using hidden Markov models (HMMs) 
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and the true (latent) transition probabilities between 𝑋𝑋𝑡𝑡−1 and 𝑋𝑋𝑡𝑡, where 𝑡𝑡 =  1, … , 𝑇𝑇; and (ii) the 

measurement component that models the interactions of the survey observations (which contain 

error) 𝐴𝐴 𝑡𝑡 with the true values 𝑋𝑋𝑡𝑡  at each wave 𝑡𝑡 =  1, … , 𝑇𝑇. The two components are estimated 

simultaneously. The model relies on two basic assumptions: first, the probability of a specific value of 

𝑋𝑋 occurring at time t only depends on its value in the previous time point, 𝑋𝑋𝑡𝑡−1 – the so-called Markov 

assumption. This assumption can be stated formally as follows: 

𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑋𝑋1 = 𝑥𝑥1, … , 𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1) = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1) (3.1)

where 𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡  =  𝑥𝑥𝑡𝑡) denotes the probability of the latent state 𝑋𝑋𝑡𝑡  taking on a specific value 𝑥𝑥𝑡𝑡  out of 

𝑘𝑘 possible categories. Second, the probability of observing a specific value of 𝐴𝐴 at time 𝑡𝑡 only depends 
where Pr(Xt  = xt) denotes the probability of the latent state

 
Xt  taking on a specific 

value xt out of k possible categories. Second, the probability of observing a specific 
value of A at time t only depends on the true value at the same time point – Xt – the 
so-called local independence assumption or — using a term that is more appropriate for 
longitudinal data — independent classification error (ICE) assumption. This assumption 
can be stated formally, as follows:
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where 𝑃𝑃𝑃𝑃(𝐴𝐴1  =  𝑎𝑎1, . . . , 𝐴𝐴𝑇𝑇  =  𝑎𝑎𝑇𝑇 ) denotes the probability of observing a specific path or sequence 

of survey states, where each state – 𝐴𝐴1 , . . . , 𝐴𝐴𝑇𝑇  – takes on a specific value  – 𝑎𝑎1 , . . . , 𝑎𝑎𝑇𝑇 – out of 𝑘𝑘 

possible categories. Combining the Markov and local independence assumptions leads to the 

following probability of observing a certain path 𝐴𝐴 =  (𝐴𝐴1 , . . . , 𝐴𝐴𝑇𝑇) in the survey data: 

𝑃𝑃𝑃𝑃(𝐴𝐴 = 𝑎𝑎) = ∑ . . .
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Where 𝑃𝑃𝑃𝑃(𝑋𝑋0  =  𝑥𝑥0) represents the initial state latent probabilities and 

𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1) represents the latent transition probabilities, which follow a first-order 

Markov process. 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) denotes the classification error (also referred to as emission) 

probabilities, which satisfy the local independence assumption and are used to estimate question 

reliability in surveys (Bassi et al., 2000; Biemer, 2011; Pankowska et al., 2018, 2020; Pavlopoulos & 

Vermunt, 2015). 

If only three time-points are available, in addition to the two assumptions specified above, further 

restrictions in the form of time-invariant/constant misclassification (measurement error) rates and 

latent transitions rates are required to obtain model identification (Pankowska et al., 2018, 2020; Van 

de Pol & De Leeuw, 1986). Given these assumptions and restrictions, which are required to obtain 

identifiability, the standard, one-indicator HMM can be seen as rather limited in its capacity to model 

realistic error scenarios. While it is possible to relax some of the assumptions when using richer survey 

data (i.e. with more than three data points), the practical applicability of the model remains rather 

limited. To illustrate, even with multiple (𝑡𝑡 >  3) survey waves, one cannot simultaneously model 

both local dependence, which allows for the occurrence of systematic error, as well as time-varying 

measurement and/or structural parameters. It is worthwhile noting that, even models that only 

account for the occurrence of systematic error often suffer from identifiability issues (i.e. are “poorly 

identifiable”). As a result of these limitations, survey researchers have increasingly started using 

extended, multiple-indicators versions of the standard HMM, which are more flexible and allow for 

where Pr(A1 = a1,...,AT = aT) denotes the probability of observing a specific path or 
sequence of survey states, where each state – A1, ..., AT – takes on a specific value – 

a1, ..., aT – out of k possible categories. Combining the Markov and local independence 
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assumptions leads to the following probability of observing a certain path A = (A1, ..., AT) 
in the survey data:
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probabilities, which satisfy the local independence assumption and are used to estimate question 

reliability in surveys (Bassi et al., 2000; Biemer, 2011; Pankowska et al., 2018, 2020; Pavlopoulos & 

Vermunt, 2015). 

If only three time-points are available, in addition to the two assumptions specified above, further 

restrictions in the form of time-invariant/constant misclassification (measurement error) rates and 

latent transitions rates are required to obtain model identification (Pankowska et al., 2018, 2020; Van 

de Pol & De Leeuw, 1986). Given these assumptions and restrictions, which are required to obtain 

identifiability, the standard, one-indicator HMM can be seen as rather limited in its capacity to model 

realistic error scenarios. While it is possible to relax some of the assumptions when using richer survey 

data (i.e. with more than three data points), the practical applicability of the model remains rather 

limited. To illustrate, even with multiple (𝑡𝑡 >  3) survey waves, one cannot simultaneously model 

both local dependence, which allows for the occurrence of systematic error, as well as time-varying 

measurement and/or structural parameters. It is worthwhile noting that, even models that only 

account for the occurrence of systematic error often suffer from identifiability issues (i.e. are “poorly 

identifiable”). As a result of these limitations, survey researchers have increasingly started using 

extended, multiple-indicators versions of the standard HMM, which are more flexible and allow for 

Where Pr(X0  = x0) represents the initial state latent probabilities and Pr(Xt  = xt│Xt-1 = xt-1) 
represents the latent transition probabilities, which follow a first-order Markov process. 
Pr(At = at│Xt = xt)  denotes the classification error (also referred to as emission) 
probabilities, which satisfy the local independence assumption and are used to estimate 
question reliability in surveys (Bassi et al., 2000; Biemer, 2011; Pankowska et al., 2018, 
2020; Pavlopoulos & Vermunt, 2015).

If only three time-points are available, in addition to the two assumptions specified 
above, further restrictions in the form of time-invariant/constant misclassification 
(measurement error) rates and latent transitions rates are required to obtain model 
identification (Pankowska et al., 2018, 2020; Van de Pol & De Leeuw, 1986). Given these 
assumptions and restrictions, which are required to obtain identifiability, the standard, 
one-indicator HMM can be seen as rather limited in its capacity to model realistic error 
scenarios. While it is possible to relax some of the assumptions when using richer 
survey data (i.e. with more than three data points), the practical applicability of the 
model remains rather limited. To illustrate, even with multiple (t > 3) survey waves, one 
cannot simultaneously model both local dependence, which allows for the occurrence 
of systematic error, as well as time-varying measurement and/or structural parameters. 
It is worthwhile noting that, even models that only account for the occurrence of 
systematic error often suffer from identifiability issues (i.e. are “poorly identifiable”). 
As a result of these limitations, survey researchers have increasingly started using 
extended, multiple-indicators versions of the standard HMM, which are more flexible 
and allow for model specifications that are more reflective of reality (Pankowska et al., 
2018, 2020; Pavlopoulos & Vermunt, 2015).

A basic two-indicator HMM, which can be obtained, for instance, by linking survey 
data to register/administrative records, has the following probability of observing 
certain paths A = (A1, ..., AT) and B = (B1, ..., BT):
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                                 ∏ 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡)
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Where the latent initial state probabilities — 𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0), the latent transition probabilities —

𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0), and the survey emission probabilities — 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡)— are specified in the 

same way as in the univariate/one-indicator HMM described above. This extended specification also 

includes the register emission probabilities — 𝑃𝑃𝑃𝑃(𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) — that, in a similar way to the 

survey emission probabilities, also satisfy the local independence assumption. While this is the most 

basic two-indicator HMM specification, the model can be easily extended further by e.g. (i) accounting 

for (un)observed heterogeneity and time dependency in the transition and/ or emission probabilities 

and (ii) relaxing the local independence assumption for the survey and/or register data. 

3.3.2 Data and the empirical model 

In our analysis, we make use of an extended HMM specification with two indicators that come from 

two independent data sources (i.e. the Dutch LFS and Employment Register). Such a specification 

allows us to model the possibility that PDI leads to more systematic error in the survey data and, at 

the same time, allowing the latent transition probabilities to depend on time and personal 

characteristics (following Pankowska et al., 2018 and Pavlopoulos and Vermunt, 2015).9 

To obtain two indicators, we link the LFS data to records from the Dutch Employment Register (ER). 

The ER is an administrative dataset that combines information from various sources but 

predominantly consists of tax related data provided to the Dutch Tax Authorities by employers. It is 

 
9 While we also considered a model specification which allows for time-varying (systematic) error parameters 
(i.e. wave-heterogeneous question reliability), the fit of this model was significantly worse than of the one with 
time-invariant measurement parameters. Therefore, the findings we discuss in the results section are based on 
a model assuming constant reliability. 

Where the latent initial state probabilities — Pr(X0 = x0), the latent transition probabil-
ities —

 
Pr(X0  = x0), and the survey emission probabilities — Pr(At = at│Xt = xt) — are 

specified in the same way as in the univariate/one-indicator HMM described above. 
This extended specification also includes the register emission probabilities — 
Pr(Bt = bt│Xt = xt) — that, in a similar way to the survey emission probabilities, also 
satisfy the local independence assumption. While this is the most basic two-indicator 
HMM specification, the model can be easily extended further by e.g. (i) accounting for 
(un)observed heterogeneity and time dependency in the transition and/ or emission 
probabilities and (ii) relaxing the local independence assumption for the survey and/
or register data.

3.3.2	 Data and the empirical model
In our analysis, we make use of an extended HMM specification with two indicators 
that come from two independent data sources (i.e. the Dutch LFS and Employment 
Register). Such a specification allows us to model the possibility that PDI leads to more 
systematic error in the survey data and, at the same time, allowing the latent transition 
probabilities to depend on time and personal characteristics (following Pankowska et 
al., 2018 and Pavlopoulos and Vermunt, 2015).9

To obtain two indicators, we link the LFS data to records from the Dutch Employment 
Register (ER). The ER is an administrative dataset that combines information from 
various sources but predominantly consists of tax related data provided to the Dutch 
Tax Authorities by employers. It is managed by the Dutch Employee Insurance Agency 
(UWV) and contains monthly information for all insured employees in the Netherlands 
on such individual-level characteristics as wages, benefits, and labor relations.10 The 
record linkage is performed at the individual level and the data from both sources are 
linked to the population register (PR) of the Netherlands. For the LFS, the linkage key is 
based on a combination of birth date, gender, postal code and house number. For the 
ER it is based on the social security number (BSN),11 birth date, gender, postal code and 
house number. The linkage effectiveness of this procedure, i.e. the percentage of linked 
records in the LFS, is estimated by Statistics Netherlands to be around 98 percent. In the 
following we will assume perfect record linkage. Previous research has shown that even 
if there is linkage error, its effects on the estimates of HMMs is negligible unless this 
linkage error is large and strongly correlated with the process of interest (Pankowska 
et al., 2020). This is definitely not the case in our data.

9	 While we also considered a model specification which allows for time-varying (systematic) error pa-
rameters (i.e. wave-heterogeneous question reliability), the fit of this model was significantly worse 
than of the one with time-invariant measurement parameters. Therefore, the findings we discuss in 
the results section are based on a model assuming constant reliability.

10	 https://www.cbs.nl/nl-nl/achtergrond/2010/35/polisadministratie
11	 A unique personal number allocated to everyone registered in the Netherland; https://www.govern-

ment.nl/topics/identificationdocuments/contents/the-citizen-service-number

3



52 53

Chapter 3  Dependent interviewing: a remedy or a curse for measurement error in surveys?

assumptions leads to the following probability of observing a certain path A = (A1, ..., AT) 
in the survey data:
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on the true value at the same time point – 𝑋𝑋𝑡𝑡– the so-called local independence assumption or — 

using a term that is more appropriate for longitudinal data — independent classification error (ICE) 

assumption. This assumption can be stated formally, as follows: 

𝑃𝑃𝑃𝑃(𝐴𝐴1 = 𝑎𝑎1,   … ,  𝐴𝐴𝑇𝑇 = 𝑎𝑎𝑇𝑇|  𝑋𝑋1 = 𝑥𝑥1 , … ,  𝑋𝑋𝑇𝑇 = 𝑥𝑥𝑇𝑇) =   ∏ 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) 
𝑇𝑇

𝑡𝑡=1
          (3.2)                  

where 𝑃𝑃𝑃𝑃(𝐴𝐴1  =  𝑎𝑎1, . . . , 𝐴𝐴𝑇𝑇  =  𝑎𝑎𝑇𝑇 ) denotes the probability of observing a specific path or sequence 

of survey states, where each state – 𝐴𝐴1 , . . . , 𝐴𝐴𝑇𝑇  – takes on a specific value  – 𝑎𝑎1 , . . . , 𝑎𝑎𝑇𝑇 – out of 𝑘𝑘 

possible categories. Combining the Markov and local independence assumptions leads to the 

following probability of observing a certain path 𝐴𝐴 =  (𝐴𝐴1 , . . . , 𝐴𝐴𝑇𝑇) in the survey data: 

𝑃𝑃𝑃𝑃(𝐴𝐴 = 𝑎𝑎) = ∑ . . .
𝑘𝑘

𝑥𝑥0=1
∑ 𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0) ∏ 𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1)

𝑇𝑇

𝑡𝑡=1
∏ 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡)

𝑇𝑇

𝑡𝑡=1

𝑘𝑘

𝑥𝑥𝑇𝑇=1
 (3.3)                  

Where 𝑃𝑃𝑃𝑃(𝑋𝑋0  =  𝑥𝑥0) represents the initial state latent probabilities and 

𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1) represents the latent transition probabilities, which follow a first-order 

Markov process. 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) denotes the classification error (also referred to as emission) 

probabilities, which satisfy the local independence assumption and are used to estimate question 

reliability in surveys (Bassi et al., 2000; Biemer, 2011; Pankowska et al., 2018, 2020; Pavlopoulos & 

Vermunt, 2015). 

If only three time-points are available, in addition to the two assumptions specified above, further 

restrictions in the form of time-invariant/constant misclassification (measurement error) rates and 

latent transitions rates are required to obtain model identification (Pankowska et al., 2018, 2020; Van 

de Pol & De Leeuw, 1986). Given these assumptions and restrictions, which are required to obtain 

identifiability, the standard, one-indicator HMM can be seen as rather limited in its capacity to model 

realistic error scenarios. While it is possible to relax some of the assumptions when using richer survey 

data (i.e. with more than three data points), the practical applicability of the model remains rather 

limited. To illustrate, even with multiple (𝑡𝑡 >  3) survey waves, one cannot simultaneously model 

both local dependence, which allows for the occurrence of systematic error, as well as time-varying 

measurement and/or structural parameters. It is worthwhile noting that, even models that only 

account for the occurrence of systematic error often suffer from identifiability issues (i.e. are “poorly 

identifiable”). As a result of these limitations, survey researchers have increasingly started using 

extended, multiple-indicators versions of the standard HMM, which are more flexible and allow for 

Where Pr(X0  = x0) represents the initial state latent probabilities and Pr(Xt  = xt│Xt-1 = xt-1) 
represents the latent transition probabilities, which follow a first-order Markov process. 
Pr(At = at│Xt = xt)  denotes the classification error (also referred to as emission) 
probabilities, which satisfy the local independence assumption and are used to estimate 
question reliability in surveys (Bassi et al., 2000; Biemer, 2011; Pankowska et al., 2018, 
2020; Pavlopoulos & Vermunt, 2015).

If only three time-points are available, in addition to the two assumptions specified 
above, further restrictions in the form of time-invariant/constant misclassification 
(measurement error) rates and latent transitions rates are required to obtain model 
identification (Pankowska et al., 2018, 2020; Van de Pol & De Leeuw, 1986). Given these 
assumptions and restrictions, which are required to obtain identifiability, the standard, 
one-indicator HMM can be seen as rather limited in its capacity to model realistic error 
scenarios. While it is possible to relax some of the assumptions when using richer 
survey data (i.e. with more than three data points), the practical applicability of the 
model remains rather limited. To illustrate, even with multiple (t > 3) survey waves, one 
cannot simultaneously model both local dependence, which allows for the occurrence 
of systematic error, as well as time-varying measurement and/or structural parameters. 
It is worthwhile noting that, even models that only account for the occurrence of 
systematic error often suffer from identifiability issues (i.e. are “poorly identifiable”). 
As a result of these limitations, survey researchers have increasingly started using 
extended, multiple-indicators versions of the standard HMM, which are more flexible 
and allow for model specifications that are more reflective of reality (Pankowska et al., 
2018, 2020; Pavlopoulos & Vermunt, 2015).

A basic two-indicator HMM, which can be obtained, for instance, by linking survey 
data to register/administrative records, has the following probability of observing 
certain paths A = (A1, ..., AT) and B = (B1, ..., BT):
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model specifications that are more reflective of reality (Pankowska et al., 2018, 2020; Pavlopoulos & 

Vermunt, 2015). 

A basic two-indicator HMM, which can be obtained, for instance, by linking survey data to 

register/administrative records, has the following probability of observing certain paths 𝐴𝐴 =
 (𝐴𝐴1, . . . , 𝐴𝐴𝑇𝑇) and 𝐵𝐵 =  (𝐵𝐵1, . . . , 𝐵𝐵𝑇𝑇): 

𝑃𝑃𝑃𝑃(𝐴𝐴 = 𝑎𝑎, 𝐵𝐵 = 𝑏𝑏) = ∑ . . .
𝑘𝑘

𝑥𝑥0=1
∑ 𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0) ∏ 𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1)

𝑇𝑇

𝑡𝑡=1

𝑘𝑘

𝑥𝑥𝑇𝑇=1
 

 

(3.4)                  

                                 ∏ 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
∏ 𝑃𝑃𝑃𝑃(𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡)

𝑇𝑇

𝑡𝑡=1
                 

Where the latent initial state probabilities — 𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0), the latent transition probabilities —

𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0), and the survey emission probabilities — 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡)— are specified in the 

same way as in the univariate/one-indicator HMM described above. This extended specification also 

includes the register emission probabilities — 𝑃𝑃𝑃𝑃(𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡) — that, in a similar way to the 

survey emission probabilities, also satisfy the local independence assumption. While this is the most 

basic two-indicator HMM specification, the model can be easily extended further by e.g. (i) accounting 

for (un)observed heterogeneity and time dependency in the transition and/ or emission probabilities 

and (ii) relaxing the local independence assumption for the survey and/or register data. 

3.3.2 Data and the empirical model 

In our analysis, we make use of an extended HMM specification with two indicators that come from 

two independent data sources (i.e. the Dutch LFS and Employment Register). Such a specification 

allows us to model the possibility that PDI leads to more systematic error in the survey data and, at 

the same time, allowing the latent transition probabilities to depend on time and personal 

characteristics (following Pankowska et al., 2018 and Pavlopoulos and Vermunt, 2015).9 

To obtain two indicators, we link the LFS data to records from the Dutch Employment Register (ER). 

The ER is an administrative dataset that combines information from various sources but 

predominantly consists of tax related data provided to the Dutch Tax Authorities by employers. It is 

 
9 While we also considered a model specification which allows for time-varying (systematic) error parameters 
(i.e. wave-heterogeneous question reliability), the fit of this model was significantly worse than of the one with 
time-invariant measurement parameters. Therefore, the findings we discuss in the results section are based on 
a model assuming constant reliability. 

Where the latent initial state probabilities — Pr(X0 = x0), the latent transition probabil-
ities —

 
Pr(X0  = x0), and the survey emission probabilities — Pr(At = at│Xt = xt) — are 

specified in the same way as in the univariate/one-indicator HMM described above. 
This extended specification also includes the register emission probabilities — 
Pr(Bt = bt│Xt = xt) — that, in a similar way to the survey emission probabilities, also 
satisfy the local independence assumption. While this is the most basic two-indicator 
HMM specification, the model can be easily extended further by e.g. (i) accounting for 
(un)observed heterogeneity and time dependency in the transition and/ or emission 
probabilities and (ii) relaxing the local independence assumption for the survey and/
or register data.

3.3.2	 Data and the empirical model
In our analysis, we make use of an extended HMM specification with two indicators 
that come from two independent data sources (i.e. the Dutch LFS and Employment 
Register). Such a specification allows us to model the possibility that PDI leads to more 
systematic error in the survey data and, at the same time, allowing the latent transition 
probabilities to depend on time and personal characteristics (following Pankowska et 
al., 2018 and Pavlopoulos and Vermunt, 2015).9

To obtain two indicators, we link the LFS data to records from the Dutch Employment 
Register (ER). The ER is an administrative dataset that combines information from 
various sources but predominantly consists of tax related data provided to the Dutch 
Tax Authorities by employers. It is managed by the Dutch Employee Insurance Agency 
(UWV) and contains monthly information for all insured employees in the Netherlands 
on such individual-level characteristics as wages, benefits, and labor relations.10 The 
record linkage is performed at the individual level and the data from both sources are 
linked to the population register (PR) of the Netherlands. For the LFS, the linkage key is 
based on a combination of birth date, gender, postal code and house number. For the 
ER it is based on the social security number (BSN),11 birth date, gender, postal code and 
house number. The linkage effectiveness of this procedure, i.e. the percentage of linked 
records in the LFS, is estimated by Statistics Netherlands to be around 98 percent. In the 
following we will assume perfect record linkage. Previous research has shown that even 
if there is linkage error, its effects on the estimates of HMMs is negligible unless this 
linkage error is large and strongly correlated with the process of interest (Pankowska 
et al., 2020). This is definitely not the case in our data.

9	 While we also considered a model specification which allows for time-varying (systematic) error pa-
rameters (i.e. wave-heterogeneous question reliability), the fit of this model was significantly worse 
than of the one with time-invariant measurement parameters. Therefore, the findings we discuss in 
the results section are based on a model assuming constant reliability.

10	 https://www.cbs.nl/nl-nl/achtergrond/2010/35/polisadministratie
11	 A unique personal number allocated to everyone registered in the Netherland; https://www.govern-

ment.nl/topics/identificationdocuments/contents/the-citizen-service-number
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Table 3.1- Distribution of observations by DI eligibility (LFS year, job change in t and contract 
type in t-1) (N = 430,375; in %)

Job change
LFS contract at t-1

2009 2010

Permanent Temporary Other Permanent Temporary Other

Yes 0.46 0.23 0.62 0.23 0.13 0.44

No 55.15 3.31 0.33 36.36 2.28 0.46

Note: The percentages correspond to the shares of specific groups in the overall sample and are 
calculated by dividing the number of individuals who fulfil the respective criteria by the overall 
sample size; the percentages of treatment and control groups are provided in bold

Our linked dataset consists of 86,075 LFS respondents of prime working age (i.e. 25 
to 55 years old) who first participated in the survey either in 2009 (PDI in place) or 2010 
(PDI abolished). It contains quarterly information on each individual for 5 time points, 
leading to a total sample size of 430,375 observations. Both the survey and register data 
are subject to item and unit nonresponse; we assume all missing values to be missing at 
random (MAR) given the model (Little & Rubin, 2019). Table 3.1 provides the distribution 
of observations by the conditions determining PDI eligibility. As can be seen from the 
table, overall PDI was used in a rather small fraction of the sample. That is, in approx. 
3.3 percent of the cases, individuals were asked the question in a PDI fashion (i.e. 3.3 
percent of the observations belong to the treatment group); in around 2.3 percent of 
the cases, PDI would have been used if it were not abolished (i.e. 2.3 percent belong 
to the control group/counterfactual).

In this linked survey and register dataset, the probability of observing particular 
employment contract paths — A  and B —which depend on observed individual-level 
heterogeneity (Z) and the interviewing regime used (W), according to our two-indicator 
HMM, can be formalized as follows:
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In this linked survey and register dataset, the probability of observing particular employment 

contract paths — 𝐴𝐴 and 𝐵𝐵 —which depend on observed individual-level heterogeneity (𝑍𝑍) and the 

interviewing regime used (𝑊𝑊), according to our two-indicator HMM, can be formalized as follows: 

𝑃𝑃𝑃𝑃(𝐴𝐴 = 𝑎𝑎, 𝐵𝐵 = 𝑏𝑏|𝑍𝑍, 𝑊𝑊) = ∑ . . .
𝑘𝑘

𝑥𝑥0=1
∑ 𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0|𝑍𝑍) ∏ 𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1, 𝑍𝑍)

𝑇𝑇

𝑡𝑡=1

𝑘𝑘

𝑥𝑥𝑇𝑇=1
  

                                         ∏ 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡, 𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1, 𝐴𝐴𝑡𝑡−1 = 𝑎𝑎𝑡𝑡−1, 𝑊𝑊)
𝑇𝑇

𝑡𝑡=1
 

                                      ∏ 𝑃𝑃𝑃𝑃(𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1, 𝐵𝐵𝑡𝑡−1 = 𝑏𝑏𝑡𝑡−1)
𝑇𝑇

𝑡𝑡=1

(3.5)                  

 

where the (latent) initial state probabilities and transition rates — 𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0|𝑍𝑍) and 

𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1, 𝑍𝑍) — depend on observed individual level heterogeneity (i.e. the covariates 

education, gender and ethnicity) and the latent transitions also depend on time (i.e. are time-

heterogeneous and depend on 𝑡𝑡 and 𝑡𝑡2). The inclusion of covariates in the structural part of the model 

implies that the Markov assumption holds conditional on these covariates. The emission probabilities 

for both the survey and register data — 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡, 𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1, 𝐴𝐴𝑡𝑡−1 = 𝑎𝑎𝑡𝑡−1, 𝑊𝑊) and 

𝑃𝑃𝑃𝑃(𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑡𝑡|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑋𝑋𝑡𝑡−1 = 𝑥𝑥𝑡𝑡−1, 𝐵𝐵𝑡𝑡−1 = 𝑏𝑏𝑡𝑡−1) — relax the local independence assumption allowing 

for systematic error in both data sources. In more detail, for both the LFS and the ER, we allow the 

error probabilities to also depend on the lagged true contract — 𝑋𝑋𝑡𝑡−1— and the lagged observed 

contract — 𝐴𝐴𝑡𝑡−1or 𝐵𝐵𝑡𝑡−1. Additionally, to compare the error levels under PDI and INDI, the emission 

probabilities also depend on the covariate 𝑊𝑊, which determines the interviewing regime used and can 

take 3 values: 

• 0 (ref. category) INDI was used but PDI would have been used if it was not abolished; 

• 1 INDI was used and would have been used regardless of whether DI had been abolished; 

• 2 PDI was used. 

In our analysis, we focus on comparing the error levels under PDI to those where PDI would have been 

used (i.e. category 2 vs. 0). 

For the survey data, we use a restricted model that only allows for systematic error in situations where 

the errors are a consequence of the phenomena of satisficing and/or motivated misreporting. 

Specifically, the LFS log-linear error parameters take the following form 𝛼𝛼 𝑎𝑎𝑡𝑡,𝑥𝑥𝑡𝑡 +  𝛽𝛽𝑎𝑎𝑡𝑡,𝑎𝑎𝑡𝑡 −1,𝑥𝑥𝑡𝑡,𝑥𝑥𝑡𝑡 −1  +
𝛼𝛼 𝑎𝑎𝑡𝑡,𝑥𝑥𝑡𝑡.𝑤𝑤  +  𝛽𝛽𝑎𝑎𝑡𝑡,𝑎𝑎𝑡𝑡 −1,𝑥𝑥𝑡𝑡,𝑥𝑥𝑡𝑡 −1,𝑤𝑤. In this specification, the term 𝛼𝛼 𝑎𝑎𝑡𝑡,𝑥𝑥𝑡𝑡 +  𝛼𝛼 𝑎𝑎𝑡𝑡,𝑥𝑥𝑡𝑡.𝑤𝑤 represents the random 

where the (latent) initial state probabilities and transition rates — Pr(X0 = x0│Z)
and Pr(Xt = xt│Xt-1 = xt-1,Z) — depend on observed individual level heterogeneity (i.e. 
the covariates education, gender and ethnicity) and the latent transitions also depend 
on time (i.e. are time-heterogeneous and depend on t and t2). The inclusion of covariates 
in the structural part of the model implies that the Markov assumption holds conditional 

on these covariates. The emission probabilities for both the survey and register data — 
Pr(At = at│Xt = xt, Xt-1 = xt-1, At-1 = at-1, W) and Pr(Bt = bt│Xt = xt, Xt-1 = xt-1, Bt-1 = bt-1,) 
— relax the local independence assumption allowing for systematic error in both data 
sources. In more detail, for both the LFS and the ER, we allow the error probabilities to 
also depend on the lagged true contract —

 
Xt-1 — and the lagged observed contract — 

At-1 or Bt-1. Additionally, to compare the error levels under PDI and INDI, the emission 
probabilities also depend on the covariate W, which determines the interviewing regime 
used and can take 3 values:
•	 0 (ref. category) INDI was used but PDI would have been used if it was not 

abolished;
•	 1 INDI was used and would have been used regardless of whether DI had been 

abolished;
•	 2 PDI was used.

In our analysis, we focus on comparing the error levels under PDI to those where 
PDI would have been used (i.e. category 2 vs. 0).

For the survey data, we use a restricted model that only allows for systematic error 
in situations where the errors are a consequence of the phenomena of satisficing and/
or motivated misreporting. Specifically, the LFS log-linear error parameters take the 
following form αat,xt+ βat,at-1,xt,xt-1 + αat,xt,w + βat,at-1,xt,xt-1,w. In this specification, the 
term αat,xt+ αat,xt,w represents the random component of the error while the term 
βat,at-1,xt,xt-1 + βat,at-1,xt,xt-1,w represents the systematic component of the error. In both 
cases, the first parts of the expression (i.e. αat,xt and βat,at-1,xt,xt-1) represent the “baseline” 
random/systematic error probability while the second parts (i.e. αat,xt,w and βat,at-1,xt,xt-1,w) 
indicate how the use of different interviewing regimes affects the probabilities of 
obtaining random/systematic error. Put simply, to compare the effect of using PDI 
as opposed to standard INDI, we estimate additional random and systematic error 
parameters for when the contract question was asked in a PDI fashion. The parameters 
of the systematic error components are freed when the same error can be repeated 
due to the “remind, still” PDI — i.e. when At = At-1 = temp ≠ Xt = Xt-1 = {perm,other} 
or when it might cause spurious stability; that is, in a situation where an individual 
correctly reports having a temporary contract in t - 1, then experiences a true transition 
between t - 1 and t but erroneously confirms in t that she/he is still employed on a 
temporary basis — i.e. when At-1 = Xt-1 = temp & At = temp ≠ Xt = {perm,other}. In all 
other instances the systematic error parameters are set to 0.

For the register data, we only allow for the repetition of the same error over time, 
as previous research has shown the ER to suffer predominantly from this type of error 
(Pankowska et al., 2018; Pavlopoulos & Vermunt, 2015). That is, for the error parameters 
— αbt,xt + βbt,bt -1,xt,xt -1 — we estimate the systematic component — βbt,bt -1,xt,xt -1— in 
situations where Bt = Bt-1 ≠ Xt = Xt-1; in all other cases we set this component to 0. 
Appendix 3.A lists all possible systematic error parameters (i.e. those estimated and 
those restricted to 0) and specifies which ones were freed and which ones were set to 
0 in both the LFS and the ER data.
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Table 3.1- Distribution of observations by DI eligibility (LFS year, job change in t and contract 
type in t-1) (N = 430,375; in %)

Job change
LFS contract at t-1

2009 2010

Permanent Temporary Other Permanent Temporary Other

Yes 0.46 0.23 0.62 0.23 0.13 0.44

No 55.15 3.31 0.33 36.36 2.28 0.46

Note: The percentages correspond to the shares of specific groups in the overall sample and are 
calculated by dividing the number of individuals who fulfil the respective criteria by the overall 
sample size; the percentages of treatment and control groups are provided in bold

Our linked dataset consists of 86,075 LFS respondents of prime working age (i.e. 25 
to 55 years old) who first participated in the survey either in 2009 (PDI in place) or 2010 
(PDI abolished). It contains quarterly information on each individual for 5 time points, 
leading to a total sample size of 430,375 observations. Both the survey and register data 
are subject to item and unit nonresponse; we assume all missing values to be missing at 
random (MAR) given the model (Little & Rubin, 2019). Table 3.1 provides the distribution 
of observations by the conditions determining PDI eligibility. As can be seen from the 
table, overall PDI was used in a rather small fraction of the sample. That is, in approx. 
3.3 percent of the cases, individuals were asked the question in a PDI fashion (i.e. 3.3 
percent of the observations belong to the treatment group); in around 2.3 percent of 
the cases, PDI would have been used if it were not abolished (i.e. 2.3 percent belong 
to the control group/counterfactual).

In this linked survey and register dataset, the probability of observing particular 
employment contract paths — A  and B —which depend on observed individual-level 
heterogeneity (Z) and the interviewing regime used (W), according to our two-indicator 
HMM, can be formalized as follows:
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In our analysis, we focus on comparing the error levels under PDI to those where PDI would have been 
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•	 0 (ref. category) INDI was used but PDI would have been used if it was not 
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•	 2 PDI was used.

In our analysis, we focus on comparing the error levels under PDI to those where 
PDI would have been used (i.e. category 2 vs. 0).

For the survey data, we use a restricted model that only allows for systematic error 
in situations where the errors are a consequence of the phenomena of satisficing and/
or motivated misreporting. Specifically, the LFS log-linear error parameters take the 
following form αat,xt+ βat,at-1,xt,xt-1 + αat,xt,w + βat,at-1,xt,xt-1,w. In this specification, the 
term αat,xt+ αat,xt,w represents the random component of the error while the term 
βat,at-1,xt,xt-1 + βat,at-1,xt,xt-1,w represents the systematic component of the error. In both 
cases, the first parts of the expression (i.e. αat,xt and βat,at-1,xt,xt-1) represent the “baseline” 
random/systematic error probability while the second parts (i.e. αat,xt,w and βat,at-1,xt,xt-1,w) 
indicate how the use of different interviewing regimes affects the probabilities of 
obtaining random/systematic error. Put simply, to compare the effect of using PDI 
as opposed to standard INDI, we estimate additional random and systematic error 
parameters for when the contract question was asked in a PDI fashion. The parameters 
of the systematic error components are freed when the same error can be repeated 
due to the “remind, still” PDI — i.e. when At = At-1 = temp ≠ Xt = Xt-1 = {perm,other} 
or when it might cause spurious stability; that is, in a situation where an individual 
correctly reports having a temporary contract in t - 1, then experiences a true transition 
between t - 1 and t but erroneously confirms in t that she/he is still employed on a 
temporary basis — i.e. when At-1 = Xt-1 = temp & At = temp ≠ Xt = {perm,other}. In all 
other instances the systematic error parameters are set to 0.

For the register data, we only allow for the repetition of the same error over time, 
as previous research has shown the ER to suffer predominantly from this type of error 
(Pankowska et al., 2018; Pavlopoulos & Vermunt, 2015). That is, for the error parameters 
— αbt,xt + βbt,bt -1,xt,xt -1 — we estimate the systematic component — βbt,bt -1,xt,xt -1— in 
situations where Bt = Bt-1 ≠ Xt = Xt-1; in all other cases we set this component to 0. 
Appendix 3.A lists all possible systematic error parameters (i.e. those estimated and 
those restricted to 0) and specifies which ones were freed and which ones were set to 
0 in both the LFS and the ER data.
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Figure 3.2- Path diagram of the two-indicator HMM with serially correlated error in the survey 
and register data and covariate dependent latent initial state and transition probabilities

In our model, k runs from 1 to 3 and represents the number of contract type 
categories {permanent, temporary, other}; T runs from 1 to 5 and corresponds to the 
months in which the (quarterly) survey took place. The model is estimated in the Latent 
GOLD software (version 4.5), using the Baum-Welch algorithm, which is an adapted 
expectation-maximization (EM) procedure (for further details about this process see 
McLachlan and Krishnan, 2008 and Pankowska et al., 2020). A path diagram of the 
model is provided in Figure 3.2.

3.4	 Results

In this section, we first investigate whether the use of PDI, as shown by previous studies, 
indeed lowers the occurrence of random measurement error. We then look at whether, 
as hypothesized, PDI also leads to higher incidence of systematic error. In doing so, we 
compare the corresponding measurement error parameter estimates obtained when 
(i) PDI was used in 2009 to (ii) those obtained when INDI was applied in 2010 to cases 
that would have been eligible for PDI had it not been abolished. To reiterate, both 
scenarios include observations in which LFS respondents in t - 1 reported having a 
temporary contract and in t stated that they did not change their job. Therefore, all of 
these individuals fulfilled the criteria for PDI. However, only those who first participated 
in the survey in 2009 were actually asked the question in a PDI fashion; individuals who 
started the LFS in 2010 were subject to INDI. Table 3.2 presents the estimates of the 
random error parameters under PDI, where the reference category is “INDI would have 
been PDI”. When investigating the effect of PDI on random error, we estimated four 
additional error parameters when PDI is used (compared to INDI): reporting temporary 
in the LFS given that the true contract is permanent or other, and reporting permanent 

or other given it is temporary. The remaining two parameters (permanent — other 
and other — permanent) were restricted to 0 as PDI was specifically applied when a 
temporary contract was reported and, therefore, should not have any effect in these 
two error scenarios.

Table 3.2- Random measurement error parameter estimates

LFS contract True contract Log-linear 
parameter

S.E. Sig.

Temporary Permanent 10.25 12.52 0.41
Permanent Temporary -0.64 0.10 0.00
Other Temporary -0.47 0.20 0.02
Temporary Other 18.44 17.90 0.30

As can be seen from Table 3.2, the use of PDI in the LFS reduced the occurrence 
of random measurement error in instances where respondents erroneously reported 
to hold a permanent or “other” type of contract while in reality they were employed 
on a temporary basis (β = -0.64, p = 0.00 and β = -0.47, p = 0.02, respectively). More 
specifically, when asked the question in a PDI fashion compared to INDI, an LFS 
respondent, whose true contract at time t is temporary, is almost twice less likely to 
falsely report having a permanent contract (OR = 1.90) and slightly over 1.5 times less 
likely to report having “other” type of contract (OR = 1.60).

The probabilities of misreporting a contract type as temporary while in reality it is 
either permanent or other seem unaffected by PDI (β = 10.25, p = 0.41 and β = 18.44, 
p = 0.30, respectively).12 The lack of significant effects when the true contract type is 
either permanent or other is to be expected given how this interviewing technique was 
set up in the LFS and given the eligibility criteria for PDI. More specifically, as individuals 
are only subject to PDI if they reported having a temporary contract in the previous 
wave, PDI will only decrease the probability of misreporting a true temporary contract 
as permanent or “other”.

Table 3.3- Systematic measurement error parameter estimates

LFS contract
(in t)

LFS contract
(in t-1)

True contract
(in t)

True contract
(in t-1)

Log-linear 
parameter

S.E. Sig.

Temporary Temporary Permanent Permanent -9.45 12.53 0.45
Temporary Temporary Other Other 19.43 17.98 0.28
Temporary Temporary Permanent Temporary 2.23 8.37 0.79
Temporary Temporary Other Temporary 23.03 17.90 0.69

12	 It is worthwhile mentioning that the very high coefficient estimates in this case are caused by the fact 
that the baseline probabilities (i.e. under INDI) of observing temporary given that the true contract type 
is either permanent or `other’ are extremely low. Therefore, even a small increase in these probabilities 
in absolute terms can have a substantial relative effect.
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To assess whether DI leads to higher rates of systematic error, we examine the 
parameter estimates that correspond to situations (i) where the erroneous reporting 
of a temporary contract can be repeated, and (ii) where the reporting of temporary 
contract is correct in t - 1 but then becomes incorrect in t due to a true transition that 
was not reported. As can be inferred from Table 3.3, which provides the corresponding 
parameter estimates, PDI does not seem to increase the probability of obtaining 
systematic error. It appears that PDI leads to neither error autocorrelation nor to 
spurious stability (i.e. falsely confirming the previously reported answer still holds while 
a true change occurred).

In more detail, the error parameter estimates corresponding to a situation whereby 
an individual falsely reports having a temporary contract in t - 1 and t while in both time 
points the true contract type is either permanent or other are insignificant (β = -9.45, 
p = 0.45 and β = -19.43, p = 0.28, respectively). Similarly, the probabilities of correctly 
reporting a temporary contract in t - 1, but failing to report a true transition to either 
permanent or temporary employment in t (and confirming to still hold a temporary 
contract instead) also seem unaffected by PDI (β = 2.23, p = 0.79 and β = 23.03, p = 0.69, 
respectively).13 The lack of an effect on the systematic component of the error, in par-
ticular for the scenarios whereby the same error can be repeated, might be due to the 
fact that even at baseline (i.e. when using standard INDI), there is an extremely high 
probability of an LFS respondent repeating the same error if no true change occurred 
(i.e. β = 13.6, p = 0.03  when LFSt = LFSt-1 = temp ≠ TRUEt = TRUEt-1 = perm and 
β = 19.5, p = 0.03 when LFSt  = LFSt-1 = temp ≠ TRUEt  = TRUEt-1 = other). These param-
eter estimates correspond to a probability of over 0.99; therefore, the use of PDI cannot 
increase the probabilities of repeating the error any further (i.e. there seems to be a 
ceiling effect). This result is not particularly surprising given the short gaps between the 
waves in the LFS. That is, any misreporting of a contract due to, for instance, confusion 
is likely to persist over a relatively short period such as three months, provided that no 
actual change occurred.

3.5	 Conclusions and discussion

DI is an interviewing technique that is broadly applied in panel surveys to achieve 
higher longitudinal consistency and lower levels of random measurement error. 
The importance of minimizing random error in this context stems from the fact that 
longitudinal survey data are often used to study over time change or transitions; such 
second-order statistics are known to be highly sensitive to random measurement 
error. However, while DI helps to mitigate this problem, it potentially introduces a new 
one, in particular when used proactively, as it has also been hypothesized to increase 

13	 Again, the large coefficient estimates are caused by the fact that at the baseline (i.e. for INDI) these 
probabilities are either extremely high or extremely low.

the incidence of systematic error due to the phenomena of cognitive satisficing and 
motivated misreporting.

Given the potentially conflicting effects of PDI on survey data quality, in this 
paper we examined the effect of this interviewing technique on both the random and 
systematic components of the error. Our results confirm that PDI reduces the incidence 
of random error. On the other hand, we find no evidence for the claim that systematic 
measurement error is increased due to PDI. To restate, PDI in the LFS is associated 
with lower probabilities of misreporting a true temporary contract as permanent or 
other type of contract but it is not associated with higher probabilities of repeating 
the same error over time and it does not lead to spurious stability (i.e. not reporting 
a true change).

Thus, overall, in our case PDI appears to have a positive effect on data quality as it 
reduces random error while leaving the systematic component of the error unaffected. 
It can be seen, therefore, as a useful interviewing technique that helps to tackle the 
problem of spurious change. However, it is important to note that in our analysis the 
probability of repeating the same error was over 0.99, regardless of the interviewing 
regime (i.e. also in the absence of DI). These results indicate that the level of this 
systematic error was already so extreme in the Dutch LFS that the use of PDI could 
not have increased its magnitude any further (i.e. a ceiling effect had occurred). It 
is therefore possible that DI would have had a significant effect on the systematic 
component of the error had the baseline probability not been this high. Despite this 
limitation, the paper provides important findings for survey methodologists and 
designers of survey questionnaires. PDI is shown to be an attractive option for obtaining 
information on categorical characteristics in longitudinal surveys as it reduces random 
measurement error and, in cases where systematic error is high even with independent 
interviewing, PDI does not increase it any further. Therefore, in such cases, PDI reduces 
measurement error overall and can be a helpful tool in surveys.

It is important to note that, in our sample, the change from PDI to INDI affected 
a relatively small percentage of records (i.e. 5 percent). Therefore, future research 
should investigate the impact of changes in the interviewing regime on measurement 
error, when a greater proportion of the population is affected by these changes. When 
examining their impact, it is also worth going beyond the specific type of PDI used in 
our analysis to see whether the remaining two types of this interviewing method, i.e. 
“remind, continue” and “remind, confirm”, have similar effects on the quality of the 
survey data.
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Abstract

Hidden Markov models (HMMs) are increasingly used to estimate and correct for 
classification error in categorical, longitudinal data without the need for a “gold 
standard,” error-free data source. To accomplish this, HMMs require multiple 
observations over time on a single indicator and assume that the errors in these 
indicators are conditionally independent. Unfortunately, this “local independence” 
assumption is often unrealistic, untestable, and a source of serious bias. Linking 
independent data sources can solve this problem by making the local independence 
assumption plausible across sources, while potentially allowing for local dependence 
within sources. However, record linkage introduces a new problem: the records may be 
erroneously linked or incorrectly not linked. In this paper, we investigate the effects of 
linkage error on HMM estimates of transitions between employment contract types. 
Our data come from linking a labor force survey to administrative employer records; this 
linkage yields two indicators per time point that are plausibly conditionally independent. 
Our results indicate that both false-negative and false-positive linkage error turn out to 
be problematic primarily if the error is large and highly correlated with the dependent 
variable. Moreover, under certain conditions, false-positive linkage error (mislinkage) 
in fact acts as another source of misclassification that the HMM can absorb into its 
error-rate estimates, leaving the latent transition estimates unbiased. In these cases, 
measurement error modelling already accounts for linkage error. Our results also 
indicate where these conditions break down and more complex methods would be 
needed.
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4.1	 Introduction

Despite numerous efforts to the contrary, survey and register data almost inevitably 
contain measurement error (Alwin, 2007; Biemer & Stokes, 2004; Kuha & Skinner, 1997). 
Such errors severely bias estimates of relationships between variables and, therefore, 
it is essential to account and correct for them (Carroll et al., 2006; Fuller, 2009; Kuha & 
Skinner, 1997; Saris & Gallhofer, 2007). For categorical variables, an attractive method 
of doing so — without requiring “gold standard” (error-free) validation data — is latent 
class models (LCMs) (Vermunt & Magidson, 2002).

The LCMs use repeated indicators of some categorical phenomenon of interest 
as input, and output estimates of the classification error rates of these indicators, 
otherwise known as “measurement parameters”. These models also provide estimates 
of the “structural parameters”, which measure quantities of scientific interest, such as 
prevalence of certain groups in the population or transitions over time. If the repeated 
indicators - which are used as inputs as part of a set of different survey questions or 
different administrative records – are intended to measure a single underlying latent 
variable, the LCM becomes a “latent structure model”. When the repeated indicators 
are repetitions of the same question or administrative record at different time points, 
a particular variant of an LCM is used: the “hidden” (or “latent”) Markov model (HMM) 
(Alwin, 2007; Alwin et al., 2018). In this paper, we focus on HMMs, which are regularly 
applied to categorical longitudinal data (Biemer, 2011; Biemer et al., 2017; Edwards et 
al., 2017).

The great advantage of LCMs is that all indicators are allowed to contain errors 
and, as such, LCMs can estimate the quality of a survey indicator without requiring 
perfect comparison data. However, this exciting feature of LCMs does not come 
cheap: a payment in untestable assumptions is required, in particular the “local 
independence” assumption, which requires that the errors in the repeated indicators 
occur independently (see e.g. Oberski et al., 2015).

This local independence assumption is unrealistic, harmful and, when only one 
indicator is available, also undetectable. It is unrealistic, because “common method 
variance” – that is, variance attributed to the measurement method as opposed to the 
constructs the measure represents - is typically found in studies able to detect it (Saris 
& Gallhofer, 2007) and because it is likely that, for instance, any personal “style” in 
answering a survey question carries over time (Billiet & Davidov, 2008). It is also highly 
probable that specific errors in registers are repeated for a certain period of time as 
shown by Pavlopoulos and Vermunt (2015). It is harmful because ignoring it leads to 
bias in the HMM parameter estimates (Georgiadis et al., 2003; Qu & Hagdu, 2012; 
Torrance‐Rynard & Walter, 1997; Vacek, 1985); Appendix 4.A provides an illustration 
of the severity of the bias using employment mobility data from the Netherlands. 
Finally, it is undetectable with data from a single repeated indicator because the local 
independence assumption is necessary for model identification in this case. While it is, 
in general, possible to detect and model local dependence in LCMs (Hagenaars, 1988; 

Oberski, 2016), in HMMs, the parameters that represent local dependence are only 
generally identifiable if a second indicator of the variable of interest is obtained at each 
time point (Hagenaars, 1990). Such an indicator should then plausibly contain errors 
that are independent of the errors present in the first indicator.

Therefore, an attractive solution to the problem of local independence is to link 
different data sources, such as surveys and administrative registers. The attractiveness 
of this solution lies in the fact that neither of these two data sources is required to be 
error-free; it is only required that the survey errors are independent of the register 
errors, which indeed seems plausible. This means that, by combining registers and 
surveys, it becomes possible to allow for local dependence within each source. Previous 
studies have done so, and indeed found considerable local dependence (Bassi et 
al., 2000; Oberski et al., 2017; Pavlopoulos & Vermunt, 2015), confirming both the 
importance of relaxing this assumption and the attractiveness of data linkage.

Record linkage allows us to tackle the problems of measurement error modelling, 
but it introduces a new challenge: linkage error. Such errors, which occur when records 
of different individuals are wrongly linked or when records of the same individuals are 
wrongly not linked, are known to bias estimates of interest when left unaccounted 
for (Harron et al., 2017). Several estimators correcting for linkage errors have been 
suggested (e.g. Chambers, 2009; Goldstein et al., 2012; Lahiri & Larsen, 2005; Liseo & 
Tancredi, 2011); to illustrate, Di Consiglio and Tuoto (2018) show that these methods 
are effective in reducing linkage error bias in linear and logistic regression analyses. 
However, some of these estimators assume knowledge of the posterior probability of 
correct linkage for all pairs of cases. This knowledge is unavailable to most analysts in 
practice. The remaining solutions do not assume this knowledge but have only been 
developed for linear regression models (Chambers, 2009).

In this paper, we study the extent to which linkage error biases HMM parameter 
estimates. Through a simulation study based on a real data application to linked survey-
register employment records at Statistics Netherlands, we demonstrate the sensitivity 
of the structural (transition rate) parameters of the model to linkage error. We find 
that in certain situations, the HMM can absorb the error into its measurement model, 
leading to approximately unbiased structural parameter estimates. In other situations, 
however, non-negligible biases in the structural part of the model do occur. A novel 
geometric representation of the latent class estimation problem demonstrates why 
this is the case.

Section 4.2 first provides some background information on single- and multiple- 
indicator hidden Markov models and then discusses the topic of linkage error and its 
effects on HMMs. Section 4.3 presents the data and section 4.4 the methodology; in 
section 4.5 we discuss the results of our analysis. Section 4.6 provides conclusions.
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4.2	 Background

4.2.1	 Hidden Markov models (HMMs) and measurement error
Hidden Markov models (HMMs) are a group of latent class models that are increasingly 
used to estimate and correct for measurement error in longitudinal categorical data 
(Biemer, 2004, 2011). In this section, we first present the basic single-indicator HMM, 
commonly applied across the literature; we then extend it by including an additional 
indicator per time point.

The basic HMM operates under the assumption that, at each time point  
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product:  
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This assumption is known as the “local independence” or “independent classification error” (ICE) 

assumption. The latent path X, meanwhile, is assumed to follow a Markov or an AR(1) process, 
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Finally, the observed data distribution 𝑃𝑃(𝑌𝑌) is assumed to arise by combining the ICE and Markov 

assumptions that are mentioned above and then marginalizing over X. This yields the following 

marginal likelihood: 
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𝑋𝑋
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Finally, the observed data distribution P(Y) is assumed to arise by combining the 
ICE and Markov assumptions that are mentioned above and then marginalizing over X. 
This yields the following marginal likelihood:
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with “structural” parameters P(X0) and P(Xt│Xt-1) – which correspond to the initial state 
and transition probabilities – and “measurement parameters” P(Yt│Xt) – which are the 
probabilities of correct and incorrect classification.

When consistent estimates of PHMM(Y) are observed (i.e. when Y is “ergodic”), 
consistent maximum-likelihood estimates can be obtained by maximizing Equation (4.3) 
over the structural and measurement parameters (Leroux, 1992). In practice, instead 
of the exponentially complex summation over all possible latent paths X in Equation 
(4.3), the more computationally efficient “forward-backward” (Baum-Welch) algorithm 
is used. This amounts to an adapted expectation-maximization (EM) procedure 

(McLachlan & Krishnan, 2008, pp. 291-2). In the E-step of this procedure, the posterior 
probability P(X│Y) is estimated by combining two computational steps: the forward 
and backward recursions. Specifically, in the forward step, the algorithm calculates the 
probability of arriving at a specific state at time t given the states that occurred up until 
that time point; in the backward step, this probability is calculated based on the states 
occurring at time points following t. Thus, each of the steps considers one time point at 
a time but in combination with the results of the respective previous computations. In 
the M-step the model’s parameters are computed by summing over the states at each 
time point. This sum is weighted by the posterior probabilities. Thus, the computational 
complexity of one Baum-Welch iteration is linear in the number of time points, rather 
than exponential, as when using the marginal likelihood (4.3). The E- and M- steps are 
iterated until convergence is reached.

The single-indicator HMM is attractive for two reasons. First, in contrast with 
standard latent class analysis, it allows for hidden change over time in the true values, 
P(Xt│Xt-1), while simultaneously estimating and accounting for classification errors, 
P(Yt ≠ xt│Xt = xt). Second, its parameters can be identified from panel data on single 
repeated indicators with three or more waves, which are often already collected as 
part of longitudinal surveys or recorded in administrative databases. This identifiability 
follows from the model’s assumptions, specifically the Markov and conditional 
independence (ICE) assumptions.

However, as already discussed in the introduction, conditional independence 
may in practice be an unrealistic assumption. To model such error dependencies 
and simultaneously estimate classification error in both survey and administrative 
data that measure the same phenomena, Pavlopoulos and Vermunt (2015) suggest 
linking respondents’ survey answers to administrative records. Such linked survey-
administrative data then allow for the relaxation of the ICE assumption, replacing 
Equation (4.1) with
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𝑃𝑃(𝑌𝑌|𝑋𝑋) = 𝑃𝑃(𝑌𝑌survey|𝑋𝑋)𝑃𝑃(𝑌𝑌admin|𝑋𝑋)            (4.4) 

where Y now collects the observed processes for both survey and administrative data. Pavlopoulos 

and Vermunt (2015) suggest further specifying the conditional dependence as  

𝑃𝑃(𝑌𝑌|𝑋𝑋) =∏𝑃𝑃(𝑌𝑌𝑡𝑡,survey|𝑋𝑋𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
∏𝑃𝑃(𝑌𝑌𝑡𝑡,admin|𝑋𝑋𝑡𝑡, 𝑋𝑋𝑡𝑡−1, 𝑌𝑌𝑡𝑡−1,admin)
𝑇𝑇

𝑡𝑡=1
            (4.5)  

with 𝑃𝑃(𝑌𝑌𝑡𝑡,admin|𝑋𝑋𝑡𝑡, 𝑋𝑋𝑡𝑡−1, 𝑌𝑌𝑡𝑡−1,admin) modelled by logistic regression. This model allows for error 

dependence in the administrative data, while assuming survey and administrative answers to be 

conditionally independent. The advantages of record linkage are thus that (1) both survey and 

administrative errors can be modelled simultaneously, and (2) the ICE assumption can be relaxed in a 

rather flexible way.  

The disadvantage of linkage, however, is that linkage error may occur and cause bias in analyses of 

dependencies, such as linear and logistic regression Chambers and Kim (2015). Therefore, it seems 

plausible that bias would also occur in a multivariate method such as HMM, which uses dependencies 

to estimate its parameters. However, no work to date has examined the precise effects of linkage 

error for this specific group of models. This paper does not aim to examine these effects analytically 

or solve the problem of linkage error for HMMs. We do, however, note that linkage error can be 

expected to strongly violate HMM assumptions and cause bias under certain circumstances. In the 

next section we provide an intuitive explanation of this phenomenon. In doing so, we first provide a 

formal definition of record linkage and the errors associated with it; we then present a theoretical 

consideration of how linkage errors (might) affect HMMs.   

4.2.2 Linkage, its associated errors, and their effects on HMMs 

Record linkage is a process that matches records and attempts to select those matches that belong to 

the same person or unit. The process uses one or more data fields (i.e. linkage variables) that contain 

the same identifying information in all data sources (Armstrong & Mayda, 1993; Winkler, 1999). 

There are two main types of record linkage methods — deterministic and probabilistic. Deterministic 

record linkage defines pairs as true matches if the matching variables agree exactly in all data sources. 

It usually relies on a relatively small number of matching variables and is most commonly applied in the 

presence of the same unique identifier in all data sources (Blakely & Salmond, 2002). As data sources 

where Y now collects the observed processes for both survey and administrative data. 
Pavlopoulos and Vermunt (2015) suggest further specifying the conditional dependence 
as
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with P(Yt,admin│Xt,Xt-1,Yt-1,admin) modelled by logistic regression. This model allows for 
error dependence in the administrative data, while assuming survey and administrative 
answers to be conditionally independent. The advantages of record linkage are thus 
that (1) both survey and administrative errors can be modelled simultaneously, and (2) 
the ICE assumption can be relaxed in a rather flexible way.

4
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Chapter 4 How linkage error affects hidden Markov model estimates: A sensitivity analysis

4.2	 Background

4.2.1	 Hidden Markov models (HMMs) and measurement error
Hidden Markov models (HMMs) are a group of latent class models that are increasingly 
used to estimate and correct for measurement error in longitudinal categorical data 
(Biemer, 2004, 2011). In this section, we first present the basic single-indicator HMM, 
commonly applied across the literature; we then extend it by including an additional 
indicator per time point.

The basic HMM operates under the assumption that, at each time point  
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(4.3) 

 the observed answer Yt is assumed to follow a multinomial distribution 
and is generated independently with some probability P(Yt│Xt) from the true, but 
unobserved, multinomially distributed variable Xt. Because the generation of

 
Yt is 

assumed independent of all other variables, the T-dimensional distribution P(Y│X) of 
observed path Y given latent path X, where X = (X1,… ,XT), factorizes into the following 
product:
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Finally, the observed data distribution 𝑃𝑃(𝑌𝑌) is assumed to arise by combining the ICE and Markov 

assumptions that are mentioned above and then marginalizing over X. This yields the following 

marginal likelihood: 

𝑃𝑃HMM(𝑌𝑌) = ∑ 𝑃𝑃(𝑌𝑌|𝑋𝑋)𝑃𝑃(𝑋𝑋)
𝑋𝑋

 
         

(4.3) 

Finally, the observed data distribution P(Y) is assumed to arise by combining the 
ICE and Markov assumptions that are mentioned above and then marginalizing over X. 
This yields the following marginal likelihood:
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with “structural” parameters P(X0) and P(Xt│Xt-1) – which correspond to the initial state 
and transition probabilities – and “measurement parameters” P(Yt│Xt) – which are the 
probabilities of correct and incorrect classification.

When consistent estimates of PHMM(Y) are observed (i.e. when Y is “ergodic”), 
consistent maximum-likelihood estimates can be obtained by maximizing Equation (4.3) 
over the structural and measurement parameters (Leroux, 1992). In practice, instead 
of the exponentially complex summation over all possible latent paths X in Equation 
(4.3), the more computationally efficient “forward-backward” (Baum-Welch) algorithm 
is used. This amounts to an adapted expectation-maximization (EM) procedure 

(McLachlan & Krishnan, 2008, pp. 291-2). In the E-step of this procedure, the posterior 
probability P(X│Y) is estimated by combining two computational steps: the forward 
and backward recursions. Specifically, in the forward step, the algorithm calculates the 
probability of arriving at a specific state at time t given the states that occurred up until 
that time point; in the backward step, this probability is calculated based on the states 
occurring at time points following t. Thus, each of the steps considers one time point at 
a time but in combination with the results of the respective previous computations. In 
the M-step the model’s parameters are computed by summing over the states at each 
time point. This sum is weighted by the posterior probabilities. Thus, the computational 
complexity of one Baum-Welch iteration is linear in the number of time points, rather 
than exponential, as when using the marginal likelihood (4.3). The E- and M- steps are 
iterated until convergence is reached.

The single-indicator HMM is attractive for two reasons. First, in contrast with 
standard latent class analysis, it allows for hidden change over time in the true values, 
P(Xt│Xt-1), while simultaneously estimating and accounting for classification errors, 
P(Yt ≠ xt│Xt = xt). Second, its parameters can be identified from panel data on single 
repeated indicators with three or more waves, which are often already collected as 
part of longitudinal surveys or recorded in administrative databases. This identifiability 
follows from the model’s assumptions, specifically the Markov and conditional 
independence (ICE) assumptions.

However, as already discussed in the introduction, conditional independence 
may in practice be an unrealistic assumption. To model such error dependencies 
and simultaneously estimate classification error in both survey and administrative 
data that measure the same phenomena, Pavlopoulos and Vermunt (2015) suggest 
linking respondents’ survey answers to administrative records. Such linked survey-
administrative data then allow for the relaxation of the ICE assumption, replacing 
Equation (4.1) with
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𝑃𝑃(𝑌𝑌|𝑋𝑋) = 𝑃𝑃(𝑌𝑌survey|𝑋𝑋)𝑃𝑃(𝑌𝑌admin|𝑋𝑋)            (4.4) 

where Y now collects the observed processes for both survey and administrative data. Pavlopoulos 

and Vermunt (2015) suggest further specifying the conditional dependence as  

𝑃𝑃(𝑌𝑌|𝑋𝑋) =∏𝑃𝑃(𝑌𝑌𝑡𝑡,survey|𝑋𝑋𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
∏𝑃𝑃(𝑌𝑌𝑡𝑡,admin|𝑋𝑋𝑡𝑡, 𝑋𝑋𝑡𝑡−1, 𝑌𝑌𝑡𝑡−1,admin)
𝑇𝑇

𝑡𝑡=1
            (4.5)  

with 𝑃𝑃(𝑌𝑌𝑡𝑡,admin|𝑋𝑋𝑡𝑡, 𝑋𝑋𝑡𝑡−1, 𝑌𝑌𝑡𝑡−1,admin) modelled by logistic regression. This model allows for error 

dependence in the administrative data, while assuming survey and administrative answers to be 

conditionally independent. The advantages of record linkage are thus that (1) both survey and 

administrative errors can be modelled simultaneously, and (2) the ICE assumption can be relaxed in a 

rather flexible way.  

The disadvantage of linkage, however, is that linkage error may occur and cause bias in analyses of 

dependencies, such as linear and logistic regression Chambers and Kim (2015). Therefore, it seems 

plausible that bias would also occur in a multivariate method such as HMM, which uses dependencies 

to estimate its parameters. However, no work to date has examined the precise effects of linkage 

error for this specific group of models. This paper does not aim to examine these effects analytically 

or solve the problem of linkage error for HMMs. We do, however, note that linkage error can be 

expected to strongly violate HMM assumptions and cause bias under certain circumstances. In the 

next section we provide an intuitive explanation of this phenomenon. In doing so, we first provide a 

formal definition of record linkage and the errors associated with it; we then present a theoretical 

consideration of how linkage errors (might) affect HMMs.   

4.2.2 Linkage, its associated errors, and their effects on HMMs 

Record linkage is a process that matches records and attempts to select those matches that belong to 

the same person or unit. The process uses one or more data fields (i.e. linkage variables) that contain 

the same identifying information in all data sources (Armstrong & Mayda, 1993; Winkler, 1999). 

There are two main types of record linkage methods — deterministic and probabilistic. Deterministic 

record linkage defines pairs as true matches if the matching variables agree exactly in all data sources. 

It usually relies on a relatively small number of matching variables and is most commonly applied in the 

presence of the same unique identifier in all data sources (Blakely & Salmond, 2002). As data sources 

where Y now collects the observed processes for both survey and administrative data. 
Pavlopoulos and Vermunt (2015) suggest further specifying the conditional dependence 
as
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with P(Yt,admin│Xt,Xt-1,Yt-1,admin) modelled by logistic regression. This model allows for 
error dependence in the administrative data, while assuming survey and administrative 
answers to be conditionally independent. The advantages of record linkage are thus 
that (1) both survey and administrative errors can be modelled simultaneously, and (2) 
the ICE assumption can be relaxed in a rather flexible way.
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The disadvantage of linkage, however, is that linkage error may occur and cause 
bias in analyses of dependencies, such as linear and logistic regression Chambers and 
Kim (2015). Therefore, it seems plausible that bias would also occur in a multivariate 
method such as HMM, which uses dependencies to estimate its parameters. However, 
no work to date has examined the precise effects of linkage error for this specific 
group of models. This paper does not aim to examine these effects analytically or 
solve the problem of linkage error for HMMs. We do, however, note that linkage 
error can be expected to strongly violate HMM assumptions and cause bias under 
certain circumstances. In the next section we provide an intuitive explanation of this 
phenomenon. In doing so, we first provide a formal definition of record linkage and the 
errors associated with it; we then present a theoretical consideration of how linkage 
errors (might) affect HMMs.

4.2.2	 Linkage, its associated errors, and their effects on HMMs
Record linkage is a process that matches records and attempts to select those matches 
that belong to the same person or unit. The process uses one or more data fields (i.e. 
linkage variables) that contain the same identifying information in all data sources 
(Armstrong & Mayda, 1993; Winkler, 1999).

There are two main types of record linkage methods — deterministic and 
probabilistic. Deterministic record linkage defines pairs as true matches if the matching 
variables agree exactly in all data sources. It usually relies on a relatively small number 
of matching variables and is most commonly applied in the presence of the same unique 
identifier in all data sources (Blakely & Salmond, 2002). As data sources have been 
increasingly lacking high-quality unique identifiers, deterministic linkage has been 
gradually replaced by probabilistic linkage (Ariel et al., 2014).

Probabilistic record linkage tends to use a larger number of matching variables 
and does not require an exact agreement on all of them for a pair to be considered a 
true match. Probabilistic linkage determines the probability of a match being correct 
and, as such, whether it should be regarded as a “true” or “false” match (Armstrong & 
Mayda, 1993; Blakely & Salmond, 2002; Bohensky et al., 2010; Fellegi & Sunter, 1969; 
Winglee et al., 2005).

While record linkage is undoubtedly an important tool that allows combining 
information from various sources, it is also associated with different types of errors. In 
general, linkage errors occur: (1) when due to missing or inaccurate data, some records 
that correspond to the same person or unit are not linked—a phenomenon referred 
to a false-negative linkage error — and (2) when as a result of coding or measurement 
errors, unrelated records are wrongfully linked — a situation referred to as a false-
positive linkage error (Bohensky et al., 2010; Winglee et al., 2005).
Record linkage and linkage errors can be formulated using files drawn from two 
populations- file A containing NA records and file B containing NB records, and a set C 
containing record pairs which are the cross-product of files A and B. This set is denoted 

by 
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belong to the same entity (i.e. are a definite link, denoted by 𝐴𝐴1), possibly belong to the same entity 

(i.e. are a possible link, denoted by 𝐴𝐴2) or certainly belong to different entities (i.e. are a definite non-

link, denoted by 𝐴𝐴3) (Armstrong & Mayda, 1993; Fellegi & Sunter, 1969; Sadinle et al., 2011). 

False-positive and false-negative types of error occur respectively when (1) a record pair that belongs 

to the true non-match set (𝑈𝑈) is registered as a link (𝐴𝐴1) and (2) when a record pair belonging to the 

true match set (𝑀𝑀) is registered as a non-link (𝐴𝐴3). Thus, the false-positive linkage error can be denoted 

by 𝑃𝑃(𝐴𝐴1|𝑈𝑈) and false-negative by 𝑃𝑃(𝐴𝐴3|𝑀𝑀) (Armstrong & Mayda, 1993; Sadinle et al., 2011). 

There are several approaches and frameworks available in the literature to correct for the effects of 

linkage error. Three prominent approaches are those proposed by Lahiri and Larsen (2005), Chambers 

(2009), and Liseo and Tancredi (2011). Lahiri and Larsen (2005) propose an M- and U- probabilities-

weighted linear regression model for linked data, which takes into account linkage uncertainty. 

 and the number of records equals to N = NA x NB (Armstrong 
& Mayda, 1993; Sadinle et al., 2011).

The aim of record linkage is to divide set C into two separate sets – one that includes 
true matches (here denoted by M) and one which includes true non-matches (here 
denoted by U). This is often done by examining the data contained in files A and B and 
deciding whether the records certainly belong to the same entity (i.e. are a definite link, 
denoted by A1), possibly belong to the same entity (i.e. are a possible link, denoted by 
A2) or certainly belong to different entities (i.e. are a definite non-link, denoted by

 
A3) 

(Armstrong & Mayda, 1993; Fellegi & Sunter, 1969; Sadinle et al., 2011).
False-positive and false-negative types of error occur respectively when (1) a record 

pair that belongs to the true non-match set (U) is registered as a link (A1) and (2) when a 
record pair belonging to the true match set (M) is registered as a non-link (A3). Thus, the 
false-positive linkage error can be denoted by P(A1│U) and false-negative by P(A3│M) 
(Armstrong & Mayda, 1993; Sadinle et al., 2011).

There are several approaches and frameworks available in the literature to correct 
for the effects of linkage error. Three prominent approaches are those proposed by 
Lahiri and Larsen (2005), Chambers (2009), and Liseo and Tancredi (2011). Lahiri and 
Larsen (2005) propose an M- and U- probabilities-weighted linear regression model for 
linked data, which takes into account linkage uncertainty. However, their method relies 
on the assumption that the linkage/mislinkage probabilities of all pairs of records are 
known to the analyst. This assumption is often unrealistic in practice. Liseo and Tancredi 
(2011) propose a Bayesian approach to linkage problems, in which the analysis and 
linkage models are subsumed into a single latent variable model estimated via Markov 
Chain Monte Carlo (MCMC). A similar approach, implementing Bayesian imputation 
conditioned on the linkage probabilities, is suggested independently by Goldstein 
et al. (2012). Other studies that propose Bayesian approaches to correct for linkage 
error include those by Sadinle (2014, 2017), Steorts (2015) and Steorts et al. (2016). 
While the Bayesian approach is, in principle, comprehensive, it shares the drawback of 
the approach of Lahiri and Larsen (2005) that full knowledge of the linkage process is 
required by the analyst. Finally, Chambers (2009) and Kim and Chambers (2012a, 2012b) 
introduce a bias-corrected ratio estimator, as well as a class of weighted estimators for 
linear regression and logistic regression. Moreover, Chambers (2009) suggests replacing 
the required assumption of perfect information regarding the linkage/mislinkage 
probabilities with a more realistic approximation based on available aggregate linkage 
rates. As detailed in Chambers and Kim (2015), since the weighting approach is based 
on estimating equations, it can in principle be extended to other, more complex, classes 
of models beyond linear and logistic regression. However, Chambers-type estimators 
for HMMs are currently not available.

To sum up, the available methods to account for linkage error are difficult to 
implement for HMMs for practical or technical reasons. It is therefore important to 
investigate the sensitivity of such models to linkage error, which is the focus of this 
paper. While false-negative linkage error manifests itself as missing data, and a large 
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The disadvantage of linkage, however, is that linkage error may occur and cause 
bias in analyses of dependencies, such as linear and logistic regression Chambers and 
Kim (2015). Therefore, it seems plausible that bias would also occur in a multivariate 
method such as HMM, which uses dependencies to estimate its parameters. However, 
no work to date has examined the precise effects of linkage error for this specific 
group of models. This paper does not aim to examine these effects analytically or 
solve the problem of linkage error for HMMs. We do, however, note that linkage 
error can be expected to strongly violate HMM assumptions and cause bias under 
certain circumstances. In the next section we provide an intuitive explanation of this 
phenomenon. In doing so, we first provide a formal definition of record linkage and the 
errors associated with it; we then present a theoretical consideration of how linkage 
errors (might) affect HMMs.

4.2.2	 Linkage, its associated errors, and their effects on HMMs
Record linkage is a process that matches records and attempts to select those matches 
that belong to the same person or unit. The process uses one or more data fields (i.e. 
linkage variables) that contain the same identifying information in all data sources 
(Armstrong & Mayda, 1993; Winkler, 1999).

There are two main types of record linkage methods — deterministic and 
probabilistic. Deterministic record linkage defines pairs as true matches if the matching 
variables agree exactly in all data sources. It usually relies on a relatively small number 
of matching variables and is most commonly applied in the presence of the same unique 
identifier in all data sources (Blakely & Salmond, 2002). As data sources have been 
increasingly lacking high-quality unique identifiers, deterministic linkage has been 
gradually replaced by probabilistic linkage (Ariel et al., 2014).

Probabilistic record linkage tends to use a larger number of matching variables 
and does not require an exact agreement on all of them for a pair to be considered a 
true match. Probabilistic linkage determines the probability of a match being correct 
and, as such, whether it should be regarded as a “true” or “false” match (Armstrong & 
Mayda, 1993; Blakely & Salmond, 2002; Bohensky et al., 2010; Fellegi & Sunter, 1969; 
Winglee et al., 2005).

While record linkage is undoubtedly an important tool that allows combining 
information from various sources, it is also associated with different types of errors. In 
general, linkage errors occur: (1) when due to missing or inaccurate data, some records 
that correspond to the same person or unit are not linked—a phenomenon referred 
to a false-negative linkage error — and (2) when as a result of coding or measurement 
errors, unrelated records are wrongfully linked — a situation referred to as a false-
positive linkage error (Bohensky et al., 2010; Winglee et al., 2005).
Record linkage and linkage errors can be formulated using files drawn from two 
populations- file A containing NA records and file B containing NB records, and a set C 
containing record pairs which are the cross-product of files A and B. This set is denoted 

by 
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investigate the sensitivity of such models to linkage error, which is the focus of this 
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literature on the effects of various missingness mechanisms on maximum-likelihood 
(ML) estimates already exists (see e.g. Little and Rubin, 2019), false-positive linkage 
errors (mislinkages) have an entirely different, as yet unstudied, effect on HMMs. 
Therefore, our theoretical considerations elaborate on the effect of mislinkages; the 
simulation study, however, investigates the effects of both types of linkage errors.

Following Lahiri and Larsen (2005), mislinkage among declared links manifests itself 
as an additional latent class variable with two categories corresponding to true matches 
(M) and non-matches (U). Within the class of matches, the HMM holds, while within 
the class of non-matches an unknown process holds. Lahiri and Larsen (2005) assume 
non-matches to follow a distribution in which all J observed variables are independent. 
The observed data distribution is then a mixture of the true dependence structure and 
“randomly shuffled” data:
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where the HMM likelihood has been expressed as 𝑃𝑃HMM(𝑌𝑌|𝜃𝜃) to emphasize its dependence on the 
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4.3 Data 
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(ER), which have been linked using each citizen’s unique identification number or the combination of 

birth date, sex, postal code, and house number as a linkage key. In this paper, we assume that this 

process does not involve linkage error and simulate the effect of linkage error by artificially introducing 

false-negative and false-positive linkages into the dataset. 

Our sample consists of 15 months of observations on 8,886 LFS respondents aged 25 to 55 who first 

participated in the survey in 2009. This results in a total sample size of 133,290 observations. The 

employment register is observed on a monthly basis, while the LFS is taken every three months and 

consists of five waves. The main variable of interest in our analysis is an individual’s employment 

contract type for their primary job, which can take one of the following values: “permanent contract,” 

“temporary contract,” or “other.” For further details about the dataset, see Appendix 4.C. 

4.4 Methodology 

4.4.1 Model 

Our approach consists of a simulation analysis in which we make use of a two- indicator HMM, where 

one of the indicators is the individual’s contract type according to the LFS and the second is the 

contract type according to the ER. While the model could be extended further, following Pavlopoulos 
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Plinked, asymptotic bias may, in principle, occur whenever there is mislinkage. Intuitively 
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the extent to which this result holds in an HMM.
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Employment Register (ER), which have been linked using each citizen’s unique 
identification number or the combination of birth date, sex, postal code, and house 
number as a linkage key. In this paper, we assume that this process does not involve 
linkage error and simulate the effect of linkage error by artificially introducing false-
negative and false-positive linkages into the dataset.

Our sample consists of 15 months of observations on 8,886 LFS respondents aged 
25 to 55 who first participated in the survey in 2009. This results in a total sample size of 
133,290 observations. The employment register is observed on a monthly basis, while 
the LFS is taken every three months and consists of five waves. The main variable of 

interest in our analysis is an individual’s employment contract type for their primary 
job, which can take one of the following values: “permanent contract,” “temporary 
contract,” or “other.” For further details about the dataset, see Appendix 4.C.

4.4	 Methodology

4.4.1	 Model
Our approach consists of a simulation analysis in which we make use of a two- indicator 
HMM, where one of the indicators is the individual’s contract type according to the 
LFS and the second is the contract type according to the ER. While the model could 
be extended further, following Pavlopoulos and Vermunt (2015) and Pankowska 
et al. (2018), our simulations are based on a simplified model that retains the local 
independence assumption. The following equation estimates the probability of 
following a certain observed path according to our model:
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Where 𝐶𝐶𝑖𝑖𝑖𝑖  and 𝐸𝐸𝑖𝑖𝑖𝑖   denote the contract type of person i at month t according to the ER and LFS, 

respectively, with i = 1, ..., N and t = 1, ..., 17.14 To account for the fact that the contract type according 

to the survey (𝐸𝐸𝑖𝑖𝑖𝑖) can only be observed every third month the indicator 𝛿𝛿𝑖𝑖𝑖𝑖  is included in the model; 

𝛿𝛿𝑖𝑖𝑖𝑖   equals 1 if the survey information is available for a given month and 0 if it is missing. This amounts 

to assuming an ignorable (MAR) missingness mechanism (Little & Rubin, 2019). The model also 

includes a latent (unobserved) variable (𝑋𝑋𝑖𝑖𝑖𝑖) which represents the individual's actual contract type at 

time t. Both the observed indicators and the latent variable (which are referred to in the model as 𝑐𝑐𝑡𝑡, 

𝑒𝑒𝑡𝑡, and 𝑥𝑥𝑡𝑡, respectively) consist of three categories – permanent, temporary and other type of 

contract. 

 

Figure 4.1- Hidden Markov model graph; rectangles are observed variables, while ovals are latent "true" 
variables.  Absence of arrows indicates conditional independence 

Figure 4.1 illustrates our model as a graph. Because the survey has been administered once every 

quarter, while monthly measures are available from the administrative database, the survey is missing 

 
14 In our analysis, we use data from January 2009 until March 2010 which corresponds to 17 months and, 
therefore, t runs from 1 to 17 

Where Cit and Eit denote the contract type of person i at month t according to the 
ER and LFS, respectively, with i = 1, ..., N and t = 1, ..., 17.14 To account for the fact 
that the contract type according to the survey (Eit) can only be observed every third 
month the indicator δit is included in the model; δit equals 1 if the survey information is 
available for a given month and 0 if it is missing. This amounts to assuming an ignorable 
(MAR) missingness mechanism (Little & Rubin, 2019). The model also includes a latent 
(unobserved) variable (Xit) which represents the individual’s actual contract type at 
time t. Both the observed indicators and the latent variable (which are referred to in the 
model as ct, et, and xt, respectively) consist of three categories – permanent, temporary 
and other type of contract.

14	 In our analysis, we use data from January 2009 until March 2010 which corresponds to 17 months and, 
therefore, t runs from 1 to 17
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literature on the effects of various missingness mechanisms on maximum-likelihood 
(ML) estimates already exists (see e.g. Little and Rubin, 2019), false-positive linkage 
errors (mislinkages) have an entirely different, as yet unstudied, effect on HMMs. 
Therefore, our theoretical considerations elaborate on the effect of mislinkages; the 
simulation study, however, investigates the effects of both types of linkage errors.

Following Lahiri and Larsen (2005), mislinkage among declared links manifests itself 
as an additional latent class variable with two categories corresponding to true matches 
(M) and non-matches (U). Within the class of matches, the HMM holds, while within 
the class of non-matches an unknown process holds. Lahiri and Larsen (2005) assume 
non-matches to follow a distribution in which all J observed variables are independent. 
The observed data distribution is then a mixture of the true dependence structure and 
“randomly shuffled” data:
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Where Cit and Eit denote the contract type of person i at month t according to the 
ER and LFS, respectively, with i = 1, ..., N and t = 1, ..., 17.14 To account for the fact 
that the contract type according to the survey (Eit) can only be observed every third 
month the indicator δit is included in the model; δit equals 1 if the survey information is 
available for a given month and 0 if it is missing. This amounts to assuming an ignorable 
(MAR) missingness mechanism (Little & Rubin, 2019). The model also includes a latent 
(unobserved) variable (Xit) which represents the individual’s actual contract type at 
time t. Both the observed indicators and the latent variable (which are referred to in the 
model as ct, et, and xt, respectively) consist of three categories – permanent, temporary 
and other type of contract.

14	 In our analysis, we use data from January 2009 until March 2010 which corresponds to 17 months and, 
therefore, t runs from 1 to 17

4



72 73

Chapter 4 How linkage error affects hidden Markov model estimates: A sensitivity analysis

Figure 4.1- Hidden Markov model graph; rectangles are observed variables, while ovals are latent 
“true” variables. Absence of arrows indicates conditional independence

Figure 4.1 illustrates our model as a graph. Because the survey has been administered 
once every quarter, while monthly measures are available from the administrative 
database, the survey is missing at timepoints t – 1 and t – 2. Estimation of the latent 
class model with missing data proceeds using maximum likelihood under the ignorability 
assumption (Little & Rubin, 2019; Vermunt & Magidson, 2013). Standard errors of the 
parameters can be obtained by inverting the expected or observed information matrix 
of the observed-data likelihood above.

We apply the model to different conditions in which various types of either false-
negative or false-positive linkage errors are introduced into the original dataset. A 
summary of the simulation setup is provided as a tree graph in Figure 4.2.
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Figure 4.2- Conditions of the simulation study

We consider conditions in which individuals are either randomly selected to be 
mislinked and/or excluded versus conditions in which the probabilities of linkage error 
depend on covariates mildly or strongly correlated with the model estimates. We also 
consider different error rates. Our setup allows for the investigation of the biasing 
effects of the error under varying degrees of severity. Each condition is replicated 
200 times. We investigate the bias introduced by the error by comparing the obtained 

transition rates from temporary to permanent employment to the transition rates 
estimated using the original linked dataset. To simulate linkage error, we use the R 
version 3.2.3. The HMM is estimated using Latent GOLD version 4.5. For our code, 
please see the published paper’s supplementary data online.

4.4.2	 False-negative error simulations
When investigating the effect of false-negative linkage error on the accuracy of our 
model estimates, we consider two conditions in which the individuals’ probabilities 
of exclusion are correlated with (1) age15 and (2) the presence of a (three-monthly) 
transition from temporary to permanent employment in the register data16. A condition 
in which the missingness is MCAR (missing completely at random) has been omitted. 
Within each condition, we simulate three sub conditions in which we introduce high 
(20 percent), medium (10 percent), and low (5 percent) overall exclusion error into our 
data; this error is equal to the proportion of correctly linked individuals in the data that 
are erroneously excluded.

For the age-dependent conditions, the correlations are such that the exclusion 
probabilities of younger individuals are higher than those of older individuals; for the 
transition-dependent conditions, the probability of exclusion for those individuals who 
transitioned according to the register data is higher than that for the individuals who 
did not. These specifications are motivated by the fact that both young individuals and 
those who transitioned would tend to have higher residential and employment mobility 
and are thus more susceptible to linkage error.

To ensure that the conditions indeed represent varying levels of severity, the 
simulation is also designed in such a way that, as we move from conditions with lower 
levels of exclusion error to conditions with higher ones, the over- sampling of young 
individuals or those who transitioned becomes more extreme (i.e. their individual 
exclusion probabilities increase). To illustrate, the exclusion probability of young 
individuals (aged 25 to 34) is set to 0.15, 0.30, and 0.70 when the overall exclusion rate is 
low (5 percent), medium (10 percent), and high (20 percent), respectively; the exclusion 
probability of older individuals (aged 35 to 54) remains at 0.01 in all three cases.

Thus, a higher level of false-negative linkage error not only indicates that a 
larger proportion of individuals is excluded from the sample, but it also implies that 
the remaining sample is less representative of the overall population in terms of 
characteristics that are correlated with the transition rates estimated by the model. 

15	 Pankowska et al. (2018) in their analysis of the same data used an extended version of the HMM we 
use in this paper. Their model, among other things, accounted for the effect of age on the latent tran-
sition probabilities. Their results showed that age has a moderate, negative effect on the probability 
of transitioning from temporary to permanent employment (logit coefficient = -0.3 over the range of 
the covariate).

16	 According to our model, over 99 percent of all contracts observed in ER are correctly classified and, 
therefore, the transition covariate we have created and the model estimates are highly correlated.
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Figure 4.1- Hidden Markov model graph; rectangles are observed variables, while ovals are latent 
“true” variables. Absence of arrows indicates conditional independence
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therefore, the transition covariate we have created and the model estimates are highly correlated.
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As those covariates are not controlled for when estimating the HMM, these simulated 
datasets are equivalent to a dataset containing data missing not at random (MNAR).

Overall, the simulations consist of three steps. First, the exclusion rate and the 
individual exclusion probabilities are set; then individuals are excluded from the sample 
with a probability equal to that condition’s exclusion probability. Finally, the HMM is 
fitted to the resultant subsample and the estimates are compared to those obtained 
when using the full sample. As an illustration, Appendix 4.D.1 provides pseudocode for 
generating one condition.

4.4.3	 False-positive error simulations
The analysis of the false-positive linkage error, similarly to that for the false- negative, 
also follows three steps. Note that here, unlike in the false-negative example (whereby 
individuals are merely excluded from the sample), a proportion of the sample is 
mislinked with another set of individuals. This adds a further complication to the 
simulation design, as a donor is required whose ER contract type can be (erroneously) 
linked to a given individual’s LFS contract information. As in the false-negative error 
conditions, the first step determines the overall level of mislinkage (5 percent, 10 
percent, or 20 percent) and the individual probabilities of an erroneous link (which are 
either assigned at random or are age- or transition-dependent).

In the second step, the false-positive error is simulated in the following way: a 
number of individuals is selected at random according to the aforementioned design. 
Each one of those individuals in turn, here referred to as individual A, is either (1) 
randomly matched to another person or (2) matched to a similar person based on 
age, gender, education level, and ethnicity. The register values of individual A for the 
contract type are replaced with those of the matched individual (i.e. the donor), here 
referred to as individual B.

The second set of conditions, wherein relatively similar individuals are matched, 
is introduced to approximate a more realistic linkage error condition that is more 
representative of actual potential mismatches.

The third and final step is parallel to that of the exclusion error analysis. Our HMM is 
fitted to each of the simulated datasets, and the outcomes are compared to the results 
obtained when using the original dataset. Pseudocode illustrating the simulation setup 
for one of the conditions is included in Appendix 4.D.2.

4.5	 Results

4.5.1	 The effect of false-negative error
The simulation results obtained for the various false-negative error conditions are 
shown in Table 4.1; the table provides the mean estimated three-monthly transition 
rates as well as the absolute and relative bias introduced by linkage error. These biases 
are estimated by comparing the obtained transition rates to those calculated using the 
original dataset. Figure 4.E.1, which is included in Appendix 4.E, provides an illustration 

of the relationship between the type (age or transition dependent), level (5 percent, 10 
percent, 20 percent), and bias introduced by linkage error.

The results show that when the exclusion probability depends on age, the relative 
bias introduced by false-negative linkage error does not exceed 5 per- cent and, 
therefore, can be considered negligible. Thus, it appears that when the exclusion 
probability depends on a covariate that is weakly or moderately correlated with the 
model estimates, the bias in the model estimates is marginal, even when the overall 
exclusion rate is rather high (e.g. 20 percent).

A vastly different picture emerges when the exclusion probability depends on 
whether a transition occurred. Namely, our results show that the employment transition 
rates in this set of conditions are heavily underestimated, leading to a substantial, non-
negligible bias. In relative terms, the bias ranges from 10.6 percent, for an overall linkage 
error of 5 percent, to 25 percent, when the linkage error amounts to 10 percent, and to 
as high as 84.3 percent when the error rate equals 20 percent. As this covariate is highly 
correlated with the model estimates, we can infer from these results that conditions 
characterized by substantial dependency between the error and model outcomes will 
result in non- negligible bias.
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Overall, the results obtained suggest that the extended, two-indicator HHM is 
robust to false-negative linkage error when the exclusion probability depends on age, a 
covariate that is weakly or moderately correlated with the (structural) model estimates. 
In these situations, the bias introduced by linkage error is relatively small and thus the 
HMM estimates can be considered accurate. The model appears sensitive, though, to 
false-negative linkage error when the individual-level exclusion probabilities depend 
on whether a transition occurred, a covariate that is highly correlated with the latent 
variable and consequently the model outcomes. These scenarios lead to a substantial, 
non-ignorable bias.

Finally, it is worthwhile to note that our false-negative linkage error analysis can be 
viewed as a form of complete case analysis with varying degrees of missingness. Our 
two specific sets of conditions mimic MNAR: first, where the exclusion probabilities 
are dependent on a variable that is moderately correlated with the model estimates; 
and second, where the probabilities are dependent on a variable exceptionally highly 
correlated with the model estimates. Our findings confirm this line of thought. More 
specifically, our results, similar to those reported by studies investigating missingness 
specifically, show that MNAR leads to substantial bias when the missingness is highly 
correlated with model estimates (Bakker & Daas, 2012; Galimard et al., 2016; Marshall 
et al., 2010).

4.5.2	 The Effect of false-positive error
The results obtained when simulating various levels and types of false-positive linkage 
error are presented in Table 4.2 and in Figure 4.E.2, which is included in Appendix 4.E. 
As can be seen, the bias introduced by false-positive linkage error is rather modest for 
the conditions where the mislinkage probability is either random or depends on age. In 
contrast, those conditions in which the probability of mislinkage depends on whether 
a transition occurred are characterized by high, non-negligible bias. These findings are 
consistent for both the conditions in which an individual is mislinked with a randomly 
selected donor and where the individual is mislinked with a donor similar to them with 
regard to age, gender, education, and ethnicity. While in the present case mislinking 
similar donors did not reduce the linkage error bias, this will not necessarily always be 
the case. If both the mislinkage probability and do- nor matching depend on a variable(s) 
that is (are) highly correlated with the transition estimates, it is likely that using similar 
rather than random donors would decrease the bias introduced by linkage error.

More specifically, the first two sets of conditions, regardless of whether the 
individual is mislinked with a random or a similar donor, lead to a relative bias of less 
than 5 percent. On the other hand, those conditions in which the mislinkage probability 
depends on the presence of a transition result in a relative bias of around 10 percent, 
20–25 percent, and (well) over 60 percent when the mislinkage rate is low, medium, 
and high, respectively. Figure A.E.2 shows a clear positive relationship between the 
transition-dependent mislinkage level and the bias in the model estimates. This 
relationship is not observed for the other two sets of conditions.

4



76 77

Chapter 4 How linkage error affects hidden Markov model estimates: A sensitivity analysis

Ta
bl

e 
4.

1-
 S

im
ul

ati
on

 R
es

ul
ts

: T
he

 B
ia

sin
g 

Eff
ec

ts
 o

f A
ll 

Fa
ls

e-
N

eg
ati

ve
 L

in
ka

ge
 E

rr
or

 C
on

di
tio

ns
 (i

n 
%

)

Er
ro

r t
yp

e
Co

nd
iti

on
: t

he
 

pr
ob

ab
ili

ty
 o

f b
ei

ng
 

ex
cl

ud
ed

O
ve

ra
ll 

er
ro

r 
(a

pp
ro

x.
)

H
ig

h 
ex

cl
us

io
n 

pr
ob

ab
ili

ty
Lo

w
 e

xc
lu

si
on

 
pr

ob
ab

ili
ty

Te
m

po
ra

ry
 to

 p
er

m
an

en
t t

ra
ns

iti
on

 ra
te

Tr
an

si
tio

n 
ra

te
Ab

so
lu

te
 b

ia
s

Re
la

tiv
e 

bi
as

N
o 

er
ro

r
O

rig
in

al
 H

M
M

0
-

-
6.

9
-

-
Fa

ls
e-

ne
ga

tiv
e

De
pe

nd
s o

n 
ag

e
5

15
1

6.
6

0.
3

4.
6

10
30

1
6.

7
0.

2
3.

2
20

70
1

6.
6

0.
3

3.
8

De
pe

nd
s o

n 
tr

an
si

tio
n

5
15

5
6.

2
0.

7
10

.6
10

34
9

5.
2

1.
7

25
.0

20
90

17
1.

1
5.

8
84

.3

N
ot

e:
 In

 th
e 

ag
e-

de
pe

nd
en

t c
on

di
tio

ns
, h

ig
h 

ex
cl

us
io

n 
pr

ob
ab

ili
ty

 w
as

 s
et

 fo
r y

ou
ng

 in
di

vi
du

al
s 

an
d 

lo
w

 fo
r o

ld
er

 o
ne

s;
 in

 th
e 

tr
an

si
tio

n-
de

pe
nd

en
t 

co
nd

iti
on

s, 
hi

gh
 e

xc
lu

sio
n 

pr
ob

ab
ili

ty
 w

as
 se

t f
or

 in
di

vi
du

al
s w

ho
 h

ad
 a

 tr
an

siti
on

 a
nd

 lo
w

 fo
r t

ho
se

 w
ho

 d
id

 n
ot

. T
he

 tr
an

siti
on

 ra
te

s a
re

 e
sti

m
at

ed
 b

as
ed

 
on

 th
e 

m
od

al
 c

la
ss

 m
em

be
rs

hi
ps

 (i
.e

. a
t e

ac
h 

tim
e 

po
in

t i
nd

iv
id

ua
ls 

ar
e 

as
si

gn
ed

 th
e 

co
nt

ra
ct

 ty
pe

 to
 w

hi
ch

 th
ey

 h
av

e 
th

e 
hi

gh
es

t p
os

te
rio

r p
ro

ba
bi

lit
y 

of
 b

el
on

gi
ng

 a
cc

or
di

ng
 to

 th
e 

m
od

el
); 

as
 th

e 
en

tr
op

y 
R2

 is
 a

bo
ve

 0
.9

9 
fo

r a
ll 

co
nd

iti
on

s,
 su

ch
 a

n 
as

si
gn

m
en

t i
s n

ot
 e

xp
ec

te
d 

to
 p

ro
du

ce
 d

iff
er

en
t r

es
ul

ts
 

fr
om

 a
n 

as
si

gn
m

en
t t

ha
t t

ak
es

 th
e 

un
ce

rt
ai

nt
y 

of
 c

la
ss

 m
em

be
rs

hi
ps

 in
to

 a
cc

ou
nt

.

Overall, the results obtained suggest that the extended, two-indicator HHM is 
robust to false-negative linkage error when the exclusion probability depends on age, a 
covariate that is weakly or moderately correlated with the (structural) model estimates. 
In these situations, the bias introduced by linkage error is relatively small and thus the 
HMM estimates can be considered accurate. The model appears sensitive, though, to 
false-negative linkage error when the individual-level exclusion probabilities depend 
on whether a transition occurred, a covariate that is highly correlated with the latent 
variable and consequently the model outcomes. These scenarios lead to a substantial, 
non-ignorable bias.

Finally, it is worthwhile to note that our false-negative linkage error analysis can be 
viewed as a form of complete case analysis with varying degrees of missingness. Our 
two specific sets of conditions mimic MNAR: first, where the exclusion probabilities 
are dependent on a variable that is moderately correlated with the model estimates; 
and second, where the probabilities are dependent on a variable exceptionally highly 
correlated with the model estimates. Our findings confirm this line of thought. More 
specifically, our results, similar to those reported by studies investigating missingness 
specifically, show that MNAR leads to substantial bias when the missingness is highly 
correlated with model estimates (Bakker & Daas, 2012; Galimard et al., 2016; Marshall 
et al., 2010).

4.5.2	 The Effect of false-positive error
The results obtained when simulating various levels and types of false-positive linkage 
error are presented in Table 4.2 and in Figure 4.E.2, which is included in Appendix 4.E. 
As can be seen, the bias introduced by false-positive linkage error is rather modest for 
the conditions where the mislinkage probability is either random or depends on age. In 
contrast, those conditions in which the probability of mislinkage depends on whether 
a transition occurred are characterized by high, non-negligible bias. These findings are 
consistent for both the conditions in which an individual is mislinked with a randomly 
selected donor and where the individual is mislinked with a donor similar to them with 
regard to age, gender, education, and ethnicity. While in the present case mislinking 
similar donors did not reduce the linkage error bias, this will not necessarily always be 
the case. If both the mislinkage probability and do- nor matching depend on a variable(s) 
that is (are) highly correlated with the transition estimates, it is likely that using similar 
rather than random donors would decrease the bias introduced by linkage error.

More specifically, the first two sets of conditions, regardless of whether the 
individual is mislinked with a random or a similar donor, lead to a relative bias of less 
than 5 percent. On the other hand, those conditions in which the mislinkage probability 
depends on the presence of a transition result in a relative bias of around 10 percent, 
20–25 percent, and (well) over 60 percent when the mislinkage rate is low, medium, 
and high, respectively. Figure A.E.2 shows a clear positive relationship between the 
transition-dependent mislinkage level and the bias in the model estimates. This 
relationship is not observed for the other two sets of conditions.
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Figure 4.3 demonstrates how mislinkage affects the measurement part of the model; 
that is, it shows the effect of linkage error on the proportion of measurement error 
in our main variable of interest, i.e. the individual’s contract type. As can be seen, as 
we increase the mislinkage rate, the misclassification rate moves in tandem; this is 
particularly visible for the LFS data.17 These results confirm our intuition and suggest 
that under many conditions false-positive linkage error is simply another source of 
misclassification that the HMM can absorb into the error rate estimates and correct 
for in the transition rate estimates.

Figure 4.3- Level of measurement error by type and level of mislinkage 
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Figure 4.3- Level of measurement error by type and level of mislinkage

17	 This pattern is not observed in the ER data, as the simplified HMM we use does not account for auto-
correlation of the error in these data. As measurement error in the ER is predominantly systematic, 
the model fails to capture it altogether and assumes the register data to be virtually error- free.
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Figure 4.3 demonstrates how mislinkage affects the measurement part of the model; 
that is, it shows the effect of linkage error on the proportion of measurement error 
in our main variable of interest, i.e. the individual’s contract type. As can be seen, as 
we increase the mislinkage rate, the misclassification rate moves in tandem; this is 
particularly visible for the LFS data.17 These results confirm our intuition and suggest 
that under many conditions false-positive linkage error is simply another source of 
misclassification that the HMM can absorb into the error rate estimates and correct 
for in the transition rate estimates.

Figure 4.3- Level of measurement error by type and level of mislinkage 
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Figure 4.3- Level of measurement error by type and level of mislinkage

17	 This pattern is not observed in the ER data, as the simplified HMM we use does not account for auto-
correlation of the error in these data. As measurement error in the ER is predominantly systematic, 
the model fails to capture it altogether and assumes the register data to be virtually error- free.
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4.6	 Conclusion and discussion

Latent class models (LCMs) have been increasingly used to correct for measurement 
error in categorical variables. A particularly useful group of LCMs are hidden Markov 
models (HMMs), as they can be applied to longitudinal data, and thus allow the study 
of transitions and change over time, which is often a quantity of interest in the social 
sciences. However, while HMMs are an appealing and useful tool, they rely on the (often 
unrealistic) local independence assumption. An attractive solution that allows the local 
independence assumption to be relaxed is linking data from independent sources. Such 
record linkage identifies HMMs with local dependence within sources while maintaining 
the independence assumption across sources. However, this approach introduces a 
new challenge: linkage error.

In this paper, we investigate the sensitivity of HMM estimates to linkage error. A 
geometric argument demonstrated that independent (false-positive) link- age error is 
largely absorbed by measurement parameters of latent class models. Dependent linkage 
errors, however, can be expected to strongly bias structural model parameters such 
as the latent class size in an LCM. Our simulation study further investigated this effect 
for HMMs based on an existing application to linked data on employment mobility.

Our results suggest that linkage error may not always be a problem for researchers 
who wish to apply HMMs for the purpose of estimating their structural parameters, 
such as transition rates. When individuals are randomly mislinked or not linked, the 
resulting bias in structural parameters was often negligible in our study, a result that 
confirms the geometric intuition relevant to LCMs. Linkage error led to significant 
bias only when the individual probability of being erroneously excluded or mislinked 
depended on the transition rate itself. The bias was particularly high for high rates 
of linkage error and when the aforementioned dependency was very strong; in the 
other instances investigated, the sensitivity of estimates of structural parameters to 
mislinkage appears relatively low.

Our results show that false-positive linkage error can often be absorbed by the 
model. In other words, mislinkage can manifest itself as random measurement error 
that is already corrected for by the model, unless the linkage error probability is strongly 
dependent. Despite this important caveat, we believe that our findings highlight the 
attractiveness of using HMMs to correct for measurement error in structural parameter 
estimates, since, in particular cases, they allow for the use of linked data with relatively 
low sensitivity to linkage error. This is especially appealing, as the methods available to 
correct for link- age error often cannot be easily applied in this context.

A disadvantage of our findings is that, since linkage error may be absorbed into 
measurement error parameters, these parameters no longer give “pure” estimates of 
measurement error. In other words, when the measurement, and not the structural, 
parameters are of primary interest (e.g. Biemer, 2011), our results suggest that linkage 
and measurement error will be partially conflated. Considering the increasing use of 
HMMs for this goal, future work should therefore develop methods to correct latent 

variable model estimates for link- age error, perhaps by extending the estimating 
equations approach discussed in (Chambers & Kim, 2015).

Furthermore, while our manuscript provided novel results on the effect of linkage 
error on point estimates, the effect on the variance of these estimates remains 
unknown. For false-negative linkage errors (i.e. missed links), the standard theory of 
missing data applies, and the observed information will equal the information without 
these errors minus the information that would have been obtained in the missed links 
(Little & Rubin, 2019). The effect of false-positive links (i.e. incorrectly linked records) 
on the variance, however, remains an open question for future work.
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4.6	 Conclusion and discussion

Latent class models (LCMs) have been increasingly used to correct for measurement 
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of linkage error and when the aforementioned dependency was very strong; in the 
other instances investigated, the sensitivity of estimates of structural parameters to 
mislinkage appears relatively low.

Our results show that false-positive linkage error can often be absorbed by the 
model. In other words, mislinkage can manifest itself as random measurement error 
that is already corrected for by the model, unless the linkage error probability is strongly 
dependent. Despite this important caveat, we believe that our findings highlight the 
attractiveness of using HMMs to correct for measurement error in structural parameter 
estimates, since, in particular cases, they allow for the use of linked data with relatively 
low sensitivity to linkage error. This is especially appealing, as the methods available to 
correct for link- age error often cannot be easily applied in this context.

A disadvantage of our findings is that, since linkage error may be absorbed into 
measurement error parameters, these parameters no longer give “pure” estimates of 
measurement error. In other words, when the measurement, and not the structural, 
parameters are of primary interest (e.g. Biemer, 2011), our results suggest that linkage 
and measurement error will be partially conflated. Considering the increasing use of 
HMMs for this goal, future work should therefore develop methods to correct latent 

variable model estimates for link- age error, perhaps by extending the estimating 
equations approach discussed in (Chambers & Kim, 2015).

Furthermore, while our manuscript provided novel results on the effect of linkage 
error on point estimates, the effect on the variance of these estimates remains 
unknown. For false-negative linkage errors (i.e. missed links), the standard theory of 
missing data applies, and the observed information will equal the information without 
these errors minus the information that would have been obtained in the missed links 
(Little & Rubin, 2019). The effect of false-positive links (i.e. incorrectly linked records) 
on the variance, however, remains an open question for future work.
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Appendix 4.A The Effect of local independence as-
sumption violations on HMM estimates — an illustra-
tion using real data

As mentioned in the introduction, the local independence assumption, which is 
necessary for model identification for the standard, one-indicator HMM, is in many 
cases unrealistic for both survey and register data. If this assumption is violated, HMM 
estimates are likely to suffer from (considerable) bias and, as such, it is necessary to 
relax it, which is possible when using multiple indicators per time point.

We provide here an illustration of the biasing effects of local independence 
assumption violations using data on labor mobility in the Netherlands from the 
Employment Register (ER) and the Labour Force Survey (LFS) for the years 2009 and 
2010. In doing so, we compare the temporary to permanent employment transition 
estimates obtained using a one-indicator HMM that only uses register data to those 
obtained using a two-indicator HMM applied to linked ER and LFS data. In the latter 
model specification, we relax the local independence assumption for the register data, 
as it is known from previous research (Pankowska et al., 2018; Pavlopoulos & Vermunt, 
2015) that the measurement error in ER is autocorrelated and, thus, that the local 
independence assumption is violated. Table 4.A.1 compares the transition estimates 
obtained from both models; as can be seen, the one-indicator HMM, which erroneously 
retains the local independence assumption for the register data, significantly 
overestimates the transition rate from temporary to permanent employment. The 
relative bias resulting from ignoring the violation of the local independence assumption 
amounts to 310 percent.

Table 4.A.1- Transition estimates and bias for one- and two- indicator HMMs

Model specification Transition estimate (temp → perm) Absolute bias Relative bias
One-indicator HMM
•	 Only using ER
•	 Retaining ICE

0.0689 0.0521 310%

Two- indicator HMM
•	 Using ER and LFS
•	 Relaxing ICE for ER

0.0168 - -

Note: For computational reasons the simulation study uses a two-indicator HMM which does not 
relax the local independence assumption for the register data and does not model autocorrelated 
measurement error in the ER; therefore, the transition rate in the absence of linkage error 
resembles the one obtained from a single indicator HMM in Appendix 4.A.

Appendix 4.B Fitting of a latent class model to data 
with independent linkage error - a geometric argument

Jones et al. (2010) adapted the geometric approach of Fienberg and Gilbert (1970) to 
the analysis of cross-tables, in order to depict maximum likelihood estimation of the 
measurement parameters and the structural parameter π in a three-indicator LCM. 
Here we demonstrate how these estimates are affected by independent linkage error. 
In the Fienberg and Gilbert (1970) approach, all possible normalized 2X2 cross-tables 
are placed in a tetrahedron representing the simplex 
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Figure 4.B.1- Geometrical view of fitting of a latent class model to data with independent linkage error 

normalized 2×2 cross-tables are placed in a tetrahedron representing the simplex {𝑥𝑥 ∈ 𝑅𝑅4 : ∑ 𝑥𝑥𝑖𝑖 = 1} 

(Figure 4.B.1). The four corners of this tetrahedron, 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3 and 𝐴𝐴4, correspond to cross-tables with 

all probability mass in a single cell; all other 2×2 cross-tables can be represented as a single point 

within the tetrahedron. An important subset of tables is the “independence surface” formed by all 

2×2 independence tables, which is shown in Figure 4.B.1 as the shaded surface. Points along a line on 

this surface correspond to all independence tables with constant row or column margins. 

Following Jones et al. (2010), we consider a binary latent class model with three binary indicators 𝑌𝑌1, 

𝑌𝑌2, and 𝑌𝑌3. Without loss of generality, we consider the bivariate cross-table of 𝑌𝑌1 and 𝑌𝑌2 given 𝑌𝑌3 = 0 

(point 𝑝𝑝0) and 𝑌𝑌3 = 1  (point  𝑝𝑝1). The maximum-likelihood estimates of the conditional distributions 

given the latent class 𝑃𝑃(𝑌𝑌1, 𝑌𝑌2|𝑋𝑋 = 0) = 𝜂𝜂0 and  𝑃𝑃(𝑌𝑌1, 𝑌𝑌2|𝑋𝑋 = 1) = 𝜂𝜂1 are then found at the two 

intersections of the “solution line” 𝑝𝑝1 − 𝑝𝑝0 with the independence surface. This follows from the 

latent class model’s assumption that 𝑝𝑝0 and 𝑝𝑝1 are both convex combinations of 𝜂𝜂0 and 𝜂𝜂1, which, by 

conditional independence given the latent class variable, 𝑋𝑋, must lie on the independence surface. 

The MLE of P(X|𝑌𝑌3 = 0) is then found as 1 − length(𝑝𝑝0 − 𝜂𝜂0)/length(η1 − 𝜂𝜂0) and similarly, 

P̂(X|𝑌𝑌3 = 1) =  1 − length(𝑝𝑝1 − 𝜂𝜂1)/length(η1 − 𝜂𝜂0), implying the MLE for 𝜋𝜋 can be found by 

applying Bayes’ rule (Jones et al., 2010). Note that the length of the line segment η1 − 𝜂𝜂0 indicates 

the overall accuracy; as η0 and η1 lie at greater distance from each other, accuracy estimates under 

the LCM increase, with the maximum attained at the corners of the tetrahedron (estimated sensitivity 

and specificity equal to one).  

   

We now consider how the MLEs are affected by independent linkage error. Following Equation (4.6), 

we consider the distribution of linked records as a mixture over true matches and true non-matches, 

indicated by a random variable 𝑈𝑈. When false-positive linkage error is independent, 𝑃𝑃(𝑌𝑌|𝑈𝑈) = 𝑃𝑃(𝑌𝑌), 

the 𝑃𝑃(𝑌𝑌𝑗𝑗) in the equation above reduce to the marginals under the model, 𝑃𝑃(𝑌𝑌𝑗𝑗) = ∑ 𝑃𝑃HMM(𝑌𝑌)𝑦𝑦𝑘𝑘≠𝑗𝑗 . 

This point, 𝑝𝑝𝑈𝑈 in Figure 4.B.1, can be found by projecting the marginal over 𝑌𝑌3, point 𝑝𝑝, onto the 

independence surface along the line perpendicular to 𝐴𝐴1𝐴𝐴2 and 𝐴𝐴2𝐴𝐴3 (Fienberg & Gilbert 1970, p. 

699). The linkage error model in Equation (4.6) then shows that the joint distribution under linkage 

error is a convex combination of 𝑝𝑝𝑈𝑈 and the original joint distribution. That is, under independent 

linkage error, 𝑝𝑝0 and 𝑝𝑝1 are “shrunk” towards 𝑝𝑝𝑈𝑈 by exactly 𝑃𝑃(𝑈𝑈). Therefore, when linkage error is 

independent, the observed data points 𝑝𝑝0
∗ and 𝑝𝑝1

∗ lie on a solution line parallel to the original solution 

line, with length (𝑝𝑝∗ − 𝑝𝑝)/length (𝑝𝑝 − 𝑝𝑝𝑈𝑈) = 𝑃𝑃(𝑈𝑈).  

 
(Figure 4.B.1). 

The four corners of this tetrahedron, A1, A2, A3 and A4, correspond to cross-tables with 
all probability mass in a single cell; all other 2X2 cross-tables can be represented as a 
single point within the tetrahedron. An important subset of tables is the “independence 
surface” formed by all 2X2 independence tables, which is shown in Figure 4.B.1 as the 
shaded surface. Points along a line on this surface correspond to all independence 
tables with constant row or column margins.

Following Jones et al. (2010), we consider a binary latent class model with 
three binary indicators Y1, Y2 and Y3. Without loss of generality, we consider the 
bivariate cross-table of Y1 and Y2 given Y3 = 0 (point P0) andY3 = 1 (point P1). The 
maximum-likelihood estimates of the conditional distributions given the latent class 
P(Y1,Y2│X = 0) = η0  and 

 
P(Y1,Y2│X = 1) = η1 are then found at the two intersections 

of the “solution line” P1 - P0 with the independence surface. This follows from the 
latent class model’s assumption that P0 and P1 are both convex combinations of 
η0 and η1, which, by conditional independence given the latent class variable, X, 
must lie on the independence surface. The MLE of P(X│Y3 = 0) is then found as  
1-length(p0 - η0)/length(η1 - η0) and similarly, 
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Table 4.A.1- Transition estimates and bias for one- and two- indicator HMMs 

Model specification Transition estimate  
(temp          perm) 

Absolute 
bias 

Relative bias 

One-indicator HMM  
• Only using ER 
• Retaining ICE 

0.0689 0.0521 310% 

Two- indicator HMM  
• Using ER and LFS  
• Relaxing ICE for ER 

0.0168 - - 

Note: For computational reasons the simulation study uses a two-indicator HMM which does not relax the local 
independence assumption for the register data and does not model autocorrelated measurement error in the 
ER; therefore, the transition rate in the absence of linkage error resembles the one obtained from a single 
indicator HMM in Appendix 4.A. 

Appendix 4.B Fitting of a latent class model to data with independent linkage error - a 

geometric argument 

Jones et al. (2010) adapted the geometric approach of Fienberg and Gilbert (1970) to the analysis of 

cross-tables, in order to depict maximum likelihood estimation of the measurement parameters and 

the structural parameter 𝜋𝜋 in a three-indicator LCM. Here we demonstrate how these estimates are 

affected by independent linkage error. In the Fienberg and Gilbert (1970) approach, all possible 

normalized 2×2 cross-tables are placed in a tetrahedron representing the simplex {𝑥𝑥 ∈ 𝑅𝑅4 : ∑ 𝑥𝑥𝑖𝑖 = 1} 

(Figure 4.B.1). The four corners of this tetrahedron, 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3 and 𝐴𝐴4, correspond to cross-tables with 

all probability mass in a single cell; all other 2×2 cross-tables can be represented as a single point 

within the tetrahedron. An important subset of tables is the “independence surface” formed by all 

2×2 independence tables, which is shown in Figure 4.B.1 as the shaded surface. Points along a line on 

this surface correspond to all independence tables with constant row or column margins. 

Following Jones et al. (2010), we consider a binary latent class model with three binary indicators 𝑌𝑌1, 

𝑌𝑌2, and 𝑌𝑌3. Without loss of generality, we consider the bivariate cross-table of 𝑌𝑌1 and 𝑌𝑌2 given 𝑌𝑌3 = 0 

(point 𝑝𝑝0) and 𝑌𝑌3 = 1  (point  𝑝𝑝1). The maximum-likelihood estimates of the conditional distributions 

given the latent class 𝑃𝑃(𝑌𝑌1, 𝑌𝑌2|𝑋𝑋 = 0) = 𝜂𝜂0 and  𝑃𝑃(𝑌𝑌1, 𝑌𝑌2|𝑋𝑋 = 1) = 𝜂𝜂1 are then found at the two 

intersections of the “solution line” 𝑝𝑝1 − 𝑝𝑝0 with the independence surface. This follows from the 

latent class model’s assumption that 𝑝𝑝0 and 𝑝𝑝1 are both convex combinations of 𝜂𝜂0 and 𝜂𝜂1, which, by 

conditional independence given the latent class variable, 𝑋𝑋, must lie on the independence surface. 

The MLE of P(X|𝑌𝑌3 = 0) is then found as 1 − length(𝑝𝑝0 − 𝜂𝜂0)/length(η1 − 𝜂𝜂0) and similarly, 

𝑃̂𝑃(𝑋𝑋|𝑌𝑌3 = 1) =  1 − length(𝑝𝑝1 − 𝜂𝜂1)/length(𝜂𝜂1 − 𝜂𝜂0), implying the MLE for 𝜋𝜋 can be found by 

applying Bayes’ rule (Jones et al., 2010). Note that the length of the line segment η1 − 𝜂𝜂0 indicates 

the overall accuracy; as η0 and η1 lie at greater distance from each other, accuracy estimates under 

 (X│Y3 = 1) = 1 - length((p1 - η1)/length((η1 - η0), 
implying the MLE for π can be found by applying Bayes’ rule (Jones et al., 2010). Note 
that the length of the line segment η1 - η0 indicates the overall accuracy; as η0 and η1 
lie at greater distance from each other, accuracy estimates under the LCM increase, 
with the maximum attained at the corners of the tetrahedron (estimated sensitivity 
and specificity equal to one).

4



82 83

Chapter 4 How linkage error affects hidden Markov model estimates: A sensitivity analysis

Appendix 4.A The Effect of local independence as-
sumption violations on HMM estimates — an illustra-
tion using real data

As mentioned in the introduction, the local independence assumption, which is 
necessary for model identification for the standard, one-indicator HMM, is in many 
cases unrealistic for both survey and register data. If this assumption is violated, HMM 
estimates are likely to suffer from (considerable) bias and, as such, it is necessary to 
relax it, which is possible when using multiple indicators per time point.

We provide here an illustration of the biasing effects of local independence 
assumption violations using data on labor mobility in the Netherlands from the 
Employment Register (ER) and the Labour Force Survey (LFS) for the years 2009 and 
2010. In doing so, we compare the temporary to permanent employment transition 
estimates obtained using a one-indicator HMM that only uses register data to those 
obtained using a two-indicator HMM applied to linked ER and LFS data. In the latter 
model specification, we relax the local independence assumption for the register data, 
as it is known from previous research (Pankowska et al., 2018; Pavlopoulos & Vermunt, 
2015) that the measurement error in ER is autocorrelated and, thus, that the local 
independence assumption is violated. Table 4.A.1 compares the transition estimates 
obtained from both models; as can be seen, the one-indicator HMM, which erroneously 
retains the local independence assumption for the register data, significantly 
overestimates the transition rate from temporary to permanent employment. The 
relative bias resulting from ignoring the violation of the local independence assumption 
amounts to 310 percent.

Table 4.A.1- Transition estimates and bias for one- and two- indicator HMMs

Model specification Transition estimate (temp → perm) Absolute bias Relative bias
One-indicator HMM
•	 Only using ER
•	 Retaining ICE

0.0689 0.0521 310%

Two- indicator HMM
•	 Using ER and LFS
•	 Relaxing ICE for ER

0.0168 - -

Note: For computational reasons the simulation study uses a two-indicator HMM which does not 
relax the local independence assumption for the register data and does not model autocorrelated 
measurement error in the ER; therefore, the transition rate in the absence of linkage error 
resembles the one obtained from a single indicator HMM in Appendix 4.A.

Appendix 4.B Fitting of a latent class model to data 
with independent linkage error - a geometric argument

Jones et al. (2010) adapted the geometric approach of Fienberg and Gilbert (1970) to 
the analysis of cross-tables, in order to depict maximum likelihood estimation of the 
measurement parameters and the structural parameter π in a three-indicator LCM. 
Here we demonstrate how these estimates are affected by independent linkage error. 
In the Fienberg and Gilbert (1970) approach, all possible normalized 2X2 cross-tables 
are placed in a tetrahedron representing the simplex 
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Figure 4.B.1- Geometrical view of fitting of a latent class model to data with independent linkage error 

normalized 2×2 cross-tables are placed in a tetrahedron representing the simplex {𝑥𝑥 ∈ 𝑅𝑅4 : ∑ 𝑥𝑥𝑖𝑖 = 1} 

(Figure 4.B.1). The four corners of this tetrahedron, 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3 and 𝐴𝐴4, correspond to cross-tables with 

all probability mass in a single cell; all other 2×2 cross-tables can be represented as a single point 

within the tetrahedron. An important subset of tables is the “independence surface” formed by all 

2×2 independence tables, which is shown in Figure 4.B.1 as the shaded surface. Points along a line on 

this surface correspond to all independence tables with constant row or column margins. 

Following Jones et al. (2010), we consider a binary latent class model with three binary indicators 𝑌𝑌1, 

𝑌𝑌2, and 𝑌𝑌3. Without loss of generality, we consider the bivariate cross-table of 𝑌𝑌1 and 𝑌𝑌2 given 𝑌𝑌3 = 0 

(point 𝑝𝑝0) and 𝑌𝑌3 = 1  (point  𝑝𝑝1). The maximum-likelihood estimates of the conditional distributions 

given the latent class 𝑃𝑃(𝑌𝑌1, 𝑌𝑌2|𝑋𝑋 = 0) = 𝜂𝜂0 and  𝑃𝑃(𝑌𝑌1, 𝑌𝑌2|𝑋𝑋 = 1) = 𝜂𝜂1 are then found at the two 

intersections of the “solution line” 𝑝𝑝1 − 𝑝𝑝0 with the independence surface. This follows from the 

latent class model’s assumption that 𝑝𝑝0 and 𝑝𝑝1 are both convex combinations of 𝜂𝜂0 and 𝜂𝜂1, which, by 

conditional independence given the latent class variable, 𝑋𝑋, must lie on the independence surface. 

The MLE of P(X|𝑌𝑌3 = 0) is then found as 1 − length(𝑝𝑝0 − 𝜂𝜂0)/length(η1 − 𝜂𝜂0) and similarly, 

P̂(X|𝑌𝑌3 = 1) =  1 − length(𝑝𝑝1 − 𝜂𝜂1)/length(η1 − 𝜂𝜂0), implying the MLE for 𝜋𝜋 can be found by 

applying Bayes’ rule (Jones et al., 2010). Note that the length of the line segment η1 − 𝜂𝜂0 indicates 

the overall accuracy; as η0 and η1 lie at greater distance from each other, accuracy estimates under 

the LCM increase, with the maximum attained at the corners of the tetrahedron (estimated sensitivity 

and specificity equal to one).  

   

We now consider how the MLEs are affected by independent linkage error. Following Equation (4.6), 

we consider the distribution of linked records as a mixture over true matches and true non-matches, 

indicated by a random variable 𝑈𝑈. When false-positive linkage error is independent, 𝑃𝑃(𝑌𝑌|𝑈𝑈) = 𝑃𝑃(𝑌𝑌), 

the 𝑃𝑃(𝑌𝑌𝑗𝑗) in the equation above reduce to the marginals under the model, 𝑃𝑃(𝑌𝑌𝑗𝑗) = ∑ 𝑃𝑃HMM(𝑌𝑌)𝑦𝑦𝑘𝑘≠𝑗𝑗 . 

This point, 𝑝𝑝𝑈𝑈 in Figure 4.B.1, can be found by projecting the marginal over 𝑌𝑌3, point 𝑝𝑝, onto the 

independence surface along the line perpendicular to 𝐴𝐴1𝐴𝐴2 and 𝐴𝐴2𝐴𝐴3 (Fienberg & Gilbert 1970, p. 

699). The linkage error model in Equation (4.6) then shows that the joint distribution under linkage 

error is a convex combination of 𝑝𝑝𝑈𝑈 and the original joint distribution. That is, under independent 

linkage error, 𝑝𝑝0 and 𝑝𝑝1 are “shrunk” towards 𝑝𝑝𝑈𝑈 by exactly 𝑃𝑃(𝑈𝑈). Therefore, when linkage error is 

independent, the observed data points 𝑝𝑝0
∗ and 𝑝𝑝1

∗ lie on a solution line parallel to the original solution 

line, with length (𝑝𝑝∗ − 𝑝𝑝)/length (𝑝𝑝 − 𝑝𝑝𝑈𝑈) = 𝑃𝑃(𝑈𝑈).  
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The four corners of this tetrahedron, A1, A2, A3 and A4, correspond to cross-tables with 
all probability mass in a single cell; all other 2X2 cross-tables can be represented as a 
single point within the tetrahedron. An important subset of tables is the “independence 
surface” formed by all 2X2 independence tables, which is shown in Figure 4.B.1 as the 
shaded surface. Points along a line on this surface correspond to all independence 
tables with constant row or column margins.
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Table 4.A.1- Transition estimates and bias for one- and two- indicator HMMs 

Model specification Transition estimate  
(temp          perm) 

Absolute 
bias 

Relative bias 

One-indicator HMM  
• Only using ER 
• Retaining ICE 

0.0689 0.0521 310% 

Two- indicator HMM  
• Using ER and LFS  
• Relaxing ICE for ER 

0.0168 - - 

Note: For computational reasons the simulation study uses a two-indicator HMM which does not relax the local 
independence assumption for the register data and does not model autocorrelated measurement error in the 
ER; therefore, the transition rate in the absence of linkage error resembles the one obtained from a single 
indicator HMM in Appendix 4.A. 
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lie at greater distance from each other, accuracy estimates under the LCM increase, 
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Figure 4.B.1- Geometrical view of fitting of a latent class model to data with independent linkage 
error

We now consider how the MLEs are affected by independent linkage error. Following 
Equation (4.6), we consider the distribution of linked records as a mixture over true 
matches and true non-matches, indicated by a random variable U. When false-positive 
linkage error is independent, P(Y│U) = P(Y), the P(Y) in the equation above reduce to 
the marginals under the model, P(Yj) = ∑yk≠j 

PHMM(Y). This point, pu in Figure 4.B.1, can 
be found by projecting the marginal over Y3, point p, onto the independence surface 
along the line perpendicular to A1A2 and A2A3 (Fienberg & Gilbert 1970, p. 699). The 
linkage error model in Equation (4.6) then shows that the joint distribution under linkage 
error is a convex combination of pu and the original joint distribution. That is, under 
independent linkage error, p0 and p1 are “shrunk” towards pu by exactly P(U). Therefore, 
when linkage error is independent, the observed data points p1

* and p0
* lie on a solution 

line parallel to the original solution line, with length (p*- p)/length (p - pU) = P(U)
Similarly, the “true” measurement parameters η0

* and η1
* are also convex 

combinations with pu, as shown in Figure 4.B.1 by points on the line segments η0  - pU  and 
η1  - pU. Thus, under independence, η0

* and η1
* must move closer to pU  and away from 

the corners of the tetrahedron that represent perfect measurement, shortening the 
overall length of the solution line. In other words, independent linkage error necessarily 
leads to higher classification errors. The MLEs of these measurement parameters, η0

** 
and η1

** and , meanwhile, are found by projecting the solution line, not onto η0  - pU  and 
η1  - pU, but rather onto the independence surface. The distances length (η0

*- η0
**) and 

length (η1
*- η1

**) reflect violations of the LCM’s conditional independence assumption. 
Therefore, linkage error does cause violations of the model’s assumptions. However, 

as can be seen in Figure 4.B.1, these violations will be negligible in practice, and the 
bias is bounded by a small number (relative to the solution line) that depends on P(U). 
In short, independent linkage errors are absorbed by the measurement parameters, 
leaving the structural parameters approximately unaffected.

In contrast, bias will be strong when linkage error is not independent, P(Y│U) ≠ P(Y). 
In this case, the new point may lie anywhere on the independence surface, destroying 
the parallel property of the new solution line. In this case, none of the previous results 
apply, and the bias in both measurement and structural parameters can be arbitrarily 
large.

Finally, we have assumed that the mislinked records have an independent joint 
distribution. When this assumption does not hold, the projection pu should be replaced 
by a projection, pu,dep, say, onto a “dependence surface” defined by a constant odds 
ratio (Fienberg and Gilbert 1970, pp. 699-701). Because of independence of linkage 
errors, the projection will still be orthogonal to A1A2 and A2A3. In this situation, the 
length of the solution line will still be reduced and classification errors will rise. However, 
the distance from the “true” interpolation between pu

* and η to the corresponding 
projection onto the independence surface may increase. In other words, in this 
situation, depending on the strength of the dependence pu

*, some non-negligible bias in 
the MLE of π may start occurring. In particular, for positive dependence (odds ratio > 1), 
π will be somewhat underestimated (overestimated for negative dependence).

In this appendix, we have indicated the consequences of linkage error for latent class 
analysis, and argued that independent linkage errors lead to a relatively small violation 
of the LCM’s assumptions. Although we have not shown this here, we conjecture that 
the argument extends to higher-dimensional and multiple category problems, such as 
the HMM. We have also seen that dependence of linkage errors has more potential 
to cause bias than dependence in the mislinked records. Our paper investigates these 
conjectures using a simulation study.

Appendix 4.C The combined LFS and ER dataset

4.C.1 Background information on the LFS and ER
The Labour Force Survey (LFS) is an address-based sampling survey conducted by 
Statistics Netherlands, which provides information on individuals’ labor market position. 
As of the last quarter of 1999, it has been a rotating panel survey that consists of five 
waves conducted every three months.

The Employment Register (ER) is an administrative dataset managed by the Dutch 
Employee Insurance Agency (UWV). It contains monthly information on wages, benefits, 
and labor relations and covers all insured employees in the Netherlands. While the 
dataset combines information from various sources, the core information is delivered 
by employers to the Dutch Tax Authorities (in Dutch: Belastingdienst) for tax purposes. 
The data from both the LFS and the ER are linked at the individual level to the Population 
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Register (PR), and so the target population of the data is restricted to individuals 
registered in the Netherlands.

4.C.2 Missing values
The dataset is unbalanced for the LFS, as it suffers from attrition and has, for the non-
survey months, observations missing completely at random (MCAR). More specifically, 
the first wave of the survey includes 8,708 individuals (130,620 observations), the 
second 7,458 (111,870 observations), the third 6,856 (102,840 observations), the 
fourth 6,739 (101,085 observations), and the fifth 6,560 (98,400 observations). While 
ostensibly the ER cannot suffer from dropout, as all employers are obliged by law to 
submit their reports, 2,619 observations are missing, which amounts to just under 2 
percent of the sample. Those observations are also assumed to be MCAR.

4.C.3 Record linkage procedure
The data from both sources are linked at the individual level to the PR. For the LFS, the 
linkage key is the combination of birth date, gender, postal code, and house number. 
In the first step, two records are linked if the post code and house number correspond 
and only one of the other variables of the linkage key differs. In the second step, the 
remaining, unlinked records are linked on postal code, birth date, and gender, and no 
differences on the other variables are allowed. This results in a linkage effectiveness, 
that is, the percentage of linked records, of 98.3 percent for those who had a first 
interview in 2009.

The ER is linked to the PR in three steps; the procedure is repeated monthly, and 
one-to-one matching is enforced. In the first step, the records from both sources are 
linked on the Citizen Service Number (BSN; a unique personal number allocated to 
everyone registered in the Netherlands). For those records that are linked in this step, 
it is verified whether birth date and gender are consistent in both data sources. If not, 
the records go to the next step together with those that were not linked on BSN. In 
the second step, the data are linked using birth date, gender, postal code, and house 
number. In the third step, the remaining unlinked records from the first two steps are 
linked using only the BSN, ignoring any differences in the other variables. This procedure 
is repeated monthly. The overall linkage effectiveness is approximately 96–97 percent, 
depending on the chosen month; 99.8 percent of all linked records are successfully 
linked in the first step.

The linkage to the Population Register results in the assignment of a meaningless 
linkage number to each linked record of both sources. That linkage number can be 
used to combine the LFS and ER as well as the data from the successive follow-ups. 
Having selected only individuals aged 25–55, the link- age effectiveness of the combined 
sources is approximately 97 percent. The unlinked records refer to cross-border workers 
from Belgium or Germany that belong to the target population of the ER but not the 
LFS, as well as to non- registered individuals (typically immigrants) that are represented 
in the LFS but not in the ER. Therefore, when focusing on the population of registered 

individuals that reside in the Netherlands, the linkage of the two data sources of our 
dataset approaches perfection.

Appendix 4.D Simulation design
The simulations are designed in the following way. First, we identify young individuals 
or individuals who had at least one three-monthly transition from temporary to 
permanent employment recorded in the register data (this step is skipped for random 
mislinkage conditions). Second, we assign one of two exclusion/mislinkage probabilities 
to each individual: a higher one for individuals identified in the first step (i.e. younger 
or who have “transitioned”) and a lower one for all remaining ones (we assign the 
same probability to everyone in the random mislinkage conditions). Third, given the 
assigned probabilities, we select individuals for exclusion/mislinkage at random. Fourth, 
in the case of false-negative linkage conditions, we exclude the chosen individuals; in 
false-positive linkage conditions, we assign the selected individuals to a donor and 
replace their ER contract type with that of the donor. The assignment to the donor can 
be either completely random or based on similarity given the age, gender, nationality, 
and education of individuals. Finally, we run our HMM on the simulated datasets and 
compare the estimated transitions rates to those obtained when no linkage error is 
introduced into the dataset.

Below we provide pseudocodes illustrating the simulation design. Both pseudocodes 
illustrate conditions characterized by an overall 5 percent error rate and in which 
individuals who have transitioned (from temporary to permanent employment 
according to the register data) are oversampled.

4.D.1 Pseudocode for a false-negative linkage error condition

Step 1
1. Identify individuals who have had one or more three-monthly 		

transitions: Temp t-3 → Perm t
2. If a given individual has had a transition, set their exclusion threshold  t to .15
	 a. Else, assign threshold t to .05

Step 2
3. For each individual in the sample, draw a random number from a standard 

uniform distribution - Ui ~ U(0,1)
4. If Ui  ≤  t, exclude individual i
		  a. Else, do not exclude individual i

Step 3
5. Run the HMM on this new dataset and compare the results to the original 

ones
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4.D.2 Pseudocode for a false-positive linkage error condition

Step 1
1. Identify individuals who have had 1 or more three-monthly transitions: 

Temp t-3 → Perm t
2. If a given individual has had a transition, assign mislinkage threshold t as .15
		  a. Else, assign threshold t as .05

Step 2
3. For each individual in the sample, draw a random number from a standard 

uniform distribution - Ui ~ U(0,1)
4. If Ui  ≤  t, mislink individual i
		  a. Else, do not mislink individual i 

If the donor is random:
5. Assign to the linkage recipient the ER contract type of a randomly chosen 

individual

If the donor is based on characteristics:
5. 		 a. Use R’s matchit package to perform statistical matching based on age, 	

		  gender, nationality, and education
		  b. Assign to the linkage recipient the ER contract type of the matched 	

		  individual

Step 3
6. Run the HMM on this mislinked data and compare the results to the original 

ones

Appendix 4.E Illustration of simulation results

Figures 4.E.1 and 4.E.2 provide an illustration of the relationship between the type 
(random, age, or transition-dependent), level (5 percent, 10 percent, 20 percent), and 
bias introduced by false-negative and false-positive linkage error, respectively.

Figure 4.E.1- Relative bias by overall level of false-negative linkage error
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Figure 4.E.2- Relative bias by overall level of false-positive linkage errorReconciliation of incon-
sistent data sources by correction for measurement error: The feasibility of parameter re-use
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Figure 4.E.2- Relative bias by overall level of false-positive linkage errorReconciliation of incon-
sistent data sources by correction for measurement error: The feasibility of parameter re-use
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Abstract

National Statistical Institutes (NSIs) often obtain information about a single variable from 
separate data sources. Administrative registers and surveys, in particular, often provide 
overlapping information on a range of phenomena of interest to official statistics. 
However, even though the two sources overlap, they both contain measurement error 
that prevents identical units from yielding identical values. Reconciling such separate 
data sources and providing accurate statistics, which is an important challenge for 
NSIs, is typically achieved through macro-integration. In this study we investigate the 
feasibility of an alternative method based on the application of previously obtained 
results from a recently introduced extension of the hidden Markov model (HMM) to 
newer data. The method allows a reconciliation of separate error-prone data sources 
without having to repeat the full HMM analysis, provided the estimated measurement 
error processes are stable over time. As we find that these processes are indeed 
stable over time, the proposed method can be used effectively for macro-integration, 
to reconciliate both first-order statistics — e.g. the size of temporary employment in 
the Netherlands — and second-order statistics — e.g. the amount of mobility from 
temporary to permanent employment.
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newer data. The method allows a reconciliation of separate error-prone data sources 
without having to repeat the full HMM analysis, provided the estimated measurement 
error processes are stable over time. As we find that these processes are indeed 
stable over time, the proposed method can be used effectively for macro-integration, 
to reconciliate both first-order statistics — e.g. the size of temporary employment in 
the Netherlands — and second-order statistics — e.g. the amount of mobility from 
temporary to permanent employment.
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5.1	 Introduction

National Statistical Institutes (NSIs) often obtain information about the same 
phenomenon from different data sources (Van Delden et al., 2016). For example, the 
Dutch Labour Force Survey administered by Statistics Netherlands includes data that 
overlap to some extent with register data from the Dutch social security administration. 
The overlapping component of these datasets can be linked at the individual level. Such 
linked survey-register data often concern longitudinal measures of categorical variables 
such as employment, housing, and education, and are subject to editing procedures 
to improve data quality (De Waal, 2016; De Waal et al., 2011). However, even then, 
identical units do not always yield identical values (Guarnera & Varriale, 2016).

Two types of error may account for these discrepancies: measurement error and 
linkage error. However, linkage error, while an important error source in official statistics 
generally, is less of a concern for Statistics Netherlands due to the use of unique resident 
identifier numbers. We will therefore focus on the problem of measurement error.

Measurement error in surveys is a well-known and extensively studied phenomenon 
(Alwin, 2007; Saris & Gallhofer, 2014). Measurement error in administrative registers, 
by contrast, has only recently attracted attention (Bakker, 2012; Oberski et al., 2017; 
Oberski, 2015; Scholtus et al., 2015; De Waal et al., 2011). Such errors occur because 
registers result from data collection of public administration and are not originally 
intended for social-scientific research. When it occurs during data entry, measurement 
errors in administrative registers mirror familiar survey response errors; however, errors 
unique to registers also occur, including administrative delay, definition error, and errors 
caused by administrative incentives (Bakker & Daas, 2012; Huynh et al., 2002; Zhang, 
2012).

Where measurement error is random or “classical”, the resulting data will not tend 
to bias “first-order” population estimates such as means, proportions, and totals (Bound 
et al., 2001). However, “second-order” estimates, such as domain mean differences, 
hazard ratios, and transition rates over time, are well-known to be severely biased 
by random measurement error (Bolck et al., 2004; Carroll et al., 2006; Fuller, 2009; 
Pavlopoulos et al., 2012). This bias may refer to an overestimation or an underestimation 
of these statistics.

For example, an important issue in labor market policy is the proportion of workers 
who change from employment with a flexible contract to employment with a permanent 
contract. If there is random measurement error in the type of employment contract, 
these transition rates are artificially (and severely) inflated as every misclassification in 
the contract type may lead to two errors in the measurement of transitions (Hagenaars, 
1994).

On the other hand, if errors are carried over between time points, the observed 
transitions rates are artificially dampened, as some real changes are not observed. 
Considering that the source and the type of the measurement error differs between 
data sources, the problem faced by NSIs is not only that different data sources yield 

different statistics, but also that measurement error may bias statistics in a different 
way in each of these sources.

There are several methods dealing with these differences in NSIs. Most commonly, 
the differences are ignored and only estimates from the source assumed to have the 
best quality are published. Another way is to assume that the quality of both sources 
is similar and take the mean of the estimates. However, a more advanced way of 
dealing with these differences is to apply macro-integration techniques. One of the 
usual integration strategies is that in the first step the stock data of two reference 
dates are integrated. In this step, the concepts, classifications and reference dates are 
harmonized, the data are completed by weighting or imputation if the data do not 
cover the entire target population, and, in order to minimize measurement error, the 
data are forced to meet identity relations defined beforehand. In the second step, data 
on the events between the two reference dates are made consistent by making use of 
the identity relations that the stock at reference date t plus all the changes add up to 
the stock at reference date t + 1. However, for the second step, only the source that is 
assumed to be of superior quality is used. In this second macro-integration step, one can 
try to preserve the original transitions in the (sub)populations as much as possible.

An alternative strategy to deal with this problem of inconsistency was recently 
introduced by Bakker (2012) for continuous cross-sectional data, by Oberski et al. 
(2017) for mixed type cross-sectional data, and by Pavlopoulos and Vermunt (2015) 
for categorical longitudinal data. In this latent variable modelling approach, the 
reconciliation and measurement error problems are solved simultaneously by modelling 
the two sources as conditionally independent measures of an underlying true value. 
In the cross-sectional models, this true value is related to other, similar, true values. 
Since repeated observations of a single linked survey-register variable may be more 
common in practice, we focus on the case of longitudinal data. In these models, the 
true value is related to itself over time in an autoregressive process that yields an 
extended — multiple data source — version of the hidden Markov model popularized 
by Biemer (2004, 2011), which in turn is a special case of the latent class model (Van de 
Pol & Langeheine, 1990; Vermunt, 2002). Previous work done at Statistics Netherlands 
used such models to integrate data from Labour Force Survey and social security 
administration (Pavlopoulos & Vermunt, 2015).

A problem with this procedure is that it is very time consuming and therefore 
expensive, since it requires the NSI to perform linkage between register and survey 
followed by re-estimation of the model for each new time period. This paper therefore 
considers the option of re-using existing parameter estimates from the above study in 
order to integrate data sources and correct statistics for measurement error. Re-use is 
potentially attractive because (1) it does not require re-estimation of the model, and (2) 
it can be applied not only to linked survey-register data, but also to each data source 
separately, forgoing the need for a time intensive linkage exercise.

However, parameter re-use can only be applied to regular production at NSIs if the 
parameters of the model remain the same over time. If the parameter estimates do 
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introduced by Bakker (2012) for continuous cross-sectional data, by Oberski et al. 
(2017) for mixed type cross-sectional data, and by Pavlopoulos and Vermunt (2015) 
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Since repeated observations of a single linked survey-register variable may be more 
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true value is related to itself over time in an autoregressive process that yields an 
extended — multiple data source — version of the hidden Markov model popularized 
by Biemer (2004, 2011), which in turn is a special case of the latent class model (Van de 
Pol & Langeheine, 1990; Vermunt, 2002). Previous work done at Statistics Netherlands 
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administration (Pavlopoulos & Vermunt, 2015).

A problem with this procedure is that it is very time consuming and therefore 
expensive, since it requires the NSI to perform linkage between register and survey 
followed by re-estimation of the model for each new time period. This paper therefore 
considers the option of re-using existing parameter estimates from the above study in 
order to integrate data sources and correct statistics for measurement error. Re-use is 
potentially attractive because (1) it does not require re-estimation of the model, and (2) 
it can be applied not only to linked survey-register data, but also to each data source 
separately, forgoing the need for a time intensive linkage exercise.

However, parameter re-use can only be applied to regular production at NSIs if the 
parameters of the model remain the same over time. If the parameter estimates do 
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not exhibit stability over time, the corrections themselves will be biased. Therefore, 
an important question for the practical application of latent variable modelling at NSIs 
is whether there is indeed stability in the estimates when applying this procedure to 
real data. In this paper, we demonstrate how this question can be investigated using 
newly collected data on a topic studied previously and for earlier years by Pavlopoulos 
and Vermunt (2015). In other words, our analysis allows us to determine whether the 
aforementioned time- and cost-efficient methodology (based on using previously 
obtained parameters) can actually work in practice.

The next section describes the data used in the analysis; this is followed by a 
discussion of the empirical methodology, the results, and finally a brief conclusion.

5.2	 Data

The dataset used for the analysis contains information from the Netherlands’ Labour 
Force Survey that is conducted by Statistics Netherlands and the “Polisadministratie” 
(administrative data collected by the Employee Insurance Agency).

The Dutch Labour Force Survey (LFS) is a sample survey aimed at providing 
information about the relationship between individuals and the labor market. The target 
population consists of individuals aged 15 and older who reside in the Netherlands 
(excluding those in homes and institutions) and the information is collected at both the 
individual and household level.18 Since the last quarter of 1999 the survey has been a 
rotating panel survey, consisting of five waves.

The Employment Register data (i.e. the “Polisadministratie” or ER) is an administrative 
dataset administered by the Dutch Employee Insurance Agency (EIA, or UWV in Dutch). 
The dataset contains monthly information on wages, benefits, and labor relations for all 
insured employees in the Netherlands. EIA uses the information collected to determine 
the level of benefits. The dataset combines information from various sources; the core 
of the information is delivered by the employers on their employees each month for tax 
purposes to the Dutch Tax Authorities, information from temporary work agencies and 
the Population Register (PR, in Dutch: Basis Registratie Personen-BRP)19 is also used.

The data from both sources are linked at the individual level to the population 
register (PR) of the Netherlands. Therefore, the target population is restricted to the 
registered population in the Netherlands. For the linkage of the LFS with the PR, the 
linkage key is the combination of birth date, gender, postal code and house number. The 
ER is linked to the PR based on the social security number (BSN),20 birth date, gender, 

18	 http://www.cbs.nl/en-GB/menu/methoden/dataverzameling/dutch-labour-force-survey-characteris-
tics.htm

19	 http://www.uwv.nl/overuwv/english/about-us-executive-boardorganization/detail/organization/da-
ta-services

20	 A unique personal number allocated to everyone registered in the Netherland; https://www.govern-
ment.nl/topics/identificationdocuments/contents/the-citizen-service-number

postal code and house number. After selection of the individuals aged 25–55, the linkage 
effectiveness of the combined sources is approximately 97 percent.

The sample used for the analysis consists of 8,886 LFS respondents aged between 
25 and 55 who participated in the LFS for the first time in the first trimester of 2009. For 
each individual included in the sample, the dataset contains information for a period of 
15 months with the variables coming from the ER data observed on a monthly basis (i.e. 
15 observations) and those from the LFS observed every 3 months (i.e. 5 observations). 
The time period the data correspond to, January 2009 to May 2010, is illustrated in 
Figure 5.1 (with the time period from January 2009 to March 2010 corresponding to 
those individuals first interviewed in January 2009; those from February 2009 to April 
2010 to those firstly interviewed in February 2009; and those from March 2009 to May 
2010 to those firstly interviewed in March 2009).

The panel dataset is unbalanced for the LFS as it suffers from attrition. More 
specifically, 8,708 individuals participated in the first round of the survey, 7,458 in the 
second, 6,856 in the third, 6,739 in the fourth and 6,560 in the fifth. For the non-survey 
months observations are assumed to be missing at random. While the ER officially 
cannot be subject to drop-out as submission of reports is obligatory for all employers, 
2,619 observations (out of a total of 133,290) are missing. We assume that these missing 
observations are also missing at random.21

21	 Those are primarily observations of workers who have passed away or emigrated from the Netherlands 
and, thus, there is no reason to believe their missingness is related to the variable of interest.
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The key variable of interest in the analysis is the contract type held by the 
individual for his or her main job (any secondary jobs are ignored in the analysis). The 
contract type can take on three distinctive and mutually exclusive values: “permanent 
contract” (i.e. a contract for an unlimited duration of time), “temporary contract” (i.e. 
a fixed contract for a limited duration of time) and “other” (which includes all other 
alternatives, i.e. self-employment, unemployment, unpaid employment and full-time 
education). While the last category is not of crucial importance for answering the 
research questions themselves (as the focus is on transition rates from temporary to 
permanent employment) it has to be included in the analysis to assure that the Markov 
assumption of mutual exclusivity and exhaustiveness of the latent classes is fulfilled.

The distributions of the contract types according to both data sources are displayed 
in Table 5.1. As can be observed, the aforementioned distributions as indicated by 
the survey and register data accordingly differ to a larger extent for permanent and 
temporary contracts than other types of contracts.

Table 5.1- Distribution of contract types according to the survey and the register, January, 
February and March 2009

Survey Register
January ’09

0.637 0.586Permanent
Temporary 0.113 0.154
Other 0.250 0.261
Total 1.000 1.000
Cases 3,173 3,175
February ’09
Permanent 0.627 0.576
Temporary 0.120 0.163
Other 0.254 0.262
Total 1.000 1.000
Cases 2,857 2,849
March ’09
Permanent 0.642 0.596
Temporary 0.112 0.155
Other 0.247 0.249
Total 1.000 1.000
Cases 2,678 2,692

In order to gain more insight into the extent of the aforementioned inconsistencies, 
the contract type according to both datasets has been cross- tabulated for the entire 
sample. The results, presented in Table 5.2, show that while the discrepancies between 
the survey and register data concerning individuals who hold a permanent contract or 
occupy the state “other” are relatively small, those regarding individuals employed on 
a temporary contract are highly substantial.
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The key variable of interest in the analysis is the contract type held by the 
individual for his or her main job (any secondary jobs are ignored in the analysis). The 
contract type can take on three distinctive and mutually exclusive values: “permanent 
contract” (i.e. a contract for an unlimited duration of time), “temporary contract” (i.e. 
a fixed contract for a limited duration of time) and “other” (which includes all other 
alternatives, i.e. self-employment, unemployment, unpaid employment and full-time 
education). While the last category is not of crucial importance for answering the 
research questions themselves (as the focus is on transition rates from temporary to 
permanent employment) it has to be included in the analysis to assure that the Markov 
assumption of mutual exclusivity and exhaustiveness of the latent classes is fulfilled.

The distributions of the contract types according to both data sources are displayed 
in Table 5.1. As can be observed, the aforementioned distributions as indicated by 
the survey and register data accordingly differ to a larger extent for permanent and 
temporary contracts than other types of contracts.

Table 5.1- Distribution of contract types according to the survey and the register, January, 
February and March 2009

Survey Register
January ’09

0.637 0.586Permanent
Temporary 0.113 0.154
Other 0.250 0.261
Total 1.000 1.000
Cases 3,173 3,175
February ’09
Permanent 0.627 0.576
Temporary 0.120 0.163
Other 0.254 0.262
Total 1.000 1.000
Cases 2,857 2,849
March ’09
Permanent 0.642 0.596
Temporary 0.112 0.155
Other 0.247 0.249
Total 1.000 1.000
Cases 2,678 2,692

In order to gain more insight into the extent of the aforementioned inconsistencies, 
the contract type according to both datasets has been cross- tabulated for the entire 
sample. The results, presented in Table 5.2, show that while the discrepancies between 
the survey and register data concerning individuals who hold a permanent contract or 
occupy the state “other” are relatively small, those regarding individuals employed on 
a temporary contract are highly substantial.
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Table 5.2- Cross- tabulation of contract type according to survey and the register

Survey Data
Register Data Permanent Temporary Other Total Cases
Permanent 0.934 0.052 0.015 1.000 21,840
Temporary 0.517 0.441 0.043 1.000 5,347
Other 0.060 0.059 0.881 1.000 8,411
Total 0.665 0.112 0.224 1.000 35,598
Cases 23,654 3,983 7,961 35,598 -

Note: The frequency distributions are calculated for all observations in the sample which are 
non-missing for both the LFS and ER.

The disparities between the two datasets with regards to the contract type (and in 
particular to temporary contracts) outlined above have implications for the estimation 
of the transition rates between the different contract types. Namely, as depicted in 
Table 5.3, the transition rate from temporary employment in month t - 3 to permanent 
employment in month t equals 5.8 percent according to the survey data while it amounts 
to 7.3 percent according to the register data.

Table 5.3- Observed 3-month transitions in LFS and ER

Observed transitions from the survey data (LFS)
Contract in t

Contract in t-3 Permanent Temporary Other
Permanent 0.983 0.006 0.011
Temporary 0.058 0.879 0.063
Other 0.016 0.037 0.947
Total 0.672 0.110 0.218

Observed transitions from the register data (ER)
Contract in t

Contract in t-3 Permanent Temporary Other
Permanent 0.976 0.012 0.012
Temporary 0.073 0.869 0.058
Other 0.019 0.043 0.938
Total 0.623 0.148 0.229

Note: For both tables, these are the transition rates over a 3-month period and for 34,387 cases 
of the pooled sample. These cases come from the LFS- respondents that appear at least twice 
in the sample and have an observation for both LFS and ER.

5.3	 Methods

5.3.1	 Classification error model for survey and register
The methodology applied in this paper is based on the extended Hidden Markov Model 
used by Pavlopoulos and Vermunt (2015). The standard Hidden Markov model discussed 
by Biemer (2011) assumes that an observed categorical variable Yt  is generated in the 
following way:
•	 At t = 0

•	 Sample a “true value” xo from the unknown distribution p(X0)
•	 Sample the observed value y0 from the unknown conditional distribution 	

p(Yt│Xt). The off-diagonal entries in this unobserved cross-table are the 
misclassification rates and the diagonal entries the probability of a correct 
classification.

•	 At t > 0,
•	 Sample a “true value” xt from the unknown distribution p(Xt│Xt-1). The 

unobserved cross-table between Xt and Xt-1 contains the unobserved 
transition rates of substantive interest. In our example, the parameter 
p(Xt = permanent│Xt-1 = temporary) is specifically of interest,

•	 As before, sample the observed value yt from the unknown conditional 
distribution p(Yt│Xt)

•	 Advance one step in discrete time by setting t ← t + 1 until the maximum number 
of observed time points t = T is reached.

The unknown parameters of this model are those describing the initial state distribution 
p(X0), the misclassification rates p(Yt│Xt), and the AR(1) autoregressive transition rates 
p(Xt│Xt-1). These parameters are identifiable by assuming equal misclassification 
and transition rates over time, i.e. p(Yt│Xt) = p(Yt'│Xt') and p(Xt│Xt-1) = p(Xt'│Xt'-1)  
for all t ≠ t’. Since only the joint distribution of the observed variables p(Yt0,Yt1,…,Yt,YT) 
is observed and Xt is entirely missing, estimation of the unknown parameters often 
proceeds by marginal maximum likelihood, expectation-maximization, or Markov Chain 
Monte Carlo methods. In what follows we employ the Latent GOLD software, which 
uses a combination of expectation-maximization and marginal maximum likelihood 
estimation. It is also straightforward to implement covariates affecting the distribution 
of X; for the sake of clarity we have omitted these in the description but do include 
them in our extended model.

The standard hidden Markov model has the substantial disadvantage that it makes 
the assumption of conditional independence of errors, sometimes also referred to as 
the “independent classification errors” or ICE assumption. In other words, it assumes 
that when yt was generated, its probability of occurring only depended on xt and 
nothing else. This precludes, for example, the possibility that any errors that occurred 
at the previous time point were copied over to the current time point, since that would 
make the observed value dependent on both the true value and the observed value 
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•	 As before, sample the observed value yt from the unknown conditional 
distribution p(Yt│Xt)
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The unknown parameters of this model are those describing the initial state distribution 
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p(Xt│Xt-1). These parameters are identifiable by assuming equal misclassification 
and transition rates over time, i.e. p(Yt│Xt) = p(Yt'│Xt') and p(Xt│Xt-1) = p(Xt'│Xt'-1)  
for all t ≠ t’. Since only the joint distribution of the observed variables p(Yt0,Yt1,…,Yt,YT) 
is observed and Xt is entirely missing, estimation of the unknown parameters often 
proceeds by marginal maximum likelihood, expectation-maximization, or Markov Chain 
Monte Carlo methods. In what follows we employ the Latent GOLD software, which 
uses a combination of expectation-maximization and marginal maximum likelihood 
estimation. It is also straightforward to implement covariates affecting the distribution 
of X; for the sake of clarity we have omitted these in the description but do include 
them in our extended model.

The standard hidden Markov model has the substantial disadvantage that it makes 
the assumption of conditional independence of errors, sometimes also referred to as 
the “independent classification errors” or ICE assumption. In other words, it assumes 
that when yt was generated, its probability of occurring only depended on xt and 
nothing else. This precludes, for example, the possibility that any errors that occurred 
at the previous time point were copied over to the current time point, since that would 
make the observed value dependent on both the true value and the observed value 
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at the previous time point, i.e. p(Yt│Xt) ≠ p(Yt│Xt,Xt-1,Yt-1). Since there are considerable 
indications that register errors are copied over time, the standard Hidden Markov model 
is inappropriate.

As mentioned before, in this paper, we follow Pavlopoulos and Vermunt (2015) in 
employing an extension to the standard HMM that allows for error-copying over time 
in the register. The parameters of this model are identified by linking the register to a 
survey measuring the same true value over time, in addition to assuming parameters 
are equal over time. A graphical illustration of the model for the first 4 months is given 
in Figure 5.2

Figure 5.2- Path diagram for the hidden Markov model with two indicators, serially correlated 
and covariate dependent register errors and predictors for latent transitions and latent state 
probabilities

The extended HMM assumes that the observed register values Yt
(r)

 and survey values 
Yt

(S) were generated as follows:
•	 At t = 0,

•	 Sample a “true value” x0 from the unknown distribution p(X0),
•	 Sample the observed register value y0

(r) from the unknown conditional 
distribution  p(Y(r)│X),

•	 Sample the observed survey value y0
(s) from the unknown conditional 

distribution p(Y(s)│X).

•	 At t > 0,
•	 Sample a “true value” xt from the unknown distribution p(Xt│Xt-1)
•	 Sample the observed survey value yt

(s) from the unknown conditional 
distribution p(y(s)│X)

•	 If the register at the previous time point had an error and no change in 
true value occurred, i.e. if xt-1  ≠ yt-1

(r) , and xt-1 = xt (“previous error and no 
change”),
•	 Sample the observed register value yt

(r) from the unknown distribution 
p(Yt

(r) │ previous error and no change). This distribution contains the 
probability of copying an error when no change occurred in the true 
value, p(Yt

(r) │ previous error and no change),

•	 Else if xt-1 = yt-1 or xt-1 ≠ xt (there was no error, or true change occurred),
•	 Sample the observed register value yt

(r) from the unknown conditional 
distribution p(y(r)|X)

•	 Advance one step in discrete time by setting t ←t + 1 until the maximum number 
of observed time points t = T is reached.

Again, covariates Z are easily included by extending p(X| . ) to p(X|.,Z), where 
“.” may indicate a set of random variables. In our model, this set of covariates always 
includes the timepoint to allow for variation over time in the transition probabilities. To 
control for unobserved heterogeneity in the transition probabilities, we further extend 
p(X|.,Z) to p(X|.,Z,k), where k denotes the latent class that the individual belongs to.

In addition to the output from the HMM, which also provides estimates of the 
transition rates and misclassification rates, the extended HMM also provides estimates 
of the error-copying rates. Moreover, the misclassification rates estimated for the 
register are conditional on no error having occurred previously. Since this cannot be 
known in practice, we will report both these estimates, and the overall error rates that 
average over previously occurring errors and correct reports.

The extended model allows for error-copying over time and therefore relaxes the 
ICE assumption. However, it does this by introducing the assumption that the survey 
and register values are conditionally independent, given the true value. In what follows 
we will evaluate the fit of these models before turning to interpretation.

5.4	 Results

We first apply the extended HMM described above to the data from 2009; then, we 
repeat the analysis for the same cohort while fixing the measurement error specific 
parameters to those obtained by Pavlopoulos and Vermunt (2015) when analyzing data 
from 2007. The results of the two analyses are then compared to verify whether it is 
possible to correct for measurement error in data sources over the course of several 
years while only applying the full extended HMM analysis once at the initial stage.

5.4.2	 Model fit
To assure that the model specification used by Pavlopoulos and Vermunt (2015) fits 
more recent data equally well, we estimated a total of nine different specifications of 
the hidden Markov model. Those specifications were also estimated by Pavlopoulos and 
Vermunt (2015) to reach the final version of the model. The goodness-of-fit measures 
of those models are summarized in Table 5.4. In more detail, the table includes the 
following information: the log-likelihood, the Bayesian Information Criterion (BIC), the 
Akaike Information Criterion (AIC) values as well as the number of model parameters.

The first three models used (A’, A” and A) assumed, respectively, that only the 
survey data, only the register data and both datasets are subject to independent 
classification errors (ICE). The fact that the last of the three models fits the data best 
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register are conditional on no error having occurred previously. Since this cannot be 
known in practice, we will report both these estimates, and the overall error rates that 
average over previously occurring errors and correct reports.

The extended model allows for error-copying over time and therefore relaxes the 
ICE assumption. However, it does this by introducing the assumption that the survey 
and register values are conditionally independent, given the true value. In what follows 
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from 2007. The results of the two analyses are then compared to verify whether it is 
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The first three models used (A’, A” and A) assumed, respectively, that only the 
survey data, only the register data and both datasets are subject to independent 
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provides support for the hypothesis that both data sources contain measurement error. 
As such, the subsequent six models are extensions of the model assuming the presence 
of classification errors in both the survey and register data.

The next three models estimated (B’, B” and B) relax the ICE independence 
assumption of the measurement error for the survey, the register and both data 
sources, respectively. In the survey data this is related to the fact that the likelihood of 
making an error often varies according to age and proxy interview (Bergin, 2013; Bingley 
& Martinello, 2014; King et al., 2012).

The serial correlation of the measurement error in the register data is likely to result 
from the fact that companies submit information — including the contract type — to 
the Employment Office once or twice a year. This is likely to result in errors being carried 
over until an actual change in the contract type occurs or until some form of data quality 
control takes place (Bakker & Daas, 2012; Conrad et al., 2009; Groen, 2012; Zhang, 
2012). Therefore, the probabilities of having an error in the register data are modelled 
in such a way that they depend on the lagged observed and lagged true contract.

As can be seen from Table 5.4, models B” and B, which relax the ICE assumption 
only for the register data and for both datasets respectively, perform somewhat better 
than model B’, which assumes that only the survey errors do not satisfy the local 
independence assumption. This means that it is realistic to conclude that the error is 
indeed serially correlated in the register data but not in the survey data. Therefore, the 
final set of models (C’, C” and C) extends those two models by including covariates for 
the latent transition and for the latent initial state probabilities and thus assumes that 
those transitions and probabilities are heterogeneous.

In more detail, model C’ can be seen as a restricted extension of model B” as it 
assumes that the measurement errors are not locally independent for the register data 
and that the latent transitions depend on gender, age, education and country of origin. 
Model C” can be seen as a full extension of B” as it also assumes that ICE does not hold 
for the register data but, in addition to the latent transitions, it also assumes that the 
aforementioned covariates influence the initial state probabilities. Finally, model C can 
be seen as a full extension of model B as it assumes that ICE should be relaxed for both 
data sources and that the covariates influence both the latent transitions and initial 
state probabilities. The covariates are allowed to be time heterogeneous.
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provides support for the hypothesis that both data sources contain measurement error. 
As such, the subsequent six models are extensions of the model assuming the presence 
of classification errors in both the survey and register data.

The next three models estimated (B’, B” and B) relax the ICE independence 
assumption of the measurement error for the survey, the register and both data 
sources, respectively. In the survey data this is related to the fact that the likelihood of 
making an error often varies according to age and proxy interview (Bergin, 2013; Bingley 
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control takes place (Bakker & Daas, 2012; Conrad et al., 2009; Groen, 2012; Zhang, 
2012). Therefore, the probabilities of having an error in the register data are modelled 
in such a way that they depend on the lagged observed and lagged true contract.

As can be seen from Table 5.4, models B” and B, which relax the ICE assumption 
only for the register data and for both datasets respectively, perform somewhat better 
than model B’, which assumes that only the survey errors do not satisfy the local 
independence assumption. This means that it is realistic to conclude that the error is 
indeed serially correlated in the register data but not in the survey data. Therefore, the 
final set of models (C’, C” and C) extends those two models by including covariates for 
the latent transition and for the latent initial state probabilities and thus assumes that 
those transitions and probabilities are heterogeneous.

In more detail, model C’ can be seen as a restricted extension of model B” as it 
assumes that the measurement errors are not locally independent for the register data 
and that the latent transitions depend on gender, age, education and country of origin. 
Model C” can be seen as a full extension of B” as it also assumes that ICE does not hold 
for the register data but, in addition to the latent transitions, it also assumes that the 
aforementioned covariates influence the initial state probabilities. Finally, model C can 
be seen as a full extension of model B as it assumes that ICE should be relaxed for both 
data sources and that the covariates influence both the latent transitions and initial 
state probabilities. The covariates are allowed to be time heterogeneous.
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Chapter 5 Reconciliation of inconsistent data sources by correction for measurement error

As can be seen in Table 5.4 models C” and C appear to fit the data best. However, 
as the differences in the AIC and BIC between the two models are rather minimal and 
model C” is slightly less complex, it has been selected as our final model. The results 
from the comparison of the model fit statistics are similar to those of Pavlopoulos and 
Vermunt (2015) where model C” was also selected as the final model. This confirms 
that for a certain period of time the same model specification can be used to correct 
for measurement error.

5.4.3	 The size of the measurement error
The size of measurement error in the survey and register data according to our 
analysis and that of Pavlopoulos and Vermunt (2015) is depicted in Tables 5.5 and 
5.6 respectively. In order to estimate the error, the posterior probabilities of having a 
specific type of latent contract in each month have been used; those were estimated 
for all individuals included in the sample using the hidden Markov model.
In more detail, the tables report the classification error probabilities, which are represented 
by the probabilities P(Ci0 = c0│Xi0 = x0) and P(Cit = ct│Xit = xt, Xi(t-1) = xt-1, Ci(t-1) = ct-1) 
for the survey and register data, respectively.

Overall, both analyses produce very similar results and point to the same trends 
with regards to the level of measurement error indicating that the error is stable for this 
period of time. In other words, the analyses show that overall all three contract types 
are measured very accurately by the survey. The overall size of measurement error in 
the register data, on the other hand, appears very high especially for individuals holding 
a temporary contract.

Table 5.5- The size of the measurement error in the survey data according to Model C’’

Own analysis Pavlopoulos and Vermunt (2015)
Observed contract in t Observed contract in t

Latent contract in t Permanent Temporary Other Permanent Temporary Other
Permanent 0.996 0.003 0.002 0.998 0.001 0.002
Temporary 0.090 0.878 0.033 0.125 0.832 0.042
Other 0.011 0.006 0.984 0.004 0.005 0.991

Given that the error probabilities in the register data are assumed to be serially 
correlated — by estimating an additional coefficient when a classification error was 
made in time point t - 1 and this error can be repeated in time t, we can extract more 
information on the structure of this error by studying more closely the conditional error 
probabilities. Figure 5.3 reports our estimates of the conditional probabilities of the 
error in the register data in time  for all 9 combinations of latent and observed state in 
time t - 1. The 3 diagonal matrices represent the cases where no error in the register 
data was made in time t - 1, while off diagonal matrices represent the different cases of 
measurement error in t - 1. Figure 5.3 gives a completely different picture than Table 5.6. 

The diagonal matrices — which are by construction identical — indicate that when no 
classification error is made in t - 1, the probability of an error in t is rather minimal.

Table 5.6- The size of the measurement error in the register data according to Model C’’

Own analysis Pavlopoulos and Vermunt (2015)
Observed contract in t Observed contract in t

Latent contract in t Permanent Temporary Other Permanent Temporary Other
Permanent 0.877 0.106 0.017 0.888 0.081 0.031
Temporary 0.247 0.635 0.118 0.237 0.684 0.079
Other 0.033 0.013 0.954 0.032 0.017 0.951

Note: use of average posterior probabilities

Figure 5.3- Conditional probabilities of measurement error in register data according to Model 
C” (own analysis)

The conditional error probabilities obtained by Pavlopoulos and Vermunt (2015) 
are presented in Table 5.7. The results are almost the same as the ones reported by us 
and presented in Figure 5.3.
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Chapter 5 Reconciliation of inconsistent data sources by correction for measurement error

Table 5.7- Conditional probabilities of measurement error in the register data in time t
 
when 

no error has been made in  t - 1 according to the C’’ model with fixed error parameters

Latent contract in t
Observed contract in t Permanent Temporary Other
Permanent 0.986 0.045 0.005
Temporary 0.009 0.930 0.005
Other 0.004 0.025 0.990

The left-hand side of Table 5.8 extracts from Figure 5.3 the probabilities that an error 
repetition is possible. All the error probabilities when an error repetition is possible are 
extremely high. The relevant probabilities from Pavlopoulos and Vermunt (2015), as 
presented on the right-hand side of the table, are very similar to our results.

Table 5.8 - Conditional probabilities of repeating an error in time t that has been made in t - 1
Own analysis Pavlopoulos and Vermunt (2015)

Observed contract in t Observed contract in t
Latent contract in t Permanent Temporary Other Permanent Temporary Other
Permanent 0.977 0.954 0.973 0.961
Temporary 0.970 0.921 0.968 0.896
Other 0.935 0.848 0.913 0.842

The last remaining situation to examine is to study the probability for a different 
classification error in time t when a classification error is made in t - 1. These probabilities 
are presented in Table 5.9 for the three latent states and for both our own data and 
those of Pavlopoulos and Vermunt (2015). All these probabilities are rather small and 
similar to those where no error is made in t - 1. The probabilities are also almost identical 
between the two studies.

Table 5.9- Conditional probabilities of making an error in time t  that is different from the 
error made in t - 1

Own data Pavlopoulos and Vermunt (2015)
 Latent contract in t Latent contract in t

Permanent Temporary Other Permanent Temporary Other
0.013 0.079 0.009 0.014 0.070 0.001

Note: the probabilities of the last row come from table 4.3 of Pavlopoulos and Vermunt 
(2015).

Thus, the estimates of the conditional probabilities of the measurement error in 
the register data show a clear picture. The large size of the error that was illustrated 
in Table 5.6 is only due to the error in the initial registration of the contract type in the 
register. Once a mistaken value for the contract type is entered, then this will be carried 

over almost for sure for many months. However, if a correct entry is made, then the 
probability of an error in the subsequent months is very small.

Overall, we can conclude that the nature and size of the measurement error in both 
the survey and register data appear very similar in 2007 (analyzed by Pavlopoulos and 
Vermunt, 2015) and in 2009 (as shown by us). The stability of the measurement error 
for this period of time enables us to apply the aforementioned error correction method 
in which we fix the error parameters according to the results obtained by Pavlopoulos 
and Vermunt (2015) in the analysis of our own data from 2009. This in turn allows us to 
correct for measurement error without having to undertake the full HMM analysis. The 
accuracy of this method when estimating first- and second- order statistics is explored 
below.

5.4.4	 First-order statistics: The size of temporary employment
The latent distribution of the contract types, approximated according to our analysis 
and when substituting in the measurement error specific parameters from Pavlopoulos 
and Vermunt (2015), is presented in Table 5.10 and is contrasted with the observed 
distributions of the contract type according to the survey and register data, respectively. 
As in the case of the estimation of the average size of the measurement error, this has 
been carried out by using the average posterior probabilities of individuals holding a 
certain type of latent contract.

Table 5.10- The average size of temporary employment according to Model C’’

Survey Register Latent- own 
analysis

Fixing error parameters to those in 
Pavlopoulos and Vermunt (2015)

Permanent 0.653 0.585 0.611 0.613
Temporary 0.110 0.151 0.128 0.131
Other 0.237 0.264 0.261 0.257
Cases 36,321 130,671 133,290 133,290

As can be seen from the table, the results of our own analysis are almost identical to 
those using the fixed error parameters. Furthermore, the latent probability of belonging 
to a certain state always lies between the observed probabilities coming from the two 
data sources. Specifically, the latent probability of having a temporary contract equals 
approx. 13 percent for both analyses and is higher than is reported by the survey 
data while lower than reported by the register data (11.1 percent and 15.1 percent, 
respectively). The latent probability of being employed with a permanent contract 
(approx. 61 percent), is lower than suggested by the survey data (65.3 percent) while 
higher than suggested by the register data (58.5 percent). Finally, the latent probability 
of belonging to the “other” state equals approximately 26 percent and lies also in 
between the figures estimated using the survey and register data (23.7 percent and 
26.4 percent, respectively).
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Chapter 5 Reconciliation of inconsistent data sources by correction for measurement error

This conveys good news for official statistics. In the presence of measurement error 
in our data, a macro integration of two data sources — even by using a crude measure 
such as the average of the two observed probabilities — can produce reliable results 
for the size of temporary employment.

5.4.5	 Second-order statistics: The transition probabilities
Besides providing a reliable estimate of the size of temporary employment, the 
challenge for official statistics is to present a correct estimate of mobility from 
temporary employment. The dominant argument in the policy debate is that although 
temporary employment is inferior to permanent employment, it provides an effective 
stepping stone to permanent employment. For this argument to be true, mobility rates 
from temporary to permanent employment should be high. Table 5.11 presents the 
average latent transition probabilities between the various states associated with the 
three contract types. These transition probabilities have been calculated using model 
C” in such a way that they refer to a 3-month period and are an average of the twelve 
3-month periods that are included in the dataset.

Table 5.11- Latent 3-months transitions according to model C’’

Own analysis Fixing error parameters to those in 
Pavlopoulos and Vermunt (2015)

Contract in t-3 Permanent Temporary Other Permanent Temporary Other
Permanent 0.987 0.004 0.009 0.989 0.004 0.008
Temporary 0.017 0.929 0.054 0.016 0.928 0.056
Other 0.006 0.030 0.963 0.006 0.029 0.965
Total 0.610 0.128 0.263 0.610 0.132 0.258

When looking at the estimates presented in Table 5.11, it can be once more noted 
that the two analyses provide almost identical results. Furthermore, when analyzing the 
transition rates in combination with those presented in Table 5.3 — i.e. the observed 
transition rates based on the survey and register data — it can be inferred that the 
latent transition rate from temporary to permanent employment is much lower than 
those estimated using both the survey and register data. That is, while according to the 
survey and register data out of all temporary employees in time t - 3, 5.8 percent and 
7.3 percent respectively obtain a permanent contract in time t, our analysis suggests 
that this is only true for 1.6–1.7 percent of all temporary workers.

These findings suggest that a simple macro integration of the two data sources, 
which typically aims at the reconciliation of the distribution of the variable of interest 
in the two data sources at a given point in time, cannot provide reliable estimates of 
second-order statistics, namely mobility from temporary to permanent employment. 
These transition rates are overestimated by both the survey and the register data 
although these datasets contain a very different size and structure of measurement 

error. Therefore, macro-integration would possibly not lead to transition rates lower 
than both sources.

5.5	 Conclusions

National Statistical Institutes often have more than one indicator available for the same 
variable. The development of register data means that, increasingly, information on 
survey respondents can also be traced at the administrative level. This offers new 
opportunities to NSIs as they can corroborate findings from one data source using 
the other. However, these opportunities present new challenges that ought to be 
addressed.

As all data sources contain some measurement error, discrepancies emerge between 
the data sources in the measurement of a single variable even for the same individuals. 
Measurement error leads to bias in the estimates for first order statistics (estimates on 
one reference date) and second order statistics (estimates of transition rates between 
two reference dates).

Besides ignoring the problem or taking averages, these discrepancies are usually 
resolved by NSIs with the use of macro-integration. After separate integration of the 
stock data of two reference dates by harmonization, completion, and by forcing the 
data to meet certain identity relationships, on an aggregate level, a large part of the 
measurement error has been removed. However, the aggregate transitions rates are 
only corrected by the application of one identity relationship that the stock at reference 
date t plus all the transitions add up to the stock at t + 1. For this second step, most of 
the time only one source is used, the one that is assumed to be of superior quality. In 
practice this means that the first order statistics usually are close to the real values. 
However, the adjustment in the transitions is marginal when using only one identity 
relationship and only one source. Therefore, one can expect that the real transition 
rates, the second order statistics, differ more from the observed ones because not all 
measurement error could be removed.

In this paper, we study whether an alternative macro-integration method of the two 
datasets can produce more accurate results. In doing so we rely on the micro integration 
approach undertaken by Pavlopoulos and Vermunt (2015). This approach requires re-
linkage of data and re-estimation of the model at every time interval. For this reason, 
it is considered extremely time-consuming and expensive by Statistics Netherlands. We 
therefore investigate whether estimates obtained by using this approach are invariable 
to time and therefore can be re-used in later time points without the need to re-link 
the datasets and re-estimate the statistical model.

Our results indicate that the size of the error in the measurement of the employment 
contract in the LFS and the ER is indeed stable over time. Therefore, HMMs provide a 
way to develop a powerful macro-integration method; as measurement error rates can 
be considered time constant, we can develop an error correction method, based on 
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the use of fixed parameters from an initial HMM analysis, that can be easily included 
in the production of official statistics.

The method can be considered superior to traditional macro-integration approaches 
in particular for second order statistics. That is, while the findings suggest that first-order 
statistics can be approximated using traditional macro-integration, this is probably not 
the case when estimating second-order statistics. In more detail, the size of temporary 
employment in the Netherlands always lies between the estimates from the two data 
sources. Therefore, traditional macro-integration can easily provide rather accurate 
estimates of these statistics. In contrast, findings on second-order statistics indicate a 
different picture; according to the survey and register data, 5.8 percent and 7.3 percent 
of workers with temporary contracts are employed with permanent contracts 3 months 
later. This indicates a substantial amount of mobility in the labor market. However, 
our HMM model suggests that this mobility is only 1.7 percent. Therefore, a static 
reconciliation approach, which is what typically traditional macro-integration methods 
do, is unlikely to provide an effective error correction of second order statistics.

However, a formal comparison of the outcomes of traditional macro-integration 
and macro-integration based on HMMs should confirm that the last method is superior 
to the first. Moreover, it would be interesting to test also a more advanced way of 
traditional macro-integration. Instead of doing the integration process in two steps 
(first, the integration of the stock data on the two reference dates and second, make 
the transitions consistent with the stock data) doing it in one go in such a way that the 
identity relationships on the two reference dates and the transitions are met. Further 
research will provide a formal comparison of our approach with traditional macro-
integration approaches.

Nevertheless, before the macro-integration approach based on HMMs enters the 
production of official statistics, further issues have to be addressed. Our analysis has 
ignored the effect of a possible linkage error between the two data sources. Although 
the probability of a linkage error is very small in our data, this error is particularly 
important when it is correlated with the outcome variable — here, the type of contract 
— and, thus, might bias the results. Moreover, the analysis did not fully take into 
account the overtime changes in the way LFS is conducted, such as the transition from 
dependent to independent interviewing or to a different mode of interviewing (i.e. 
face-to-face vs. phone or online surveys). Those aspects are likely to impact the error 
in the survey data and, therefore, further analysis which will investigate those aspects 
is required.
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6.1	 Summary and conclusions

This thesis focused on the problem of measurement error and investigated the feasibility 
of using hidden Markov models (HMMs) to correct for such error in categorical, 
longitudinal data. In doing so, we have first illustrated how measurement error poses 
a substantial threat to the validity and accuracy of estimates. We then demonstrated 
the need to use multiple-indicator HMM specifications, which can account for the 
nonignorable presence of systematic/dependent errors. Finally, we showed that the 
use of such extended models is feasible. That is, even though such HMMs require record 
linkage, linkage error is largely not a problem. Furthermore, while their implementation 
process is complex and time-consuming, it can be simplified because error parameters 
can be re-used for a number of years. The thesis includes four chapters of original 
research work.

In Chapter 2, we examined the bias introduced by measurement error, using 
clustering as an illustrative example. In more detail, in this simulation study, we 
investigated the sensitivity of two commonly used model- and density-based clustering 
algorithms (i.e. GMMs and DBSCAN) to varying severities and magnitudes of random and 
systematic errors. In doing so, we looked at the similarity of the clusters obtained in the 
presence of measurement error to those obtained in its absence. We also considered 
the effects on the number of clusters found, to infer whether measurement error leads 
to the emergence of spurious clusters and/or obscures clusters. Our analysis shows that 
measurement error in many cases leads to non-negligible bias as the returned clusters 
are (highly) dissimilar to the ones obtained when the dataset is error-free. The number 
of clusters found in the data is also affected by the error. These effects are particularly 
strong when the error is systematic as opposed to random, and when it affects all 
variables in the dataset.

In Chapter 3, we looked at how different data collection processes might impact 
the nature and magnitude of measurement error. We did this by studying how the 
switch from dependent interviewing (DI) to independent interviewing (INDI) in the 
Dutch Labour Force Survey (LFS) affected the random and systematic components of the 
error in this data source. For this purpose, we applied an extended, two-indicator HMM 
to linked LFS and Employment Register (ER) data and allowed for error dependency in 
both data sources. Our results indicate that the use of DI lowered the probability of 
obtaining random errors but had no significant effect on systematic errors. What is 
more, our results also show that regardless of the interviewing regime used, the survey 
data contains autocorrelated error, wherein the probability of repeating the same error, 
provided that an error was made in the previous time point, is extremely high. The error 
in the register data is also shown to follow the same pattern. The findings of this paper 
indicate that both data sources examined are subject to non-negligible systematic error 
which needs to be considered when correcting for measurement error using HMMs. 
This in turn confirms the need for using extended, multiple-indicator HMMs which 
allow for the relaxing of the local independence assumption and modelling, among 

other things, error autocorrelation without risking poor model identifiability. What 
is more, our analysis also demonstrates that, apart from correcting for measurement 
error, HMMs can also be used to assess how various data collection processes impact 
data quality.

In Chapter 4, we investigated whether and to what extent the use of multiple-
indicator HMMs, which often requires record linkage, leads to biased estimates 
due to the presence of linkage error. In doing so, we tested the sensitivity of the 
structural parameter estimates of a two-indicator HMM — i.e. the transition rates 
between employment contract types — to varying degrees and types of false-negative 
(incorrectly not linked records) and false-positive (erroneously linked records) linkage 
error. The results of our simulation study show that the sensitivity of the method to 
both types of linkage error is low. It appears that only scenarios wherein the error rate 
is high and the probability of exclusion/mislinkage is highly correlated with the target 
variable lead to substantial bias. Moreover, our results also show that under certain 
conditions, false-positive linkage error acts as another source of measurement error that 
is absorbed into the error-rate parameters of the model, leaving the latent transition 
estimates unaffected. In these cases, HMMs also accounts for linkage error.

In Chapter 5, we focused on a more practical matter and explored the feasibility of 
using multiple-indicator HMMs, given their complex nature and, with that, the time and 
costs associated with their implementation. More specifically, we looked at whether it 
is possible to simplify the error correction procedure by running the full analysis once 
and then re-using the resultant error parameters as a correction factor for a number 
of years. The proposed solution is contingent on the assumption that the structure and 
size of the error remain constant; if this assumption is violated the estimates obtained 
using this procedure might be biased. Our analysis provides some evidence that in 
the absence of a major change in the data collection process, the size and structure 
of the error are time-invariant and, therefore, the error parameters can be carried 
forward a certain number of years. More specifically, we show that using the full error-
correction procedure and applying a two-indicator HMM to linked LFS and ER data from 
2009 yields virtually the same results as fitting this model to the data with parameters 
obtained from the 2007 version of the same dataset.

6.2	 Discussion

HMMs have considerable potential to be used as a measurement-error-correction 
technique and produce more accurate statistical estimates. In this thesis, we 
demonstrated the importance of accounting for such errors and provided some 
evidence confirming that HMMs could be applied to this end. We will now summarize 
the main contributions and implications of this thesis. In doing so, we will also discuss 
the limitations of our research and provide suggestions for future research.
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The presence and effects of measurement error
In the first part of the thesis, we focused on the biasing effects of measurement error 

and showed that it has the potential to strongly impact statistical estimates. The analysis 
conducted in Chapter 2 demonstrated that measurement error can strongly bias the 
results of cluster analysis, a phenomenon that has not been extensively studied within 
the clustering literature. This in turn confirms the need for more in-depth research 
focusing on the effects of measurement error on various statistical analyses.

A thus far understudied angle that is particularly worth pursuing going forward is 
the presence and effects of systematic error specifically. This suggestion is motivated 
by the results of our analysis which showed that this type of error tends to have a more 
severe effect than random error. This finding, combined with the results of Chapter 
3, which confirm the presence of considerable error dependency in both the survey 
and register data (in addition to random error), implies that systematic error poses a 
substantial and realistic threat to the validity of estimates. Therefore, it is crucial to 
understand, test for and model such dependency, rather than assuming the error to 
be (predominantly) random.

The use of HMMs to correct for measurement error
Given the above, we then investigated whether it is plausible to use multiple-

indicator HMMs to correct for both independent and dependent errors. The results of 
Chapter 4 paint a rather optimistic picture and show that although the use of multiple-
indicator models requires performing record linkage, which itself might lead to linkage 
error, (the structural parameters of) HMMs are largely robust to this type of error. 
However, it is worthwhile noting that the integration of several sources might also lead 
to additional errors that can potentially introduce bias. Zhang (2012) and Bakker (2011) 
provide an overview of the errors associated with the use of such data. In doing so, 
the authors extend the Total Survey Error Framework proposed by Groves et al. (2011), 
which offers a systematic review of survey errors, to also account for errors that occur 
when using combined survey and register data. This extension assumes that the life 
cycle of integrated data sources consists of two phases. The first phase focuses on the 
errors occurring in each of the data sources separately (and includes measurement 
error) and the second phase concerns the errors associated with the integration process 
specifically. In more detail, the use of integrated data sources, apart from potentially 
resulting in linkage error, might also lead to the misalignment of variable definitions 
(as a result of variable harmonization) and to mapping errors. The latter are associated 
with the reclassification step and might occur when the primary, input-source measures 
do not clearly correspond to standard definitions. As a result, when harmonizing these 
measures their re-classification to standard categories may contain errors (Zhang, 2012). 
However, both these types of errors are forms of measurement error/misclassification 
that are already corrected for by the model. Therefore, it can be inferred that the 
application of multiple indicator HMMs to data sources should not introduce new 
potential sources of bias, as long as the model assumptions are not violated.

In addition, the findings of Chapter 5 provide some evidence that, while the 
proposed method is rather complex and time-consuming, it can be simplified and 
therefore applied as an error-correction procedure in practice (provided that the error 
size and structure are constant for the time period under consideration).

It is important to note, though, that the findings are based on an analysis that used 
only one sample and considered a relatively short time period, i.e. we looked at carrying 
forward estimates from the first quarter of 2007 to the first quarter of 2009 only. 
Therefore, to confirm the robustness of the findings, the analysis should be repeated 
using different linked datasets as well as varying time intervals. What is more, while 
the analysis of Chapter 3 confirms that a significant modification of the data collection 
process is likely to affect the size and/or structure of the error, the sensitivity of error 
parameters to various other changes, which might differ in terms of severity, should 
also be investigated. Examples of such changes include the transition from Computer-
Assisted Personal or Telephone Interviewing (CAPI or CATI, respectively) to Computer-
Assisted Web Interviewing (CAWI).

It is also worthwhile mentioning that, in order for the findings to be more 
generalizable, the performance and feasibility of the proposed method should be tested 
in a different context that goes beyond the topic of labor mobility and uses other 
variables than the individual’s contract type. It would be also interesting to use data 
from different countries than the Netherlands and, if possible, additional sources apart 
from surveys and administrative registers.

Aspects that require further investigation
There are two main additional aspects that have not been examined directly in this 

thesis but need to be considered before the HMM-based approach could be applied in 
practice: model robustness and the use of error-corrected microdata in further analysis. 
In more detail, a thorough examination of the sensitivity of parameter estimates to 
varying model specifications containing different assumptions ought to be carried out. 
This is of particular importance as in practice it is extremely difficult, if not impossible, 
to use a model specification that accounts for all possible error sources and scenarios. 
Therefore, we need to understand whether and to what extent different violations 
of assumptions can bias the results obtained. To illustrate, in all of our analyses the 
measurement error probabilities in the survey and the register data are assumed 
to be time- invariant and homogenous. However, this might not be the case as the 
likelihood of making an error in both sources might change over time. For instance, 
this likelihood might decrease in the survey data as a result of interviewers getting 
accustomed to a questionnaire when using it for numerous consecutive waves; in 
the register data it might decline due to companies becoming more familiar with the 
software that is utilized to input, store and manage register data. What is more, the 
error probabilities might be heterogeneous and depend on data collection and/or 
individual-level characteristics. In these scenarios, a model specification that relies on 
the assumption that the error parameters are time-invariant and/or homogeneous is 
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variables than the individual’s contract type. It would be also interesting to use data 
from different countries than the Netherlands and, if possible, additional sources apart 
from surveys and administrative registers.

Aspects that require further investigation
There are two main additional aspects that have not been examined directly in this 

thesis but need to be considered before the HMM-based approach could be applied in 
practice: model robustness and the use of error-corrected microdata in further analysis. 
In more detail, a thorough examination of the sensitivity of parameter estimates to 
varying model specifications containing different assumptions ought to be carried out. 
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to use a model specification that accounts for all possible error sources and scenarios. 
Therefore, we need to understand whether and to what extent different violations 
of assumptions can bias the results obtained. To illustrate, in all of our analyses the 
measurement error probabilities in the survey and the register data are assumed 
to be time- invariant and homogenous. However, this might not be the case as the 
likelihood of making an error in both sources might change over time. For instance, 
this likelihood might decrease in the survey data as a result of interviewers getting 
accustomed to a questionnaire when using it for numerous consecutive waves; in 
the register data it might decline due to companies becoming more familiar with the 
software that is utilized to input, store and manage register data. What is more, the 
error probabilities might be heterogeneous and depend on data collection and/or 
individual-level characteristics. In these scenarios, a model specification that relies on 
the assumption that the error parameters are time-invariant and/or homogeneous is 
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incorrect and it is necessary to investigate the effect of such violations on the HMM 
estimates. Similarly, the sensitivity of the model estimates to the violation of the 1st 
order Markov assumption should also be examined.

Second, it is also important to consider how researchers can use error-corrected 
microdata in their analyses, while accounting for the uncertainty of the “true state” 
membership. One possible solution is to combine multiple imputation and latent 
Markov modelling, as proposed by Boeschoten et al. (2020). The use of multiply imputed 
datasets allows for the relatively straightforward estimation of various statistics of 
interest, while taking into account the uncertainty of the assignment of values to the 
latent variable that is caused by measurement error. It is also possible to generalize 
the method proposed by Boeschoten et al. (2020) and use reweighting. That is, each 
record in the dataset can be replaced by X records, where X corresponds to the 
number of latent categories. To illustrate, in our case each record in the linked LFS-ER 
dataset would be replaced with three records and the contract type variable for these 
records would be permanent, temporary and other, respectively. Then, the posterior 
probabilities of having permanent, temporary and other (latent) contract types for each 
record would be assigned as weights to the corresponding newly created records.

Alternatively, it might also be possible to run the measurement error procedure and 
the substantive analysis simultaneously. This can be done by extending the structural 
part of the HMM so that the resultant estimates answer the research question at hand. 
For instance, rather than first correcting for measurement error and then performing 
sequence analysis on the obtained data, one can make use of a mixture hidden Markov 
model (MHMM) that allows for both the correction of the error and the clustering of 
sequences (Helske et al., 2018).

6.3	 Using HMMs to reconcile inconsistent data sourc-
es in official statistics

The results and findings presented in this thesis have strong implications for the 
feasibility of using extended HMMs to reconcile inconsistent data sources in official 
statistics specifically.

National Statistical Institutes (NSIs) often obtain information on the same 
phenomena from different data sources (Bakker, 2011; Van Delden et al., 2016). Even 
though these sources are in most cases subject to editing, which is used to detect and 
correct erroneous values (De Waal, 2016; Van Delden et al., 2016), identical units do 
not always yield identical values (Guarnera & Varriale, 2016). Such inconsistencies are 
mainly the result of measurement error in the data sources involved and are likely to 
lead to the unwanted publication of differing statistics.

The effect of measurement error on official statistics varies depending on the type of 
estimates published. To illustrate, random measurement error specifically does not tend 
to substantially bias “first-order” population estimates, such as means, proportions, 
and totals, but does, in most cases, severely overestimate (or less often, underestimate) 

“second-order” statistics, such as (over-time) transition rates, hazard rations, or domain 
mean differences (Bolck et al., 2004; Bound et al., 2001; Pavlopoulos et al., 2012). 
Random error has also been shown to attenuate measures of associations between 
variables, such as correlations and linear regression coefficients (Liu, 1988).

NSIs apply several methods to account for the inconsistencies caused by 
measurement error. Most commonly, the differences are ignored and the estimates 
published are based on edited data coming only from the source that is assumed to 
have superior quality (De Waal et al., 2019). Alternatively, NSI’s use weighting as well 
as micro- and macro-integration methods to obtain consistent estimates from different 
sources. These three methods differ with regards to the level of consistency achieved 
as well as the costs required for their implementation (De Waal et al., 2019).

When using weighting to achieve higher consistency, survey records are weighted 
using the totals of the register source (Särndal et al., 2003). For this solution, it is not 
necessary to link the sources on a micro-level, but rather it is sufficient to use the 
cross table of the weighting variables from the register source and weight the survey 
data using the marginals. An alternative approach is to use micro-integration, wherein 
the sources are first linked on the individual level and next the quality of the data 
is improved by identifying and correcting for errors at the unit level (Bakker, 2011; 
van Rooijen et al., 2016). Finally, the problem of inconsistencies can also be resolved 
using macro-integration, a process in which statistical outcomes are reconciled on the 
aggregate level. In macro-integration, the differences between the target and observed 
populations as well as the target variables and their measurements are first explained 
and then corrected for by using estimates from other sources or the knowledge of 
subject matter experts.

The methods discussed differ substantially with regards to the labor intensiveness 
and costs associated with their implementation. Weighting is a relatively inexpensive 
and easy to implement technique, which does not require data linkage; it is therefore 
often used by NSI’s. Micro-integration, on the other hand, is significantly more labor- 
and cost- intensive. More specifically, determining the right edit rules and verifying the 
quality of the measured variables as well as performing record linkage requires a lot of 
time and effort. What is more, having developed the set of edit rules, its maintenance 
also requires substantial capacity, particularly when sources change. The costs of 
macro-integration are also relatively high, especially when subject matter experts play 
an important role. If the process is fully automated, though, it tends to be cheaper than 
micro-integration.

The results presented in this thesis suggest that HMMs can be potentially used as 
an alternative to the methods discussed when reconciling inconsistencies arising from 
measurement error in categorical, longitudinal data. To restate, we show that while this 
method, unlike weighting or macro-integration, requires record linkage, linkage error 
is not a major concern. We also show how this method can be simplified by carrying 
forward error parameter estimates. However, this can only be done in the absence of a 
major change in the data collection process, which implies that this method can still be 
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rather expensive, particularly if the data collection process of a survey or the laws and 
regulations impacting register data quality change frequently. The decision of whether 
this method should be applied in the production of official statistics depends then on 
the expected frequency of the aforementioned changes (i.e. the costs involved) and 
the importance of obtaining consistent and error-corrected variables for the users of 
official statistics (i.e. the revenues).

Another important aspect that should be taken into consideration is the fact that all 
the models that we refer to use linked data. This means that, if one of the sources used is 
much richer than the other (i.e. it contains more individuals and/or more time points per 
individual), such as is the case with register data compared to survey data, this method 
will lead to loss of information, as it only uses data available in both sources. Moreover, 
if the survey data suffer from selective non-response, the estimated measurement 
error can be biased too. For this reason, NSI’s might prefer to use macro-integration or 
reweighting techniques as these methods use all the data available rather than just a 
linked subset. Further research should, therefore, look into the possibility of combining 
the aforementioned methods with hidden Markov modelling. In such a combined 
method, HMMs could be used to obtain estimates of measurement error from the 
linked data, while the final corrected (substantive) estimates could be based on all the 
data available and obtained using macro-integration or reweighting techniques.

To summarize, this thesis has laid down the groundwork for the use of HMMs as 
an error correction procedure. This methodology can be potentially used to reconcile 
inconsistent data sources by NSIs. However, before this method can be applied in 
practice, both specifically in official statistics and more broadly in other disciplines, 
further work is needed.
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Despite countless attempts to reduce it and address its causes, measurement error 
is a problem inherent to all data sources. (Alwin, 2007; Biemer et al., 1991; Kuha & 
Skinner, 1997). Its presence often leads to biased and inconsistent statistical estimates 
and, as a consequence, to erroneous findings and conclusions. It is therefore crucial to 
understand, account, and correct for measurement error to ensure research validity 
(Fuller, 2009; Grace, 2017; Kuha & Skinner, 1997).

Latent variable modelling is an increasingly popular solution to this problem, as it 
allows for the estimation of and correction for measurement error without the need 
for gold standard data. That is, the main advantage of latent variable models (LVMs) is 
the fact that, unlike alternative measurement-error-correction techniques, they do not 
make use of error-free validation data, which are rarely available in practice. Instead 
these models use repeated indicators of the same variable, either cross-sectionally 
from various sources or over time from the same source, to extract information about 
measurement error directly from the data (Biemer & Bushery, 2000).

A group of LVMs that are applied specifically to categorical, longitudinal data, and 
which are the main focus of this dissertation, are hidden Markov models (HMMs) 
(Biemer, 2004, 2011; Oberski et al., 2017; Pavlopoulos & Vermunt, 2015). HMMs are 
used when a (dynamic) quantity of interest is measured in a panel survey with some 
degree of error. The models allow for the separation of true change from measurement 
error which, in turn, can produce error-corrected estimates of the quantity of interest, 
and are also able to assess the level of measurement error in the corresponding variable 
(Biemer, 2011; Pankowska et al., 2018).

The standard HMM consists of two components: (i) the structural component 
that models the true (latent) initial state probabilities and the true (latent) transition 
probabilities; and (ii) the measurement component that models the interactions of 
the observed values (which contain error) with the true values at each time point. 
The two components are estimated simultaneously. The model relies on two basic 
assumptions: first, the probability of a specific value occurring at time t only depends 
on its value in the previous time point – the so-called Markov assumption. Second, the 
probability of observing a specific value at time t only depends on the true value at the 
same time point – the so-called local independence assumption or the independent 
classification error (ICE) assumption. While the standard, single-indicator HMM relies 
on the local independence assumption for identifiability, this assumption is often 
viewed as highly restrictive and unrealistic, as it does not allow for the modelling of the 
presence of systematic errors without risking poor model identifiability. To overcome 
this challenge, it is possible to use extended, multiple-indicator versions of HMMs. 
However, this solution introduces some new challenges. Most importantly, the use 
of multiple indicators usually requires performing record linkage, which might lead to 
linkage error – a new potential source of bias. Furthermore, the implementation of such 
extended models also tends to be complex and time-consuming.

Given the potentially strong, adverse effects of measurement error and the 
possibility of minimizing these using HMMs, the aim of this thesis is twofold: first to 
understand in more detail the problem of measurement error and second to investigate 
whether extended HMMs that are applied to linked data can be used for error, and to 
what extent this method can be feasibly implemented.

In more detail, Chapter 2 examines the bias introduced by measurement error, 
using clustering as an illustrative example. More specifically, the simulation study 
investigates the sensitivity of two commonly used model- and density-based clustering 
algorithms (i.e. GMMs and DBSCAN) to varying severities and magnitudes of random 
and systematic errors. The results confirm that measurement error in many cases 
leads to non-negligible bias, as the returned clusters are (highly) dissimilar to the ones 
obtained when the dataset is error-free. The number of clusters found in the data is 
also affected by the error.

Chapter 3 looks at how different data collection processes might impact the nature 
and magnitude of measurement error, by studying how the switch from dependent 
interviewing (DI) to independent interviewing (INDI) in the Dutch Labour Force 
Survey (LFS) affects the random and systematic components of the error. The results 
indicate that the use of DI lowers the probability of obtaining random errors but has 
no significant effect on systematic errors. What is more, the results also show that 
regardless of the interviewing regime used, the survey data, similarly to the register 
data, also contains autocorrelated error. The findings of this paper indicate that both 
data sources examined are subject to non-negligible systematic error that needs to be 
considered when correcting for measurement error using HMMs. This in turn confirms 
the need for using extended, multiple-indicator HMMs, which allow for the relaxation of 
the local independence assumption and the modelling of error autocorrelation without 
risking poor model identifiability.

Chapter 4 investigates whether and to what extent the use of multiple-indicator 
HMMs, which often requires record linkage, leads to biased estimates due to the 
presence of linkage error. The results of the simulation study show that overall the 
sensitivity of the HMM (structural) parameter estimates to false-positive and false-
negative linkage error is low. It appears that only rather extreme scenarios (i.e. high 
error rate and high correlation between the probability of error and model estimates) 
lead to substantial bias. Moreover, the results also show that under certain conditions, 
false-positive linkage error acts as another source of measurement error that is 
absorbed into the error-rate parameters of the model, leaving the latent transition 
estimates unaffected. In these cases, HMMs also accounts for linkage error.

Finally, Chapter 5 focuses on a more practical matter. Given their complex nature 
and, with that, the time and costs associated with their implementation, the study 
explores the feasibility of using multiple-indicator HMMs in the first instance. More 
specifically, the study investigates whether it is possible to simplify the error correction 
procedure by running the full analysis once and then re-using the resultant error 
parameters as a correction factor for a number of years. The proposed solution is 
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contingent on the assumption that the structure and size of the error remain constant. 
The analysis provides some evidence that in the absence of a major change in the data 
collection process, the size and structure of the error are time-invariant and, therefore, 
the error parameters can be carried forward a certain number of years.

While the findings presented in this dissertation suggest that HMMs are a 
promising tool to correct for measurement error in categorical, longitudinal data, 
several additional aspects need to be considered before this approach can be applied 
in practice. Namely, the performance and feasibility of the method should be tested 
in a different context that goes beyond the topic of labor mobility and on data from 
different countries than the Netherlands. Also, if possible, additional sources apart from 
surveys and administrative registers should be considered. Furthermore, a thorough 
examination of model robustness and the sensitivity of parameter estimates to varying 
model specifications containing different assumptions ought to be carried out. Finally, 
it is also important to consider how researchers can use error-corrected microdata in 
their analyses, while accounting for the uncertainty of the “true state” membership.
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collection process, the size and structure of the error are time-invariant and, therefore, 
the error parameters can be carried forward a certain number of years.

While the findings presented in this dissertation suggest that HMMs are a 
promising tool to correct for measurement error in categorical, longitudinal data, 
several additional aspects need to be considered before this approach can be applied 
in practice. Namely, the performance and feasibility of the method should be tested 
in a different context that goes beyond the topic of labor mobility and on data from 
different countries than the Netherlands. Also, if possible, additional sources apart from 
surveys and administrative registers should be considered. Furthermore, a thorough 
examination of model robustness and the sensitivity of parameter estimates to varying 
model specifications containing different assumptions ought to be carried out. Finally, 
it is also important to consider how researchers can use error-corrected microdata in 
their analyses, while accounting for the uncertainty of the “true state” membership.
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