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”A thousand signs declined
That traveled through light

Translate this mystery
That covered my eyes

Accept approaching fear
And courage appears
Death is a certainty

It’s growing near

Letting go is fateful

...

I’ll come on home
I’m in the light of day

Questions were answered
A new life’s arms are extending

The final page has turned, sending the letter
Come on home

And I’ll sing you the song that has painted your canvas of life”

Epica - Canvas of life



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page viii — #8 i
i

i
i

i
i

viii



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page ix — #9 i
i

i
i

i
i

Foreword

The essence of all beautiful art is gratitude.
Friedrich Nietzche

I’d like to start with thanking the methodology department at Statis-
tics Netherlands for housing me and acknowledging me as one of their
own. In particular I would like to name those CBS colleagues that were
extra special and for whom I hold a great deal of respect: Jacobiene van
der Hoeven, Sander Scholtus, Rik van der Vliet, Ton de Waal, Daan Zult.
Eric Schulte Nordholt, for all the advise, laughs and lunches. Barteld
Braaksma for always motivating me and introducing me to new amaz-
ing people, you rock! I am truly grateful for all you did for me and
believing in me. You are a mentor and a sponsor all in one and I could
not think of a better person for those jobs. Peter-Paul de Wolf, thank you
for all the help and laughs, you were the best (unfortunately, un-official)
daily supervisor. I miss our monday-morning talks at the coffee machine.
A special thanks goes to official statistics colleague from Ireland: John
Dunne, I hold a great deal of respect for you and I am grateful to all
you have done.

A big thanks goes out to the Methods and Statistics Department of
Utrecht University. To everyone: Thank you for the amazing time. A
special thanks go out to: Manon Bouman, Rens van der Schoot, Noemi
Schuurman, Vera Toepoel. And all my roommates: Sander van Schie,
Marielle Zondervan-Zwijnenburg, Sharon Klaassen, Sanne Smid. A spe-
cial acknowledgement goes to Frank Bais for all the fun, your amazing
wit and our lunches. I will remember to write something up! But espe-
cially to Anouck Kluytmans, for everything, love you girl!

At the UU I found an outlet for my curiosity and activism in the
form of Prout and PNN. I would like to thank all the Prout members for
the amazing and fun time I had, especially Sophie van Uijen and Jeroen
Goudsmit. To all former, current and future PNN members: I want to
thank you! PNN deserves way more credit than I can give here in this
dedication, but trust me when I say I never met a bunch of amazing
and fun people with such a passion and enthusiasm all bundled for one

ix



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page x — #10 i
i

i
i

i
i

x Foreword

greater cause.

Of all the colleagues, there are two men I have to thank in partic-
ular: Professor Peter G. M. van der Heijden and Professor Bart F. M.
Bakker. These men have challenged me to be a better researcher and
also a better person, and I look back on them fondly. Peter, I’ve come
to respect you as a researcher and a caring and funny person. I did not
know you as a researcher before the PhD, but during I found out so
many people knew you and respected you, it is an honor to tell people I
graduated under you. Bart, I value everything you have done for me and
what I have learned from you, even though I may have never been able
to actually put that to words. I can honestly tell you that I never had
so much respect for a person. You are a kindhearted man and a great
researcher. I hope to continue to have a laugh or two with the both of
you in the future. Thank you, both.

Then there are the people I would not have ever even been here
without. My parents, Louise and Henk. I love you so much, and I thank
you for everything you have ever taught me. It is with pride I dedicate
this PhD to the both of you. My grandparents, even though I have to
miss half of them. My little brother Frank (enunciating the little, given
he is 5 years younger, yet 15 cm taller), we have laughed and we have
fought, and without you life would be dull and empty. I am so proud
of you, and I hope I made you proud of your sister. My in laws, Klaas
and Sylvia, you gave me my amazing life partner, and you have sup-
ported me throughout it all. My amazing friends Gabrielle and Naomi
Verwer, Lisette Rodenhuis-Van Mourik, Danielle Overdijk, and Saman-
tha Bakx, for always supporting me. Lisette, thank you for the cover
art. But mostly for always being there and being the best friend ever!
A special thanks go to my paranimfs: Anouck, I am sorry this job as a
paranimf is not more exciting (wink), especially since from the beginning
of my PhD I knew you were going to be my paranimf. Gabrielle, we have
been friends for a long time, and I hope to stay friends for even longer!
I love you guys.

Ruben, it may have been your job, but you gave me back my life.
I am forever grateful. I think your voice and your advise are cemented
into my brain, never to be forgotten. You gave me back my trust.

Last, but most definitely not least: Merlin von Freytag Drabbe. You
have been with me for 10 years now. I cannot put to words what I would
have done without you. You always tell me: ”the same as you would
with me”. But that is not true. I can not imagine my life without you



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page xi — #11 i
i

i
i

i
i

Foreword xi

anymore, and I would not have it any other way, I love you. Je bent zo
leuk he!



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page xii — #12 i
i

i
i

i
i

xii Foreword



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page vii — #13 i
i

i
i

i
i

Contents

1 Introduction 1
Susanna C Gerritse
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Theoretical background to this thesis . . . . . . . . . . 4

1.2.1 Short overview of capture-recapture methodology 4
1.2.2 Two register capture-recapture . . . . . . . . . . 5

1.2.2.1 Fully observed covariates . . . . . . . . 6
1.2.2.2 Partially observed covariates . . . . . . 7

1.2.3 Three registers . . . . . . . . . . . . . . . . . . . 8
1.2.4 Assumptions . . . . . . . . . . . . . . . . . . . . 9

1.3 Practical background information for this thesis . . . . 12
1.3.1 Census . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Data used . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Linking the data . . . . . . . . . . . . . . . . . . 15
1.3.4 Usual Residence . . . . . . . . . . . . . . . . . . 15

1.4 Contribution of this thesis . . . . . . . . . . . . . . . . 17
1.4.1 Implied coverage . . . . . . . . . . . . . . . . . . 17
1.4.2 Sensitivity of population size estimation for vio-

lating parametric assumptions in loglinear models 19
1.4.3 The effects of imperfect linkage and erroneous cap-

tures on the population size estimator . . . . . . 20
1.4.4 Different methods to complete datasets used for

capture-recapture estimation: estimating the num-
ber of usual residents in the Netherlands . . . . . 22

1.4.5 Sensitivity of the population size estimates for
Census undercoverage . . . . . . . . . . . . . . . 22

1.4.6 Overall conclusion . . . . . . . . . . . . . . . . . 23
1.4.7 Future research . . . . . . . . . . . . . . . . . . . 25

2 Population size estimation after violating parametric as-
sumptions 27
Susanna C Gerritse, Peter G.M. van der Heijden, and Bart F.M.

Bakker
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page viii — #14 i
i

i
i

i
i

viii Contents

2.2 Two registers without covariates . . . . . . . . . . . . . 31

2.3 Two registers with fully observed covariates . . . . . . . 36

2.4 Two registers with partially observed covariates . . . . 39

2.4.1 Partially observed covariates . . . . . . . . . . . 39

2.4.2 Sensitivity analyses . . . . . . . . . . . . . . . . . 42

2.5 Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 Extension to multiple sources . . . . . . . . . . . 45

2.5.2 Multiplier method . . . . . . . . . . . . . . . . . 47

2.5.3 Confidence intervals . . . . . . . . . . . . . . . . 48

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7.1 R code . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7.2 SPSS syntax . . . . . . . . . . . . . . . . . . . . 52

2.7.3 R code parametic bootstrap . . . . . . . . . . . . 52

3 The effects of imperfect linkage and erroneous captures 55

Susanna C Gerritse, Bart F.M. Bakker, Daan B Zult, and Peter
G.M. van der Heijden

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Capture-recapture for two registers . . . . . . . . . . . 59

3.2.1 Linkage errors in two registers, theoretical exam-
ple . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Implied coverage . . . . . . . . . . . . . . . . . . 62

3.2.3 Linkage error for two registers, real data examples 63

3.2.4 Erroneous captures for two registers, theoretical
example . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.5 Erroneous captures for two registers, real data ex-
ample . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Capture-recapture for three registers. . . . . . . . . . . 69

3.3.1 Linkage error for three registers, simulation study 70

3.3.2 MC simulation results . . . . . . . . . . . . . . . 71

3.3.3 Linkage error in three registers, real data example. 73

3.3.4 Erroneous captures in three registers, real data ex-
ample . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.1 Tables for section 3.2.3 . . . . . . . . . . . . . . . 79

3.5.2 Tables for section 3.2.5 . . . . . . . . . . . . . . . 80

3.5.3 Tables for section 3.3.3 . . . . . . . . . . . . . . . 82

3.5.4 Tables for section 3.3.4 . . . . . . . . . . . . . . . 84



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page ix — #15 i
i

i
i

i
i

Contents ix

4 Different methods to complete datasets used for estima-
tion 85
Susanna C Gerritse, Bart F.M. Bakker, and Peter G.M. van der

Heijden
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Data sources and their linkage . . . . . . . . . . . . . . 89
4.3 Previous findings . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Capture-recapture methodology using loglinear
modelling . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Missing covariate . . . . . . . . . . . . . . . . . . 99
4.4.3 Scenarios using the EM algorithm . . . . . . . . 101
4.4.4 Scenario for multiple imputation using predictive

mean matching . . . . . . . . . . . . . . . . . . . 102
4.4.5 Concluding remarks . . . . . . . . . . . . . . . . 103

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.1 Scenario 1: Maximal model for EM estimation and

capture-recapture analysis . . . . . . . . . . . . . 104
4.5.2 Scenario 2: Maximal model for EM estimation, re-

strictive models for capture-recapture analysis . 105
4.5.3 Scenario 3: Restrictive models for both EM esti-

mation and capture-recapture analysis . . . . . . 106
4.5.4 Scenario 4: multiple imputation using PMM . . . 106

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Undercoverage of the population register in the Nether-
lands, 2010 113
Susanna C Gerritse, Bart F.M. Bakker, Peter-Paul de Wolf, and

Peter G.M. van der Heijden
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Linkage of data sources . . . . . . . . . . . . . . . . . . 118
5.3 Methods for deriving residence durations . . . . . . . . 121

5.3.1 Residence duration ER . . . . . . . . . . . . . . . 122
5.3.2 Residence duration CSR . . . . . . . . . . . . . . 124

5.4 Method for estimating the number of unregistered indi-
viduals . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.1 Implied coverage . . . . . . . . . . . . . . . . . . 127

5.5 Implied coverage for three registers . . . . . . . . . . . 128
5.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . 128
5.5.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . 131
5.5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . 133



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page x — #16 i
i

i
i

i
i

x Contents

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Summary in Dutch 149
Susanna C Gerritse

6.0.1 Nederlandse samenvatting . . . . . . . . . . . . . 149



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page xi — #17 i
i

i
i

i
i

List of Figures

3.1 Population size estimate for the two-register capture-
recapture sensitivity analysis for both nationalities under
a β ranging from 0.5 to 1.5 . . . . . . . . . . . . . . . . 65

3.2 Population size estimate for the two-register capture-
recapture sensitivity analysis for both nationality groups
under a Gamma ranging from 1 to 0.1 . . . . . . . . . . 68

3.3 Population size estimate for both nationalities with link-
age error rate β = 0.7, 0.5 or 0.3 . . . . . . . . . . . . . 75

3.4 Population size estimate for both nationalities under a
Gamma ranging from 1 to 0.1. . . . . . . . . . . . . . . 77

4.1 Number of asylum requests in the Netherlands 1995-2010 96

5.1 Linkage of the PR to the ER, the PR to the CSR and the
ER to the CSR. . . . . . . . . . . . . . . . . . . . . . . . 120

xi



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page xii — #18 i
i

i
i

i
i

xii List of Figures



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page xiii — #19 i
i

i
i

i
i

List of Tables

1.1 Expected values of being present in register 1 and register
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Expected values for two registers and two partially ob-
served covariates. . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The table of expected counts for thee registers . . . . . 9

2.1 The observed values for the two nationalities, with the
Afghan, Iraqi and Iranian people residing in the Nether-
lands in 2007 on the left, and the Polish people residing
in the Netherlands in 2009 on the right. . . . . . . . . . 34

2.2 Sensitivity analysis of the population size estimate for
the people residing in the Netherlands in 2007 with an
Afghan, Iraqi and Iranian nationality (upper panel) and
for people with a Polish nationality in 2009 (lower panel). 35

2.3 The observed values for the Afghan, Iraqi and Iranian
people, on the left panel the males and on the right panel
the females. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 The observed values for the Polish people, on the left panel
the males and on the right panel the females. . . . . . . 38

2.5 Sensitivity analysis for the people with an Afghan, Iraqi
and Iranian (AII) nationality residing in the Netherlands
in 2007 (upper panel), and the people with a Polish na-
tionality residing in the Netherlands in 2009 (lower panel),
conditional on gender. . . . . . . . . . . . . . . . . . . . 38

2.6 Expected values for two registers and two partially ob-
served covariates. . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Data for the Afghan, Iraqi and Iranian people residing
in the Netherlands in 2007, spread out over the partially
observed covariates Marital status X1 and Police region
X2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiii



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page xiv — #20 i
i

i
i

i
i

xiv List of Tables

2.8 Sensitivity analysis of the population size estimate for
the people residing in the Netherlands in 2007 with an
Afghan, Iraqi and Iranian nationality with the interac-
tion A and X1 (upper panel) and the interaction between
B and X2 (lower panel). . . . . . . . . . . . . . . . . . . 43

2.9 The observed counts for the people with a Polish nation-
ality residing in the Netherlands in 2009 (upper panel)
and the fitted frequencies spread out over the partially
observed covariates (lower panel). . . . . . . . . . . . . . 44

2.10 Sensitivity analysis of the population size estimate for
the the people residing in the Netherlands in 2009 with
a Polish nationality with the interaction between A and
X1 (upper panel) and the interaction between B and X2

(lower panel). . . . . . . . . . . . . . . . . . . . . . . . . 45

2.11 Artificial observed data for the Polish people in the hos-
pital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.12 Confidence intervals . . . . . . . . . . . . . . . . . . . . 48

3.1 Expected values of being present in register 1 and regis-
ter 2 under perfect linkage on the right side of the table
and the expected values of being present in register 1 and
register 2 under linkage error on the left side. . . . . . . 61

3.2 Left are the values of the Afghan, Iraqi and Iranian indi-
viduals and on the right are values of the individuals of
Polish nationality, estimated values are in italics. . . . . 63

3.3 The left table are the observed values for the CSR for the
Afghan, Iraqi and Iranian people residing in the Nether-
lands, the right table are the observed values under error
linkage β = 0.9. Estimated values are in brackets. . . . . 64

3.4 The values for the Afghan, Iraqi and Iranian nationals re-
siding in the Netherlands in 2010, adjusted for γ = 0.9
erroneous capture in the CSR. Values in italics are esti-
mated values . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 The table of expected counts for thee registers . . . . . 69

3.6 MC simulation parameters and their settings . . . . . . 71

3.7 A selection of the MC simulation results . . . . . . . . . 72

3.8 The observed values for the Afghan, Iraqi and Iranian
individuals on the left side of the table and the observed
values for the Polish individuals on the right side of the
Table by three registers. . . . . . . . . . . . . . . . . . . 74

3.9 Robustness analysis of the population size estimate for
the people residing in the Netherlands in 2010 with an
Afghan, Iraqi and Iranian nationality. . . . . . . . . . . 80



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page xv — #21 i
i

i
i

i
i

List of Tables xv

3.10 Robustness analysis of the population size estimate for the
people residing in the Netherlands in 2010 with a Polish
nationality. . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.11 Robustness analysis of the population size estimate for
the people residing in the Netherlands in 2010 with an
Afghan, Iraqi and Iranian nationality when adjusting for
γ erroneous captures. . . . . . . . . . . . . . . . . . . . . 81

3.12 Robustness analysis of the population size estimate for the
people residing in the Netherlands in 2010 with a Polish
nationality,when adjusting for γ erroneous captures. . . 81

3.13 Resulting population size estimates when percentages
linkage errors are taken from the CSR (rows) and they
are divided differently over the PR and ER (columns) for
the Polish individuals. . . . . . . . . . . . . . . . . . . . 82

3.14 Resulting population size estimates when percentages
linkage errors are taken from the CSR (rows) and they
are divided differently over the PR and ER (columns) for
the Afghan, Iraqi and Iranian individuals. . . . . . . . . 83

3.15 Erroneous captures for three registers for the Afghan,
Iraqi and Iranian individuals . . . . . . . . . . . . . . . 84

3.16 Erroneous capture for three registers for the Polish indi-
viduals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Observed values for the three registers. . . . . . . . . . . 91

4.2 Overview of previous research to individuals residing in
the Netherlands. . . . . . . . . . . . . . . . . . . . . . . 94

4.3 The Polish individuals by the three registers and usual
residence. The two missing cells add up to 1,043. . . . . 99

4.4 Estimated Polish usual residents that are missed by all
three registers, by Age and Sex . . . . . . . . . . . . . . 105

4.5 Estimates for scenario 2 . . . . . . . . . . . . . . . . . . 106

4.6 Estimates for scenario 3 . . . . . . . . . . . . . . . . . . 107

4.7 The data for the Polish individuals after completion with
EM algorithm via restrictive loglinear models . . . . . . 107

4.8 Estimates for scenario 4 . . . . . . . . . . . . . . . . . . 108

4.9 Loglinear models per nationality for scenario 2 . . . . . 111

4.10 Loglinear models per nationality for scenario 3 . . . . . 111

4.11 Loglinear models per nationality for scenario 4 . . . . . 112

5.1 Observed values for the three registers. . . . . . . . . . . 121



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page xvi — #22 i
i

i
i

i
i

xvi List of Tables

5.2 Scenarios for deducing residence duration from joblengths
in the ER, per nationality group. The first column shows
the observed counts of all the individuals in the ER that
are not in the PR. The other columns show the count
of individuals that would be considered usual residents
under the specified scenario . . . . . . . . . . . . . . . . 123

5.3 Overview of the scenarios and the resulting maximum
likelihood estimates of the missed portion of the popu-
lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 1 — #23 i
i

i
i

i
i

1

Introduction

Susanna C Gerritse

Statistics Netherlands

CONTENTS

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Theoretical background to this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Short overview of capture-recapture methodology . . . . . . 4
1.2.2 Two register capture-recapture . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2.1 Fully observed covariates . . . . . . . . . . . . . . . . . . . . . 6
1.2.2.2 Partially observed covariates . . . . . . . . . . . . . . . . . 7

1.2.3 Three registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Practical background information for this thesis . . . . . . . . . . . . . . . . 11
1.3.1 Census . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Data used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Linking the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 Usual Residence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Implied coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Implied coverage for three registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Sensitivity of population size estimation for violating

parametric assumptions in loglinear models . . . . . . . . . . . . 18
1.4.3 The effects of imperfect linkage and erroneous captures

on the population size estimator . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.4 Different methods to complete datasets used for

capture-recapture estimation: estimating the number of
usual residents in the Netherlands . . . . . . . . . . . . . . . . . . . . . . 22

1.4.5 Sensitivity of the population size estimates for Census
undercoverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.6 Overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.7 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 2 — #24 i
i

i
i

i
i

2 An application of population size estimation to official statistics

1.1 Introduction

Official Statistics bureaus are periodically asked to give an estimate of
their country’s population, which can be defined by the number of usual
residents. According to EU Regulation No 1260/2013, usual residence is
defined by the place where a person normally spends the daily period of
rest. Then, a person is considered a usual resident when they have lived
in the Netherlands for longer than a year, or if they have the intention to
reside for longer than a year. For the Dutch Census, Statistics Nether-
lands makes use of the Population Register (PR). By Dutch law, every
individual that is residing, or planning to reside, in the Netherlands for
longer than four months, has to register in the PR. However, for numer-
ous reasons, immigrants that have taken residence in the Netherlands
may not register and become undocumented immigrants. Given that the
Population Register only consists of individuals that actually have regis-
tered themselves, the PR alone is not sufficient to estimate the number
of usual residents, and has an undercoverage considering the number of
Dutch usual residents.

One commonly used method to estimate population sizes is the
capture-recapture methodology. First the PR is linked to two other reg-
isters. Then capture-recapture methodology using a covariate that de-
notes residence duration can be used to estimate the number of usual
residents missed by all three registers. However, for the valid use of
capture-recapture methodology, a set of assumptions has to be met. Ad-
ditionally, practical issues such as missing data may occur. Such prac-
tical issue have to be resolved before one can estimate the number of
Dutch usual residents via capture-recapture methodology. For that pur-
pose there are two central questions in this thesis: 1) what is the effect of
violated assumptions and missing data on the robustness of population
size estimation via capture-recapture methodology, and 2) how can the
information gained in 1) be used to achieve a trustworthy estimate of
the under coverage of usual residents in the Population Register in the
Netherlands?

To answer the first question in this thesis, research has been con-
ducted into the robustness of population size estimation via capture-
recapture methodology when three specific assumptions have been vio-
lated. These assumptions are 1) independence of the inclusion probabil-
ities of the registers, 2) no erroneous captures in the registers, such that
all units in the registers belong to the population and 3) perfect linkage
of the units in the used registers. For the independence assumption, this
research also investigated the robustness for independence conditional on
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Introduction 3

fully and partially observed covariates. Additionally research has been
conducted into the effect missing data have on the population size es-
timation, and most notably how different methods of handling missing
data differ in their effect on the resulting population size estimate.

To assess the effect of violated assumptions on population size es-
timation, capture-recapture methodology has been conducted on two
different nationality groups. One group considered only individuals with
a Polish nationality, and the other group considered individuals with
an Afghan, Iraqi and Iranian nationality. These nationality groups dif-
fered in implied coverage. The idea that implied coverage is important
for population size estimation has been considered before in previous
research, although it has not been called such, but rather implied de-
pendence Brown et al. (2006), and has been studied more thoroughly in
this thesis. Implied coverage can be explained by considering two regis-
ters, register 1 and register 2. Register 1 is the register containing the
highest number of individuals, such that of the two registers, register 1
will have the highest coverage of the population. Implied coverage in-
dicates the size of the coverage register 1 has of the population, given
register 2. Thus implied coverage describes the relative size of new cases
provided by register 2. Implied coverage plays an important role in this
thesis given that it cannot be ascertained from the data whether assump-
tions are violated, but implied coverage can. It turns out that it can be
assessed whether violated assumptions will result in a large biasing effect
or not and whether conclusions have to be drawn cautiously.

To answer the second central question in this thesis, the results ob-
tained in answering the first question have been used to conduct research
into the under coverage of the PR of the Netherlands. The steps that are
taken to estimate the undercoverage of the PR using capture-recapture
methodology are discussed in the last chapter of this thesis. This resulted
in an estimate of the undercoverage of the population.

This chapter starts with discussing some theoretical background of
capture-recapture methodology and the assumptions. This information
is needed to answer the first main research question. Then, this chap-
ter will discuss some practical background information, which comprises
mostly of information on Statistics Netherlands and the data used. This
chapter ends with overview of the contribution of this thesis.
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4 An application of population size estimation to official statistics

1.2 Theoretical background to this thesis

1.2.1 Short overview of capture-recapture methodology

Capture-recapture methodology is a common method to estimate hard-
to-reach populations, and goes by many names, such as the Petersen
method, the Lincoln Index, mark-recapture and dual and multiple sys-
tem estimation. Currently capture-recapture methodology is used to es-
timate a variety of hard-to-reach populations. A few examples are: esti-
mating rare diseases such as neural tube defects (Zwane and Van der Hei-
jden, 2008), undocumented immigrants (Van der Heijden et al., 2011),
hard-drug users in the Netherlands (Cruts and Van Laar, 2010), chil-
dren under 15 years of age injured in motor vehicle accidents (Jarvis
et al., 2000) or the prevalence of individuals with HIV in France (Hraud-
Bousquet et al., 2012).

One of the first applications of capture-recapture estimation of hu-
man populations is by Laplace in 1786. Sekar and Deming (1949) esti-
mated registered birth and death rates and compared these to actual
birth and death rates. A mathematical framework for capture-recapture
methodology has been proposed by Darroch (1968), for a multiple re-
capture census of animals. He proposed a sequence of k samples, where
every member of the ith sample is uniquely labeled. This labeling is done
via marking or tagging, after which the animal is returned to the popula-
tion. Fienberg (1972) and Cormack (1989) showed how the multinomial
multiple recapture census can be reparametrized into a loglinear model.

Some reviews and books on capture-recapture methodology have
been published. An overview of the design, inference and interpretation
of capture-recapture experiments for animal populations can be found
in different reviews such as Otis et al. (1978) and Pollock et al. (1990),
or books such as Seber (1982).

There are also books and overviews of capture-recapture estimation
of human populations. A synthesis on capture-recapture methodology
was published by Cormack (1968), followed by a book focussing on the
technical aspects of the method (Cormack, 1979). An influential book
on multivariate analysis of categorical data, considering also incomplete
tables, is Bishop et al. (1975). Examples of reviews of capture-recapture
methodology and its application to human populations are, amongst
other (International Working Group for Disease Monitoring and Fore-
casting, 1995a, 1995b) and Fienberg (1992) on the application to the
US Census. Researchers Hook and Regal have published a couple of full
length articles on capture-recapture methodology, the theory and a few
applications amongst others to multiple lists (up to 14 lists) and one
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Introduction 5

of the earliest investigations to variable catchability (Hook and Regal,
1992, 1993, 1995, 1997, 2000).

1.2.2 Two register capture-recapture

The simplest population size estimation model makes use of two regis-
ters, register 1 and register 2. First the individuals have to be correctly
identified as being registered, or not registered in register 1 and register
2, resulting in a 2 by 2 contingency table. There is one zero count for
the individuals that are part of the population but were not registered in
either register (Bishop et al., 1975). By using capture-recapture method-
ology we can estimate this zero count.

Let variables A and B respectively denote inclusion in registers 1
and 2. Let the levels of A be indexed by i (i = 0, 1) where i = 0 stands
for ”not included in register 1”, and i = 1, stands for ”included in regis-
ter 1”. Similarly, let the levels of B be indexed by j (j = 0, 1). Expected
values are denoted by mij . Observed values are denoted by nij with
n00 = 0, because there are no observations for the cases that belong to
the population but were not present in either of the registers.

TABLE 1.1
Expected values of being present in register 1 and register 2

A
B 1 0 Total
1 m11 m10 m1+

0 m01 m00 m0+

Total m+1 m+0 m++

Table 3.1 shows the expected values. If expected value m00 would
have been observed by n00, the saturated loglinear model would be

logmij = λ+ λAi + λBj + λABij , (1.1)

where we use the identifying restrictions λA0 = λB0 = λAB00 = λAB10 =
λAB01 = 0. Parameter λAB11 can be used to estimate the dependence of the
inclusion probabilities of the registers. We use the notation of Bishop
et al. (1975) for hierarchical loglinear models, where the saturated model
is denoted [AB].

However we only have observed counts n11, n10 and n01, given that
n00 is a structural zero and has to be estimated. Since there are three
counts, only three parameters can be estimated, and we have to assume
independence. Thus the saturated log-linear model is:
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6 An application of population size estimation to official statistics

logmij = λ+ λAi + λBj . (1.2)

where we use the identifying restrictions λA0 = λB0 = 0. This indepen-
dence model for two registers is denoted by [A][B].

There are two ways to derive the maximum likelihood estimate of
the missed part of the population, m̂00: First, by using the estimate for
the intercept such that m̂00 = exp(λ̂) and second, by using the property
that the odds ratio under independence is 1, i.e.,

m00m11

m10m01
= 1, (1.3)

so that,

m̂00 =
m̂10m̂01

m̂11
=
n10n01
n11

. (1.4)

1.2.2.1 Fully observed covariates

Covariates can be introduced to capture-recapture methodology with the
aim to replace the strict independence assumption (Bishop et al., 1975).
Covariates can also reduce the heterogeneity resulting from individual
differences on that covariate (Alho, 1990). If covariates are available, the
generally non-feasible independence assumption can be replaced by the
less strict conditional independence assumption, where independence is
assumed conditional on covariates (Bishop et al., 1975; Wolter, 1986a;
Van der Heijden et al., 2012). This assumption is less stringent because
it can take into account inclusion probabilities that are heterogeneous
over the levels of the included covariate. Another advantage of using
covariates is that it allows us to investigate the characteristics of the
missing portion of the population.

Suppose we have observed covariate X, where the levels of X are
indexed by x (x = 1, 2). Let mijx denote the expected values for A, B
and X. Under independence conditional on X, there are two zero counts
for cases not found in either register, namely a count for x = 1 and a
count for x = 2.

Suppose that covariate X is the dichotomous covariate gender, with
x = 1 is males and x = 2 is females. Let nx = n10x + n01x + n11x and
N̂x = nx + m̂00x, where m̂00x is defined as:

m̂00x =
n10xn01x
n11x

. (1.5)

Then the population size estimate assuming independence between
A and B conditional on X, for x = 1, 2, is
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N̂ =

2∑
x=1

nx +

2∑
x=1

m̂00x. (1.6)

The loglinear model for independence for two registers and covariate
X is:

logmijx = λ+ λAi + λBj + λXx + λAXix + λBXjx , (1.7)

where we use identifying restrictions λA0 = λB0 = λX2 = λAX01 = λAX02 =
λAX12 = λBX01 = λBX02 = λBX12 = 0. When assuming independence between
A and B conditional on X, λABij = λABXijx = 0. We denote this model as
[AX][BX].

1.2.2.2 Partially observed covariates

Sometimes data have partially observed covariates. Partially observed
covariates occur when one register has a covariate that is not observed
in the other register. Partially observed covariates can be approached
as a missing data problem (Zwane and Van der Heijden, 2007; Van der
Heijden et al., 2012). If we assume a Missing At Random (MAR) mecha-
nism for the data, then we can use the Expectation-Maximization (EM)
algorithm to estimate the missing values of the partially observed covari-
ate of register A (and B) for the individuals not present in A (and B).
MAR assumes that missingness depends only on the observed variables,
and not on components that are missing (Little and Rubin, 2002, p. 12).
When the MAR assumption has been satisfied the EM algorithm will
give unbiased estimates.

Suppose register A has the covariate X1, indexed by x (x = 0, 1),
where the values for X1 are missing for A = 0 because X1 is not in
register B. Assume that register B has the covariate X2, indexed by y
(y = 0, 1), where the values for X2 are missing for B = 0 because X2 is
not in register A. The loglinear conditional independence model for two
registers, with two partially observed covariates X1 and X2, is denoted
as

logmijxy = λ+ λAi + λBj + λX1
x + λX2

y + λAX2
iy + λBX1

jx + λX1X2
xy , (1.8)

where parameters λABij = λAX1
ix = λBX2

jy = λABX1
ijy = λABX2

ijx =

λABX1X2
ijxy = 0 when at least one of the subscripts is zero. The condi-

tional independence model is denoted by [AX2][BX1][X1X2]. Inclusion
of the parameter λAX2

ij instead of the parameter λAX1
ix may seem coun-

terintuitive but an interaction for A and X1 cannot be identified as the
levels of X1 do not vary over individuals for which A = 0, and similarly
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8 An application of population size estimation to official statistics

for B and X2 (Zwane and Van der Heijden, 2007).
Table 2.6 illustrates that two registers, each with one dichotomous co-

TABLE 1.2
Expected values for two registers and two partially observed covariates.

B = 1 B = 0
X2 = 1 X2 = 0 X2 = 1 X2 = 0

A = 1 X1 = 1 m1111 m1110 m1011 m1010

X1 = 0 m1101 m1100 m1001 m1000

A = 0 X1 = 1 m0111 m0110 m0011 m0010

X1 = 0 m0101 m0100 m0001 m0000

variate, leads to 16 cells. However, because our covariates are only par-
tially observed, for B = 0 columns X2 = 1 and X2 = 0 are collapsed,
just as for A = 0 rows X1 = 1 and X1 = 0 are collapsed. In other words,
we do not observe counts for m0111 and m0101 but only one count for
the sum m0111 +m0101, and similarly for m0110 +m0100, m1011 +m1010

and m1001 + m1000. Note that we have no observed values for m0011,
m0001, m0010 and m0000, as these refer to individuals who are in neither
of the registers. Thus model [AX2][BX1][X1X2] is saturated with eight
observed values and eight parameters to be estimated.

1.2.3 Three registers

Population size studies can make use of multiple registers. The two reg-
ister case can be easily extended to a three register case, which in turn
can be extended to a d register case, with d > 3. Assume there are d
samples, lists or registers. Assume also that within these sources, units
are uniquely labeled or identifiable so that it can be determined in how
many of the d sources a unit is present or absent. After correctly identi-
fying these units as being present or absent in the d samples, the units
can be identified as counts in a 2d cross-classification such that there is
a zero count for the units absent in all d samples (Bishop et al., 1975,
P. 231).

Assume we have three registers, register 1, register 2 and register
3. Let variables A, B and C respectively denote inclusion in registers
1, 2 and 3. Let the levels of A be indexed by i (i = 0, 1) where i = 0
stands for ”not included in register 1”, and i = 1, stands for ”included
in register 1”. Similarly, let the levels of B be indexed by j (j = 0, 1),
and let the levels of C be indexed by k (k = 0, 1). Table 3.5 shows the
expected values denoted by mijk. Observed values are denoted by nijk
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with n000 = 0.
For three variables the saturated loglinear model is denoted by:

TABLE 1.3
The table of expected counts for thee registers

C
A B 1 0
1 1 m111 m110

0 m101 m100

0 1 m011 m010

0 m001 m000

log mijk = λ+ λAi + λBj + λCk + λABij + λACik + λBCjk , (1.9)

where we use the identifying restrictions λA0 = λB0 = λC0 = λAB10 = λAB01 =
λAB00 = λAC10 = λAC01 = λAC00 = λBC10 = λBC01 = λBC00 = 0. The model
assumption is that the three factor interaction parameter λABCijk = 0.
Model [AB][BC][AC] is the saturated model, as the number of observed
counts equals the number of parameters to be estimated. This model
assumes that the odds ratio between A and B is the same for k = 0 and
k = 1, just as the odds ratio between A and C will be the same for j = 0
and j = 1 and the odds ratio between B and C to be the same for i = 0
and i = 1. Under this property

m110m000

m100m010
=
m111m001

m101m011
. (1.10)

Then m̂000 = exp λ̂ or, for the saturated model an estimate can easily
be derived from (3.9), namely

m̂010m̂001m̂100m̂111

m̂011m̂110m̂101
=
n010n001n100n111
n011n110n101

= m̂000. (1.11)

1.2.4 Assumptions

Capture-recapture methodology relies on at least five assumptions, how-
ever from the data it is not possible to verify whether they are met.
Therefore it is important to know the effect of violated assumptions on
the population size estimation. The five assumptions are:

1. Independence between the registers: for the two register case,
the registers are assumed to be independent in the sense that
the inclusion probability of register 1 is independent of the
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10 An application of population size estimation to official statistics

inclusion probability of register 2. For three registers, this as-
sumption is relaxed and it is only assumed that the three
factor interaction is zero, such that dependence between pairs
of registers may occur.

2. The registers are perfectly linked: when one unit is captured
in two or more registers, perfect linkage assumes that we cor-
rectly identify all of these units as recaptures. Perfect linkage
also means not linking units in two or more registers that do
not belong to the same person, and thus should not have been
linked.

3. The population is closed: for registers with continuous record-
ing such as a Population Register the population is closed
when one point in time is chosen. For incidence registers it
is wise to take a small sampling period to limit a possible
violation of the closed population assumption.

4. All individuals in the registers belong to the population, such
that there are no erroneous captures, and

5. Assumptions related to homogeneity of inclusion probabilities
(Van der Heijden et al., 2012).

Independence is the most researched assumption of capture-recapture
methodology. The assumption of independence between two registers is
very restrictive and can easily be violated. Under dependence between
registers the inclusion probability of one register is related to the in-
clusion probability of the other register. Under positive dependence, an
individual that is registered in register 1 has a higher probability of
also being registered in register 2, resulting in an underestimation of the
population size estimate. Similarly, under negative dependence, an in-
dividual in register 1 has a lower probability of also being registered in
register 2, resulting in an overestimation of the population size estimate
(Hook and Regal, 1993).

Capture-recapture methodology for human populations often makes
use of existing data sources or survey samples that already exist (i.e. they
are not created or collected with the aim to apply capture-recapture
methodology). In using such sources there needs to be identification on
every case in the data sources to achieve linkage. However, perfect linkage
may be a difficult process. Registers may contain errors, or an already
existing source is used that was not created for linkage, such that there
may be little or no variables available to accurately identify the cases.

When the assumption of no erroneous captures is met, all individu-
als in the sample belong to the population. When there are cases in the
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data sources that do not belong to the population, capture-recapture
analysis will estimate additional individuals that do not belong to the
population. An older overview of different models to handle coverage
errors in Censuses can be found in Wolter (1986a), more recent research
on handling erroneous captures can be found in Zhang (2015).

When a population is open, individuals migrate in and out of the
population during the sampling period. This migration during the sam-
pling period may bias the estimator, given the data may not accurately
describe the population. One way to keep the population ”as closed as
possible” is in using data sources that have units registered over a pe-
riod of time. One time point can then be chosen to assess from the
registers the number of individuals that are registered on that day. For
data sources that are incident based, in most cases a period of time has
to be chosen to get a decent sample of the population. This could be a
week, a month, six months, or a year, depending on known migration
flows and the amount of uncertainty the researcher is willing to take. The
longer the period chosen, the larger the size of the violation of closure
is likely to be. However, often, when the sampling period is taken too
small, there are not enough units in the sampling period to make a pre-
cise estimation of the missed part of the population. Capture-recapture
analysis has been applied to open populations and has been adapted to
accommodate open populations. An interesting overview can be found in
Chapter 17 of Lawless (2014), where also applications to data involving
humans are discussed.

Registers may have heterogeneous inclusion probabilities, for exam-
ple when the probability to include men is higher than the probability
to include women. If there is one source of heterogeneity, the population
size estimate is unbiased when at least for one of the two registers the
inclusion probabilities are homogeneous (Chao et al., 2001; Zwane and
Van der Heijden, 2007; Van der Heijden et al., 2012). If there is a source
of heterogeneity in each of two registers, the estimates are unbiased if
the inclusion probabilities of the two sources of heterogeneity are statis-
tically independent (Seber, 1982; Van der Heijden et al., 2012).
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1.3 Practical background information for this thesis

1.3.1 Census

Every 10 years, every European Union country provides a Census count
to Eurostat. Censuses were traditionally based on full field enumeration,
where information was collected using paper census forms (United Na-
tions Economic Commission for Europe , UNECE). Enumeration officials
would go from door to door to enumerate each individual or household
to interview via a paper Census form. However, full field enumeration is
expensive and time consuming. Some countries still using the traditional
Census forms, such as Estonia, have in part also used online forms for the
2011 Census round. Other countries such as the US, Australia and New
Zealand aim to incorporate online Census forms into their next Census
round.

The nordic countries were one of the first to start using adminis-
trative data for the Census, where Denmark was the first to use a fully
register-based Census in 1981 (United Nations Economic Commission
for Europe , UNECE). For the 2011 Census round, 9 of the UNECE re-
gion countries are using a full register-based Census, of which the Nether-
lands is one. The Netherlands have not used a full enumeration Census
since 1971 and now relies on administrative data and one survey for its
register based Census (Statistics Netherlands, 2015).

For the Dutch Census enumeration, the Population Register (PR)
is used, which for the 2011 Census round was still the Gemeentelijke Ba-
sisAdministratie (GBA, and is currently replaced by a BRP, Basis Reg-
istratie Personen). To assess the quality of the register an estimate of the
undercoverage is needed. For that purpose we can use capture-recapture
methodology. The method includes linking the individuals in the regis-
ters and subsequently estimating the number of individuals missed by
both registers.

There is literature going back to the 1940s under the title dual
system estimation or dual record systems using a two sample capture-
recapture method for the Census. In countries with a traditional Census,
a Post-Enumeration Survey (PES) could be organised to collect recap-
tured data, as was the case for instance in the United Kingdom (Brown
et al., 1999, 2006; ONS, 2012b), and in the US (Wolter, 1986a,b; Bell,
1993). An interesting overview of capture-recapture methodology on the
US Census and adjustment for Census undercount can be found in Fien-
berg (1992). It is of interest to note that there is a higher probability
that independence is met when linking a PES to the Census, rather than
using two registers. However, this is only the case when the Census in-
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dividuals or addresses are not used as a sampling frame.
Under Dutch regulations, every individual residing in the Nether-

lands for longer than four months, or is planning to do so, has to register
in the PR. Thus, the PR contains demographic information on the de
jure population, which differs from the ’de facto’ population that is de-
fined as the Dutch population which encompasses, but is not restricted to
the PR. This incompleteness of the PR has more than one reason. First,
within the European Union there is free movement and employment for
individuals with a European Union nationality, such that individuals
that have not registered themselves in the PR are legally residing in
the Netherlands but will be missing from the PR. Second, the PR is
incomplete due to undocumented immigrants, coming from outside the
European Union without a working or residence permit, in most cases,
formerly asylum seekers.

Assessing the undercoverage of a register asks for a definition of
the Dutch population. According to the United Nations Statistics Divi-
sion (2008, p. 102) Principles and Recommendations for Population and
Housing Censuses Rev.2, we can define the population of a European
country along the terms of usual residence:

”1.461. In general, ”usual residence” is defined for census purposes as
the place at which the person lives at the times of the census, and has
been there for some time or intends to stay there for some time”,

where usual residence is defined as:

”1.463. It is recommended that countries apply a threshold of 12 months
when considering place of usual residence according to one of the follow-
ing two criteria: (a) The place at which the person has lived continuously
for most of the last 12 months (that is, for at least six months and one
day), not including temporary absences for holidays or work assignments,
or intends to live for at least six months; (b) The place at which the per-
son has lived continuously for at least the last 12 months, not including
temporary absences for holidays or work assignments, or intends to live
for at least 12 months.”

The European Union generated similar definitions, which can be
found in Regulation (EU) No 1260/2013 of the European Parliament.
In the EU, usual residence is defined similar to 1.463.b of the United
Nations Statistics Division (2008, p. 102, 103), as:

”The place where a person normally spends the daily period of rest, re-
gardless of temporary absences for purposes of recreation, holidays, visits
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to friends and relatives, business, medical treatment or religious pilgrim-
age”.

An individual is considered a usual resident when they have lived in
the Netherlands for a continuous period of 12 months before the refer-
ence time, or if they arrived in the 12 months before the reference time
and intend to stay for at least a year. When these circumstances can
not be established, ”usual residence” means the place of registered resi-
dence. The registers used in this thesis may register a form of residence
duration based on registration date, but not on intent to stay. Intent to
stay is not commonly documented in registers, unless specifically asked.
Hence, in this thesis only a length of stay will be used to assess usual
residence instead of an intent to stay.

1.3.2 Data used

For the two register case, a Crime Suspects Registers (CSR) has been
linked to the Dutch Population Register (PR). The PR, registers date
of registration and date of death or immigration, such that it contains
a period in which a person is registered as residing in the Netherlands.
The CSR is an incidence register on suspects of known crimes. However
a case in the CSR is a report on a crime filed by the police, rather than
registering persons. Thus on a given day only a few reports may have
been filed and for the CSR we can not take one date to get the regis-
tered population. Rather, a period of time has to be used, in this case
of six months. The covariates used for the two register case have been
age, marital status or police region. The data used is either from 2007
or from 2009. In chapter 3 of this thesis the data used is from the PR
and CSR of the year 2010. The data are from different years because
over time, data became available from more recent years and the more
recent data was used.

For the remaining chapters in this thesis three registers have been
used. These registers are the PR and CSR with the addition of an Em-
ployment Register (ER). The ER is a register that does not document
individuals but jobs. For the purpose of our analyses the job-register
of 2010 has been transformed into a register on individuals. Jobs were
attributed to the individuals holding those jobs, so that the ER can be
transformed to a database on individuals. In the three register case we
used the covariates usual residence, sex, age and nationality.
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1.3.3 Linking the data

Two types of linkage have been used in this thesis to link the three
registers. Deterministic linkage considers two individuals in a pair of reg-
isters a link when they agree on a linkage key. An example of linkage keys
is a Personal Identification Number (PIN), or a combination of variables
such as address, date of birth, etc.

At statistics Netherlands all registers are linked deterministically to
the PR via a PIN and a linkage key. The PR is the backbone of Statis-
tics Netherlands, such that all registers and surveys are linked to the
PR. Linking other registers, of which also the ER and the CSR, to the
PR via a Dutch PIN, enables about 96 to 98 percent of the cases to be
linked to the PR. When a case has no PIN, the registers are linked on
postal code, house number, date of birth and sex. Then 93 to 95 percent
of individuals can be linked to the PR (Arts et al., 2000).

Small errors can be accounted for in deterministic linkage, such as
spelling errors or errors that occurred when the data was entered into
the register. However for those individuals in the ER and CSR that
were unable to be linked deterministically, either to one another or to
the PR, the information on the linkage key contained bigger errors that
made deterministic linkage difficult. To further improve upon determin-
istic linkage the individuals in the registers are also linked pairwise via
probabilistic linkage.

Fellegi and Sunter (1969) mathematically formalized probabilistic
linkage, where pairs of records are classified as either a link, a non-link
or possible links (Herzog et al., 2007). For probabilistic linkage, probable
links are created for all cases in a pair of registers. The probability of a
link is created for each possible pair on each element of the linkage key,
for example a string of variables, such that each pair results in a numer-
ical value of their similarity. This numerical value of their similarity is
called a weight (Herzog et al., 2007). A cut-off can be determined above
which weights the researcher considers each pair a link, a non-link or
a possible link. Probabilistic linkage enabled us to link the ER and the
CSR, and also remaining ER and CSR cases to the PR. However, during
linkage it was found that 37 % of the units that were registered in the
CSR had missing linkage key information and therefore were unable to
link to the PR and ER.

1.3.4 Usual Residence

One very important covariate in this thesis is usual residence. The United
Nations Statistics Division (2008) defines a country’s population along



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 16 — #38 i
i

i
i

i
i

16 An application of population size estimation to official statistics

the terms of usual residence, which is used in this thesis to estimate
the undercoverage of the Dutch PR. I only look at undercoverage of the
PR in this thesis, because over coverage is less than a problem. Bakker
(2009) estimated an over coverage of 31 thousand individuals.

Unfortunately, neither register has a measure of residence duration.
For two of the three registers residence duration can be deduced. The
PR has a registration date, the date at which either a person was born
into the Netherlands or immigrated into the Netherlands and was offi-
cially registered as a Dutch resident. Then the Census date minus the
registration date can be used as a residence duration. This residence du-
ration is in days and can be transformed into a categorical variable for
either residing in the Netherlands for shorter or longer than a year.

For the ER, the information available from which to deduce resi-
dence duration are the job lengths. The ER registers the start and end
date of jobs held by all individuals registered in the ER. When a person
had only one job, the start and end date of this job can be used as a
residence duration. When a person has held two or more consecutive or
overlapping jobs, these can be merged to one residence duration. There
were however individuals in the ER that had multiple jobs that were not
consecutive, where in between two jobs for a specific period of time, no
job was held. It is reasonable to assume that a specific period of time
between jobs will mean that the person still resided in the Netherlands
and was in between jobs at that time.

Because we do not know which period of time between jobs is rea-
sonable to assume that the person was still residing in the Netherlands,
different scenario’s were conducted to investigate the effect that differ-
ent periods of time allowed between jobs had on the number of usual
residents. From this analysis it was found that 31 days of unemployment
between two jobs was a reasonable time period to still consider two jobs
as one consecutive residence duration. When an individual leaves the
country for a maximum of a month between jobs it is more likely a hol-
iday, and even if the individual leaves to another country they are still
in the Netherlands for the remaining 11 months. Additionally, a month
of unemployment can financially be bridged. From the analysis it was
also found that allowing a larger period of unemployment increased the
number of usual residents rapidly, which was deemed unrealistic.

The CSR has no information on residence duration. Therefore, for
those individuals that did not link to the PR and the ER there is missing
information. In this PhD thesis, two ways of handling the missing usual
residents variable has been used. These two methods are the Expectation
Maximization (EM) algorithm and Predictive Mean Matching (PMM)
multiple imputation.
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1.4 Contribution of this thesis

The current thesis consists of four chapters all concerning capture-
recapture estimation on Dutch data. Sensitivity analyses and a simula-
tion study have been set up to assess the effect that violated assumptions
have on the population size estimation. Most interesting is the finding
that the effect of a violation of any assumption has on the bias of the
population size estimator is due to the implied coverage of the registers.
Additionally it was investigated which method best handles missing data
in capture-recapture methodology. The information that has been gained
from this research has been used in the second part of this thesis, where
we estimate the undercoverage of the Dutch PR.

1.4.1 Implied coverage

One overarching finding in this thesis is the effect of implied coverage on
the population size estimator. This finding will be discussed first. An im-
portant property of implied coverage is that it can be estimated from the
data, whereas it can not be ascertained from the data whether assump-
tions are met. Thus, implied coverage gives researchers an indication
whether their population size estimate will be robust under violations of
the assumptions of capture-recapture.

Under register 1 and 2, the maximum likelihood estimate of the
missed portion of the population can be estimated via equation (3.2).
Under (3.2) we can estimate conditional probabilities:

p̂(0|1) =
n01
n+1

and, p̂(1|1) =
n11
n+1

, (1.12)

where p̂(0|1) is the estimated probability of new cases provided by
register 2. Similarly, p̂(1|1) is the estimated probability that cases in
register 2 are already known in register 1. Given these probabilities we
can rewrite equation (3.2) as

m̂00 =
n10 ∗ p̂(0|1)

p̂(1|1)
=
n10 ∗ p̂(0|1)

1− p̂(0|1)
. (1.13)

It can be seen from equation (3.6) that the estimated number of
individuals missed by the two registers is a function of the estimated
probability of new cases added by register 2. When the estimated prob-
ability of new cases p̂(0|1) is relatively small, we say that the coverage
of register 1 implied by register 2 is high. This is further referred to
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as ”implied coverage”. However, when the estimated probability of new
cases p̂(0|1) is relatively large, then the coverage of the population by
register 1, implied by register 2 is low, such that register 2 captures a
relatively larger number of unique cases compared to register 1.

When the implied coverage is high, violations of the assumptions
will usually make minor modifications to p̂(0|1) and therefore will have
a small effect on the population size estimate. When implied coverage is
low, the population size estimation is less robust to possible violations
of the assumptions. This follows from (3.2).

Choosing which register is register 1 and which is register 2 depends
on the size of the registers used. The register containing most cases will
be denoted by register 1 and the smaller register will be denoted by
register 2.

Implied coverage for three registers

Implied coverage can be extended to the three register case. Assume
that register 1 covers most of the population, then register2 and then
register 3. For our purposes it suffices here to discuss coverage of reg-
isters 1 and 2 implied by the third register. For this purpose Equation
(5.2) is complicated, as n111, the number of cases seen in all three reg-
isters, is in the numerator. We focus on the observed counts n101, n011
and n001, i.e. the number of individuals seen only in register 3, i.e. n001,
compared to the individuals seen in register 3 and only in register 1, i.e.
n101, and compared to the individuals only seen in register 3 and only
in register 2, i.e. n011. We focus first on n001 and n101. Notice that these
counts refer to individuals missed by register 2. Therefore we will speak
of coverage conditional on being missed by register 2. Now, similar to the
discussion of implied coverage in a two-way table above, if n001 is large
in comparison to n101, the conditional coverage of register 1 implied by
register 3 is low, where conditional refers to being missed by register 2.
Thus the estimator in equation (5.2) becomes unstable when the num-
ber n001 becomes unstable. Similarly, for n001 and n011, if n001 is large
in comparison to n011, the conditional coverage of register 2 is low and
the estimator in equation (5.1) becomes unstable when the number n001
becomes unstable (where conditional refers to being missed by register
1. Anyhow, for all practical purposes it will be clear that when n001 is
large, the estimator defined in (5.2) will become unstable.
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1.4.2 Sensitivity of population size estimation for vio-
lating parametric assumptions in loglinear models

In chapter 2, the impact that mild or severe violations of (con-
ditional) independence have on the population size estimate is inves-
tigated. Out of the five assumptions discussed above, dependence in
capture-recapture analysis has been researched the most. Research to
the impact of the violation of independence usually involves simulation
studies, an already known population size estimate or multiple sources
(Wolter, 1986a; Hook and Regal, 1992; Bell, 1993; Hook and Regal, 1997;
Cormack et al., 2000; Hook and Regal, 2000; Baffour et al., 2013).

In this thesis an extension has been made from the work of
(Brown et al., 2006), who conducted sensitivity analyses to study
the effect of dependence on real data. The odds ratio under inde-
pendence is m00m11/m10m01 = 1. When independence is not met,
m00m11/m10m01 6= 1, and we are operating under dependence. We can
denote dependence using θ such that m00m11/m10m01 = θ 6= 1 and de-
pendence can be simulated. The maximum likelihood under dependence
of size θ can be estimated via

m̂00(θ) = θ
m̂10m̂01

m̂11
= θ

n10n01
n11

= θm̂00. (1.14)

The results from this chapter show that for two different na-
tionality groups, the population size estimate under dependence could
be fairly robust as well as not robust at all. For the Afghan, Iraqi and
Iranian people the population size estimate did not change much when
dependence was introduced; it also remained fairly robust whether or
not we assumed conditional independence on fully observed covariates.
However for the Polish people, the population size estimate changed dra-
matically when dependence was introduced, whether or not conditional
independence was assumed on fully observed covariates.

The difference between these nationality groups is that for the
Afghan, Iraqi and Iranian group, implied coverage is high, such that
the population size estimator is robust against dependence, whereas for
the Polish group, the implied coverage is rather low and the population
size estimator is not robust against dependence.

This chapter also investigated partially observed covariates. Re-
searchers are often faced with covariates that are only found in one
register. Such a covariate may be of high importance to the research
question. Usually these partially observed covariates are ignored. Re-
search had shown how partially observed covariates can still be used in
estimation (Zwane and Van der Heijden, 2007; Van der Heijden et al.,
2012), and in this chapter that work has been further elaborated. Depen-
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dence between the register and the partially observed covariate did not
impact the population size estimation much, concluding that the popu-
lation size estimator is robust against dependence between registers and
partially observed covariates.

1.4.3 The effects of imperfect linkage and erroneous
captures on the population size estimator

In chapter 3 the effect of violated assumptions on the population size es-
timate in capture-recapture analysis is further investigated. In the previ-
ous section the independence assumption was investigated; in this chap-
ter the effect of violation of the assumption of perfect linkage and no
erroneous captures will be investigated. The interest lies especially in
the effect that violations of these assumptions have on the population
size estimate and whether that effect is the result of implied coverage.
As far as we know, research into the effect of implied coverage on linkage
error and erroneous captures has not been done before.

First linkage error is discussed. Unfortunately, we can not verify
from the data to what extent the assumption of perfect linkage has been
violated. We can however investigate the effect of linkage error on the
population size estimate in a sensitivity analysis. Assume we have link-
age errors of size b, where b is the number of false positive links minus
the number of false negative links. Then b is negative when the num-
ber of false negative links outbalance the number of false positive links,
and b is positive when the number of false positive links outbalance the
number of false negative links. Under perfect linkage b = 0 for observed
values nij . Under linkage error b 6= 0, observed values are denoted ñij .
Then ñ11 = n11 + b, ñ10 = n10 − b and ñ01 = n01 − b.

To choose values of b we define linkage error rate β for n01. Link-
age error rate β has been chosen for n01 because n01 is the number of
added cases of register 2 relative to register 1, such that β is specified in
relation to the implied coverage of register 1 given register 2. Then,

β =
ñ01
n01

(1.15)

where β = 1 denotes perfect linkage. Linkage error rate β enables us
to simulate linkage error, where ñ01 = n01 ∗β. In creating such a linkage
error rate β we can denote linkage error in percentages, and by defining
linkage error in percentages we can better compare the effect of β on
the population size estimate between the two nationality groups. Then,
when m̃ij is the expected values related to ñij ,
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ˆ̃m10
ˆ̃m01

ˆ̃m11

=
ñ10ñ01
ñ11

=
(n10 − b)(n01 − b)

n11 + b
= m̂00(β), (1.16)

where m̂00(β) is the size of the individuals missed by the two regis-

ters. The population size estimate under linkage error is N̂β = m̂00(β) +
(n11 + b) + (n10 − b) + (n01 − b).

Second, we investigate the effect erroneous captures have on the
population size estimator. It is not always possible to verify from the
data whether cases are erroneous captures, but we can simulate erro-
neous captures to assess their effect on population size estimation. For
nij we assume no erroneous captures. If erroneous captures are intro-
duced, observed values under linkage error are n̄ij . We can define an erro-
neous capture rate γ for n01, where γ = n̄01/n01, such that n̄01 = n01∗γ.
Erroneous captures are units in the data that should not have been ob-
served, and therefore n̄01 will always be smaller than n01, and 0 ≤ γ ≤ 1.
Erroneous capture rate γ has been defined on n01 because that is the
number of added cases by register 2, relative to register 1, and is related
to the implied coverage. We find

m̂00(γ) =
n10(n01∗γ)

n11
=
n10(n̄01∗γ)

n11
= γm̂00, (1.17)

where m̂00 is the estimate when there are no erroneous captures de-
fined in (3.2).

Again two data sets are compared. The data of Afghan, Iraqi and
Iranian individuals residing in the Netherlands in 2010 are compared to
data of Polish individuals residing in the Netherlands in 2010. We com-
pare the same data as in the previous section, with the exception that
it is from another year. We have defined a general and flexible linkage
error rate and erroneous capture rate that can be specified to one linkage
error rate and erroneous capture rate that can be used for a sensitivity
analysis.

As in Chapter 2, for the Afghan Iraqi and Iranian individuals, the
population size estimator was relatively robust, whereas for the Polish
individuals the population size estimator was not robust at all to viola-
tions of assumptions. In this chapter it was found that implied coverage
of the registers is an important aspect in why some nationality groups
have a robust population size estimator and why some nationality groups
do not have a robust population size estimator. Implied coverage, as de-
scribed above, was found to be the determinant in whether violations
of perfect linkage and no erroneous captures have a large effect on the
population size estimator.

Additionally, an extension has been made to the three register
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case. To assess the effect of linkage error on the three register capture-
recapture estimation a simulation study has been conducted using the
same properties in the simulated registers as the actual data. The sim-
ulation study resulted in an indication where the most linkage errors
could be found, such that for the actual data this could be addressed.
The sensitivity analyses to the effect of linkage error and erroneous cap-
ture on the population size estimator showed the same result as for the
two register case. The population size estimator using three registers is
robust to possible violations of the assumptions for the Afghan, Iraqi
and Iranian individuals, but not for the Polish individuals.

1.4.4 Different methods to complete datasets used
for capture-recapture estimation: estimating the
number of usual residents in the Netherlands

Chapter 4 investigates which method is best to handle missing data in-
troduced by partially observed covariates. As discussed before, for the
Crime Suspects Register (CSR) there was no measure on usual residence.
However, to estimate the undercoverage of the PR we need an estimate
of the usual residents. Therefore, usual residence has to be completed
for the CSR.

There are different methods available to handle missing data. In
this chapter we use the Expectation Maximization (EM) algorithm and
Predictive Mean Matching (PMM). The EM algorithm is often used in
categorical data analysis, also in previous research concerning partially
observed covariates (Zwane and Van der Heijden, 2007; Van der Heijden
et al., 2012). PMM has the advantage of flexibility in the choice for a
specific part of the observed data that will be used for the imputation of
the missing data. Four scenarios have been identified where the missing
data are completed via either the EM algorithm or PMM imputation,
resulting in different population size estimates for usual residence. The
different scenarios lead to different population size estimates; even small
changes in the completed data lead to differences in plausibility of the
estimates. In this study PMM imputation performs better in terms of
flexibility and plausibility of the estimates.

1.4.5 Sensitivity of the population size estimates for
Census undercoverage

For countries using a register based Census, an estimate of the under-
coverage of the registers is important information, and is necessary when
estimating the number of usual residents for the Census. However, the
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PR only contains information on the registered population. Therefore,
the PR alone is not sufficient to estimate the number of usual residents.
This chapter documents the case of the Netherlands in estimating the
usual residents via capture-recapture methodology for the undercoverage
of the PR. This research builds upon the information gained from the
earlier chapters in this thesis, which is used to exemplify how researchers
can deal with practical challenges in the use of administrative data for
population size estimation.

A couple of challenges arose during the research process. It appeared
that neither register had a measure of usual residence, and additional
measures had to be taken to complete the incomplete usual residence
variable. Also, for each capture-recapture assumption extra measures
had been taken to make sure they were met as best as possible. How-
ever, it was found during the linkage process that 37% of the individuals
in the CSR that did not link to the PR and the ER had no, or incomplete,
linkage key information. It was uncertain whether these individuals be-
longed to the population, nor whether they still had to be linked to the
PR and/or ER. Therefore, different scenario’s have been set up where
different percentages of linkage error and erroneous captures were simu-
lated.

From these scenarios a range of the undercoverage of the PR is given.
The undercoverage of the PR ranges from 88 to 185 thousand usual res-
idents aged 15 to 65, which means that we have an undercoverage of
the PR of only .5 to 1.1 percent. Given that this undercoverage does
not include children up to the age of 15, and elderly over 65, the real
undercoverage will lie somewhat higher This overlapped with a range
based on previous research. Based on this research, the number of usual
residents is expected to lie between 175 and 225 thousand individuals.
Due to this overlap we expect that the estimate of the undercoverage
will most likely lie in the upper end of the range of 88 to 185 thousand
usual residents.

1.4.6 Overall conclusion

This thesis has provided new knowledge on capture-recapture method-
ology to answer the main questions posed in section 1. Question 1 asked
”what is the effect of violated assumptions and missing data on the
robustness of the estimation of population size estimation via capture-
recapture methodology?”. Capture-recapture methodology relies heavily
on a couple of assumptions. For three of these assumptions sensitivity
analyses have been conducted, i.e. the independence assumption, per-
fect linkage and no erroneous captures. To compare, we used data on
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two nationality groups: a group of individuals with an Afghan, Iraqi
and Iranian nationality and a group of Polish individuals. It was found
that implied coverage impacts the effect violated assumptions have on
the population size estimation. The difference in implied coverage of the
two nationality groups have the effect that for the individuals with an
Afghan, Iraqi and Iranian individuals the estimator is relatively robust
to violating the assumptions tested in this chapter. However for the Pol-
ish individuals a violation results in seriously biased results. This result
is important, because implied coverage can be estimated, whereas the
extent that assumptions may have been violated can not.

The second question asked ”how can the information gained in the
first question be used to achieve a trustworthy estimate of the under cov-
erage of usual residents in the Population Register at Statistics Nether-
lands”? A few examples are given in this thesis of possible practical
challenges and how it has been chosen to handle these. The most com-
mon challenge in the data is missing information. In chapter 2 of this
thesis it is shown that using the EM algorithm, partially observed co-
variates can still be used for capture-recapture estimation. We elaborate
on Zwane and Van der Heijden (2007) and Van der Heijden et al. (2012)
by investigating what would happen when there is dependence between
a partially observed covariate and the register. It has been shown in
this chapter that dependence between partially observed covariate and
register has little effect on the resulting population size estimate. Thus
the EM algorithm can be used without caution to estimate the missing
values of a partially observed covariate when these are missing in one
register.

In chapter 4 of this thesis missing data for covariates are further
discussed. Different scenario’s of missing data methods have been in-
vestigated to complete the missing covariate usual residence. For the
individuals in the CSR that did not link to the PR or the ER we had
no indication of their residence duration. Four scenarios were set up, of
which 3 used the EM algorithm under different loglinear models and one
scenario had Predictive Mean Matching (PMM) multiple imputation.
A slight advantage was found for PMM imputation, because it has the
flexibility of choosing which subgroup to use as donor information for
the missing data.

Chapter 5 uses the information gained from the earlier chapters to
estimate the undercoverage of the PR. The thesis concludes with two
overarching findings. First, implied coverage of the data is important.
The effect of whether a violated assumption has a large effect on the
population size estimator, or not, is a direct result of the implied cov-
erage. Therefore researchers are advised to assess the coverage of their
registers, given that implied coverage will dictate the effect possible vio-
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lations will have on the estimation. Second, the undercoverage of the PR
for individuals aged 15 - 65, will most likely be in the upper end of the
range of 88 to 185 thousand individuals, resulting in an undercoverage
of only 0.5 to 1.1%.

1.4.7 Future research

In this thesis the effect of violating three specific assumptions on the
population size estimator has been investigated. Two other assumptions
have not been studied, i.e. homogeneity and the closed population as-
sumption. It was found that implied coverage plays a role in the effect
that violation of the assumption has on the population size estimator,
and to complement the research from this thesis it would be interesting
to investigate the effect of heterogeneity and an open population.

Erroneous captures have been discussed in this thesis, and especially
the effect that erroneous captures can have on the population size estima-
tor. When individuals do not belong to the population but are observed
in the data, they will bias the population size estimator. Future research
should focus on better identifying individuals that do not belong to the
population such that they can be deleted before estimation. There are
few advances in this field, for one, the Trimmed Dual System Estimator
of Zhang and Dunne (2015) and Zhang (2015). They have developed a
method to estimate the number of the erroneous captures in the data.
Based on known information, the cases with the highest probability of
being an erroneous capture are removed. They assume that when the
population size estimate decreases, it means that the researcher cor-
rectly identified erroneous captures to be removed. According to them,
when the population size estimate goes up or flatlines, this indicates the
unit deleted belonged to the population and was not allowed to be re-
moved. They find it is important that cases are not deleted randomly.
This method has been applied to the Irish population data, and its per-
formance on the Dutch population should also be studied.

In administrative data, there are often errors that make record link-
age difficult. It was found that linkage errors can have a large biasing
effect on the population size estimator, and for future research it is ad-
vised to improve further upon linkage to reduce bias in the population
size estimates. An interesting advancement in record linkage research is
the research by Consiglio and Tuoto (2015). They adjust the Petersen
estimator by explicitly taking into account linkage errors. Their research
overcomes the limitations in the work by Ding and Fienberg (1994), who
proposed a method for unbiased estimates when there is linkage error.
By defining the probabilities of being counted in both lists, Consiglio
and Tuoto (2015) improved upon the Ding and Fienberg estimator. It
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would be interesting to implement their Modified Ding and Fienberg
(MDF) estimator on data by Statistics Netherlands, and also to extend
the MDF to the three register case.

Three registers have been used in this thesis, the PR, the ER and
the CSR. The PR is the Dutch population register and already covers
most of the population. The ER covers the working population and the
CSR can in theory cover the whole of the Dutch population, given that
every individual could be suspected of a crime. It may however be that
other registers cover the population better, or may be able to cover a
specific subpopulation especially missed by the other registers. It would
therefore be interesting to conduct capture-recapture analysis on other
datasources. It may be possible that data on healthcare or hospitals
have better coverage of the population than one of the currently used
registers. Every individual will need medical care and thus may end up
in such a register, which may improve heterogeneity if these individuals
are documented correctly. An interesting sample frame may be one with
addresses instead of persons such as the PR. Using an address register,
individuals may be found that are residing in the Netherlands but who
are not registered in the PR.

In this thesis no coverage rates were available. These were however
available in the research of Bryant and Graham (2015), where they used
a coverage survey to estimate coverage rates per regions. These coverage
rates were then added as an implicit weight to the model and improved
the population size estimator. Their research highlight the importance
of coverage surveys. For the Dutch case, it may be interesting to conduct
a coverage survey or use information from migration flows to improve
upon estimation.

Capture-recapture methodology is a useful method for Official
Statistics and improvements of the methodology will greatly aid in es-
timating the size of a countries population needed for the Census. This
thesis has investigated a couple of aspects of capture-recapture estima-
tion and covered some practical problems that may be found in applying
capture-recapture methodology to Official Statistics. Additionally, some
suggestions have been made for future research to improve further on
population size estimation.
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2.1 Introduction

For the Census of 2011 an increasing number of countries used admin-
istrative data to collect the necessary information. Under Census regu-
lations a quality report is obligatory, and one of the aspects that needs
to be addressed is the undercoverage of the Census data. This asks for
an estimate of the size of the population. If one wants to estimate the
size of a population, capture-recapture methods, making use of loglinear
models, are commonly used (Fienberg, 1972; Bishop et al., 1975; Cor-
mack, 1989; International Working Group for Disease Monitoring and
Forecasting, 1995). These methods go by different names, such as mark-
recapture, dual system methods or dual-record system methods. In this
paper we use the label capture-recapture. In countries with a traditional
Census a post-enumeration survey could be organised to collect recap-
tured data, as was the case for instance in the United Kingdom (Brown
et al., 1999; ONS, 2012b), and in the US (Wolter, 1986a; Bell, 1993;
Nirel and Glickman, 2009). In that case a survey with a relatively small
sample size is linked to the Census data. In countries with a Census
based on administrative data, the approach mostly used is to find two
registers and treating these as the captured and recaptured data. The
method includes linking the individuals in the registers and subsequently
estimating the number of individuals missed by both registers.

However, the outcome of the capture-recapture method depends
heavily on some assumptions underlying the data. In particular, if two
sources are used, it is usually assumed that inclusion in the captured data
is independent of inclusion in the recaptured data. A second assumption
deals with homogeneity versus heterogeneity of inclusion probabilities. If
there is one source of heterogeneity it is assumed that at least for one of
the two sources the inclusion probabilities are homogeneous (Chao et al.,
2001; Zwane and Van der Heijden, 2004). If there are two sources of het-
erogeneity (two covariates) the estimates are unbiased if the inclusion
probabilities of the first source vary with one source of heterogeneity,
and the inclusion probabilities of the second source vary with a second
source of heterogeneity, but the two sources of heterogeneity are statisti-
cally independent (Seber, 1982, p. 86). The remaining two assumptions
are that the population is closed and that the registers are perfectly
linked.

Under Coverage for their valuable comments and an anonymous reviewer for coining
the term implied coverage. Acknowledgement of author contributions: theoretical
development by all authors. Document written by SG, edited by PvdH and BB.
Analyses carried out by SG.
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The assumption of independence between two registers is very strict
and can easily be violated. Under dependence between registers the in-
clusion probability of one register is related to the inclusion probability
of the other register. Then, under positive dependence individuals in the
captured data have a higher probability of also being in the recaptured
data, resulting in an underestimation of the population size estimate.
Additionally, under negative dependence the opposite holds (Hook and
Regal, 1995).

Independence is an unverifiable assumption, i.e., it cannot be ver-
ified from the data used for the estimation of the population size. The
loglinear independence model for the linked captured and recaptured
data has three parameters whereas there are only three counts. Because
the observed counts are equal to fitted counts, the independence model
is the saturated model (compare, Van der Heijden et al., 2012). Thus
we cannot assess dependence from the saturated model. One way of re-
ducing the impact of the strict independence assumption is to replace it
with the lesser strict assumption of independence conditional on covari-
ates. Adding covariates enables us to reduce heterogeneity introduced
to the model due to the specific covariate, adjusting the population size
estimate for the better. The situation of a saturated model also holds
when covariates of individuals are taken into account and we operate un-
der the loglinear conditional independence model. Yet we are interested
in what the impact of mild or severe violations of (conditional) indepen-
dence is on the population size estimate. It does not necessarily have to
be the case that violation of the (conditional) independence assumption
results in a substantive bias in the population size estimate. It is of im-
portance to also assess what happens when the other assumptions are
violated. However, looking at all assumptions at once is very complex.
Thus in this paper we will focus on the violation of the independence
assumption, assuming all other assumptions to be met.

We propose a general approach to sensitivity analyses under the
loglinear model framework using a loglinear Poisson regression, a spe-
cial case of the generalized linear model. Where in the saturated model
specific interaction parameters are equal to zero, we impute fixed values
departing from zero for these parameters, thus simulating dependence,
and investigate the impact on the population size estimate. As the log-
linear interaction parameters are closely related to (conditional) odds
ratio, there is a clear interpretation for the values to which we fix the
parameters.

Similar findings come from the research of Brown et al. (1999) where
the Census was linked to a Post Enumeration Survey to assess under and
overcoverage (compare also, Wolter, 1986a; Bell, 1993). Brown et al.
(1999) used a fixed odds ratio of 0.1 and 10 to investigate the impact of
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simulated dependence on the population size estimate. They showed that
fixed dependence can seriously bias the population size estimate under
the independence assumption. Results like these are valuable since they
give insight to the size of the impact of violated independence. However,
research into the robustness of the population size estimator under viola-
tion of independence is non standard. As far as we know, other research
to the impact of the violation of independence involves simulation stud-
ies, an already known population size estimate or uses multiple sources
(Wolter, 1986a; Bell, 1993; Cormack et al., 2000; Hook and Regal, 1992,
1997, 2000; Brown et al., 2006; Baffour et al., 2013).

We extend the results of Brown et al. (1999) by, instead of using
the standard loglinear model, working under a loglinear Poisson regres-
sion where we simulate a fixed dependence using offsets. In simulating
dependence by adding a fixed offset value to the loglinear model we can
compare the population size estimate under independence to the popula-
tion size estimate under a ’true’ dependence. Additionally we extend our
two register independence model to the case with covariates observed in
both registers (fully observed covariates) and covariates observed in only
one register (partially observed covariates).

Partially observed covariates are usually ignored because including
them would lead to missing values in the other register. However ignoring
these covariates when they actually are related to the inclusion proba-
bility of the register results in a biased population size estimate (Zwane
and Van der Heijden, 2007). In assuming MAR we can impute the miss-
ing values of the partially observed covariate in the other register and
use this covariate to replace the strict independence assumption with
independence conditional on covariates. For partially observed covari-
ates the loglinear model is easily extendable so that we can also conduct
sensitivity analyses in this context.

We proceed as follows. In section two we will discuss the loglinear
model for a capture-recapture model with two registers without covari-
ates. In section three we will discuss a two register capture-recapture
model and conduct a sensitivity analysis on two registers with a condi-
tional independence. In section four the independence assumption will
be conditional on partially observed covariates, where a covariate has
been observed in only one register. Here the sensitivity analysis is on
the dependence of the partially observed covariate on the register, thus
whether the covariate influences the inclusion probability of the register.
Section five provides some extensions made to a model, namely for mod-
els for three registers, the multiplier method and confidence intervals.

We use two datasources to illustrate the robustness of capture-
recapture methodology, that have been provided by Statistics Nether-
lands. We chose not to make a simulation study because researchers in
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the field of capture-recapture use real data and we wanted to make the
impact of a possible dependence relevant to such researchers. The first
data source is the GBA (Gemeentelijke BasisAdministratie) which is the
official Dutch Population Register containing demographic information
on the de jure population. The de jure population differs from the de
facto population, the latter also containing residents who immigrated
from other countries of the European Union and did not register as
such, immigrants who (are planning to) stay shorter than four months
and illegal immigrants. An important part of the difference between the
de jure and the de facto population is the group of temporary workers
from eastern Europe, in particular Poland. The second datasource is the
HKS (HerKenningsdienst Systeem), which is a police register of all sus-
pects of known offenses. We refer the reader to Van der Heijden et al.
(2012) for more details on the registers.

2.2 Two registers without covariates

The simplest population size estimation model makes use of two reg-
isters, 1 and 2. Let variables A and B respectively denote inclusion in
registers 1 and 2. Let the levels of A be indexed by i (i = 0,1) where i = 0
stands for ”not included in register 1”, and i = 1, stands for ”included
in register 1”. Similarly, let the levels of B be indexed by j (j = 0, 1).
Expected values are denoted by mij . Observed values are denoted by
nij with n00 = 0, because there are no observations for the cases that
belong to the population but were not present in either of the registers.

Recall that one of the assumptions in population size estimation
is that the probability of being in the first register is independent of
the probability of being in the second register. Under independence the
loglinear model for the counts n01, n10 and n11 is:

logmij = λ+ λAi + λBj . (2.1)

where we used the identifying restrictions λA0 = λB0 = 0. There are two
ways to derive the estimate of the missed part of the population. First,
by m̂00 = exp(λ̂) and second, by using the property that the odds ratio
under independence is 1, i.e., m00m11/m10m01 = 1 so that:

m̂00 =
m̂10m̂01

m̂11
=
n10n01
n11

. (2.2)
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For the first way of estimating the missed portion of the population
we need an estimate of λ in (3.1). There are several ways to estimate the
parameters in (3.1), and it suits our purposes later on to use the gen-
eralized linear model. We assume that nij follow a Poisson distribution;
a log link connects the expected values mij to the linear predictor. In
terms of matrices and vectors we get

log

m11

m10

m01

 =

1 1 1
1 1 0
1 0 1

 λ
λA1
λB1

 (2.3)

where the right-hand side of (2.3) leads to a vector with elements
[λ + λA1 + λB1 , λ + λA1 , λ + λB1 ]. Thus the estimates of λ, λA1 and λB1
will get us estimates m̂11, m̂10 and m̂01 of which also the missed portion
of the population m̂00 is found by log (m̂00) = λ̂, so that m̂00 = exp(λ̂).

However, the problem with using the independence model is that
independence is an unverifiable assumption, that is, we can not verify
independence from the data. Thus the Poisson loglinear model for in-
dependence works under the assumption that the interaction parameter
λABij = 0. As noted before, this assumption could be violated and the
population size estimate under independence may well be inaccurate.
We are interested in what happens to the population size estimate when
we assume independence when actually the inclusion probabilities of in-
clusion in registers A and B are dependent.

The approach we advocate is to include a fixed interaction parame-
ter λ̃ABij in the model, where tilde indicates that the interaction param-

eter is not estimated but fixed. By choosing interesting values for λ̃ABij
we can conduct a sensitivity analysis on the population size estimate.
The loglinear model then becomes:

logmij = λ+ λAi + λBj + λ̃ABij . (2.4)

where we used the identifying restrictions λ̃AB00 = λ̃AB10 = λ̃AB01 = 0. In
matrix terms we get:

log

m11

m10

m01

 =

1 1 1 1
1 1 0 0
1 0 1 0




λ
λA1
λB1
λ̃AB11

 (2.5)

The loglinear model for independence is a special case of this satu-
rated model when λABij = λ̃ABij = 0. Dependence can be introduced to

loglinear models by fixing λ̃ABij to anything but 0. In software for Pois-

son regression, model (2.4) and (2.5) can be fit by entering λ̃ABij as a so
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called offset. When λ̃ABij 6= 0, λ̂ in (2.5) differs from λ̂ in (2.3).

Note that interesting values for λ̃ABij can be chosen using a direct

relationship between λABij and the odds ratio θ, which is:

θ =
m11m00

m10m01
= exp λ̃AB11 . (2.6)

Using the Poisson loglinear model with an offset is a general approach
for carrying out a sensitivity analysis. The approach is general in the
sense that it can be applied in more complicated loglinear models, for
example when it is desirable to investigate violations of more than one
assumption simultaneously (compare models discussed in section 4.2).
For completeness we also discuss a second method that is simpler but
less general.

The second way of estimating the missed portion of the population
is in using odds ratios directly, as has been done in Brown et al. (1999).
We show this second way to give a full overview of the method. Also
this provides for simpler notation that we will use in the rest of the
paper. Under independence the odds ratio m11m00/m10m01 = 1, and
by rewriting and replacing the expected values with observed values, we
get maximum likelihood estimate (3.2). We can impute dependence by
making the odds ratio θ 6= 1. Thus θ = m11m00/m10m01, and

m̂00(θ) = θ
m̂10m̂01

m̂11
= θ

n10n01
n11

= θm̂00. (2.7)

Note that m̂00(θ) can be found simply by multiplying the estimate un-
der independence, m̂00, with θ. Both approaches, the loglinear Poisson
regression with an offset and the odds ratio, yield the same m̂00. We
will use the odds ratio to denote dependence as it provides a simpler
notation than the interaction parameter λ̃ABij .

The methods just described allow us to study the impact of a
violation of the independence assumption as a function of θ. To get
the population size estimate, let n be the total of observed cases,
n = n01 + n10 + n11, let N̂ be the population size estimated under
θ = 1, thus N̂ = n + m̂00, and define N̂(θ) as the estimated population

size under dependence of size θ, N̂(θ) = n+m̂00(θ) = n+θm̂00. It follows

that under negative dependence (i.e. θ < 1), N̂ will be an overestimation
compared to N̂(θ) and under a positive dependence (i.e. θ > 1), N̂ will

be an underestimation compared to N̂(θ). The bias will be smaller the
closer θ is to 1.

Assume that A has a better coverage of the population than B.
Then, when n11/(n11 + n01) is high the observed coverage is high, and
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vice versa. Brown et al. (2006) showed that as the observed coverage
increases, the number of individuals that are missed by A reduces and
n11/n10n01 increases so that n10n01/n11 = m̂00 decreases. Then, the im-
plied coverage of A is high, so that m̂00 is reasonably robust to depen-
dence. When the observed coverage decreases, the number of individuals
missed by A increases and n11/n10n01 decreases. Then the implied cov-
erage of A will be low, so that m̂00 is less robust to dependence.

To illustrate, we use two registers of Statistics Netherlands, the GBA
and the HKS, on people with an Afghan, Iranian or Iraqi (AII) nation-
ality living in the Netherlands in 2007 (shown in Table 3.2; Van der
Heijden et al., 2012), and on people with a Polish nationality living in
the Netherlands in 2009 (shown in Table 3.2; Van der Heijden et al.,
2011).

TABLE 2.1
The observed values for the two nationalities, with the Afghan, Iraqi and
Iranian people residing in the Netherlands in 2007 on the left, and the
Polish people residing in the Netherlands in 2009 on the right.

HKS
GBA 1 0

1 1,085 26,254
0 255 -

HKS
GBA 1 0

1 374 39,488
0 1,445 -

For the people with an Afghan, Iraqi and Iranian nationality m̂00 =
6, 170 under independence between A and B. The population size esti-
mated under θ = 1 becomes N̂ = 27, 594+6, 170 = 33, 764. Then, under
dependence between A and B the estimated population size becomes
N̂(θ) = 27, 594 + (θ ∗ 6, 170), see (2.7).

To investigate the robustness of the estimate under dependence we
vary θ from 0.5 to 2. In the loglinear Poisson regression approach this
corresponds to using offsets varying between log(0.5) and log(2). Ta-
ble 2.2 shows m̂00(θ), the population size estimate N̂(θ), the estimated

relative bias N̂/N̂(θ) and the bootstrapped standard error (se) of the es-
timate for both nationalities (details about the parametric bootstrap are
provided in section 5.3). As can be seen from the upper panel of Table
2.2, for the people with an Afghan, Iraqi and Iranian nationality under a
dependence of θ = 0.5, the estimate m̂00(θ) is half the size of the popula-
tion size estimate under independence, and for a dependence of θ = 2 the
estimate m̂00 is twice the size of the population size estimate under in-
dependence. If in the population the registers are dependent with a true
size θ, the population size estimate under independence varies between a
10 percent overestimation and a 15 percent underestimation. Thus when
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the true θ 6= 1 our population size estimate under independence remains
fairly accurate.

However, for the Polish people the population size estimate under
dependence is not robust. As can be seen from the lower panel of Table
2.2, if in the population the registers are dependent with a true size θ,
the population size estimate under independence deviates between a 65
percent overestimation and 44 percent underestimation. Thus when the
true θ 6= 1 the population size estimate under independence for the Pol-
ish people is not robust.

The most important reason that the population size estimate de-
viates this much is because the implied coverage of the people with an
Afghan, Iraqi and Iranian nationality is smaller than for the individuals
with a Polish nationality. For example, 1,085 is 1, 085/(1, 085 + 255) =
0.81, thus 81 percent of implied coverage of the GBA measured by the
HKS. Whereas for the individuals with a Polish nationality the implied
coverage of the GBA is only 21 percent, confirming the research by
Brown et al. (2006) that as the observed coverage increases the implied
coverage increases and thus the population size estimate is more robust
against dependence.

The estimated standard error of N̂(θ) is mainly determined by the
size of m̂00(θ), and this explains the sharp rise of the standard error
from θ = .50 to θ = 2.00 and the difference in standard error between
the individuals with an Afghan, Iraqi and Iranian nationality and the
individuals with a Polish nationality.

TABLE 2.2
Sensitivity analysis of the population size estimate for the people residing
in the Netherlands in 2007 with an Afghan, Iraqi and Iranian nationality
(upper panel) and for people with a Polish nationality in 2009 (lower
panel).

Odds Ratio
0.50 0.67 1.00 1.50 2.00

AII m̂00(θ) 3,085 4,114 6,170 9,255 12,341

N̂(θ) 30,679 31,708 33,764 36,849 39,935

N̂/N̂(θ) 1.10 1.06 1.00 0.92 0.85
Se 223 293 441 647 864

Polish m̂00(θ) 76,284 101,712 152,567 228,851 305,135

N̂(θ) 117,591 143,019 193,874 270,158 346,442

N̂/N̂(θ) 1.65 1.36 1.00 0.72 0.56
Se 4,473 6,024 8,787 13,630 17,866
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2.3 Two registers with fully observed covariates

Covariates were first introduced to capture-recapture by Alho (1990) to
reduce the heterogeneity resulting from individual differences on that
covariate. As such, if covariates are available, the generally non-feasible
independence assumption can be replaced with a less strict conditional
independence assumption, where independence is conditional on covari-
ates (Bishop et al., 1975; Van der Heijden et al., 2012). This assumption
is less stringent because it can take into account inclusion probabilities
that are heterogeneous over the levels of the included covariate. Another
advantage of using covariates is that it allows us to investigate the char-
acteristics of the missing portion of the population.

Suppose we have observed covariate X, where the levels of X are
indexed by x, (x = 0, 1). Under independence conditional on X there are
two zero counts for cases not found in either register, namely for x = 0
and for x = 1. Let mijx denote the expected values for A, B and X. The
loglinear model for independence for two registers and covariate X is:

logmijx = λ+ λAi + λBj + λXx + λAXix + λBXjx , (2.8)

with identifying restrictions that a parameter equals zero when i or j or
x = 0. When assuming independence between A and B conditional on X,
λABij = λABXijx = 0. We use the notation of Bishop et al. (1975) to denote
hierarchical loglinear models, i.e. we denote this model as [AX][BX].

In section 2 we discussed two ways to estimate population sizes in
a sensitivity analysis, namely one using an offset in a Poisson loglinear
model and another using odds ratios directly. Here we only discuss the
first way as it is more general. We assume that nijx follow a Poisson dis-
tribution and a log link connects the expected value mijx to the linear
predictor.

It is important to note that also in this context sensitivity analyses
are useful for assessing the impact of assumptions that are not verifi-
able from the data under study. Here conditional independence is the
unverifiable assumption since model [AX][BX] is the saturated model.
In contrast, model violations for more restricted models are verifiable in
the data, for example for a model such as [A][BX]. Hence, the impact
of interaction between A and X does not have to be investigated via a
sensitivity analysis. However, when there may be dependence between
A and B a sensitivity analysis is useful.

We model dependence in the data by adding fixed parameters
λ̃ABij + λ̃ABXijx to model 2.8. We again work under the saturated model,
as the number of parameters to be estimated is equal to the number of
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observed parameters:

logmijx = λ+ λAi + λBj + λXx + λAXix + λBXjx + λ̃ABij + λ̃ABXijx , (2.9)

with the additional restrictions that parameters λ̃ABij and λ̃ABXijx equal
zero when i or j or x = 0.

Under dependence between A and B given X, the association be-
tween the odds ratio θx and the loglinear parameters is:

θx =
m11xm00x

m10xm01x
= exp(λ̃AB11 + λ̃ABX11x ). (2.10)

When we assume that dependence for x = 0 is identical to dependence
for x = 1, then:

θ =
m110m000

m100m010
=
m111m001

m101m011
= exp(λ̃AB11 ). (2.11)

We estimate (2.9) using loglinear Poisson regression with for cell (1,1,0)

the offset λ̃AB11 and for cell (1,1,1) the offset λ̃AB11 + λ̃ABX111 . After estimat-
ing (2.9), estimates for the missed portions of the population are found

by m̂000 = exp(λ̂) and m̂001 = exp (λ̂+ λ̂X1 ).
Table 2.3 shows the data for the Afghan, Iraqi and Iranian peo-

ple distributed over males (x = 0) and females (x = 1). Under condi-
tional independence m̂000 = 3, 583 and m̂001 = 2, 113. Taken together
both registers missed 5,696 cases. Note that, conditional independence
does not imply marginal independence under model [AX][BX], since the
marginal odds ratio 1, 085 ∗ 5, 696/26, 254 ∗ 255 = 0.92, and hence shows
dependence (under marginal independence it would be equal to 1).

TABLE 2.3
The observed values for the Afghan, Iraqi and Iranian people, on the left
panel the males and on the right panel the females.

HKS
GBA 1 0

1 972 14,883
0 234 -

HKS
GBA 1 0

1 113 11,371
0 21 -

We estimate the parameters in (2.9) with a Poisson regression with

λ̃ABXijx = 0, so that the odds ratio of the males equals the odds ratio of
the females (compare (2.11)). The upper panel of Table 2.5 shows the
results of the sensitivity analysis for the people with an Afghan, Iraqi
and Iranian nationality in 2007 and the covariate gender. If in the pop-
ulation the registers are dependent with a true size θ, the population
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TABLE 2.4
The observed values for the Polish people, on the left panel the males
and on the right panel the females.

HKS
GBA 1 0

1 313 19,152
0 1,349 -

HKS
GBA 1 0

1 61 20,336
0 96 -

size estimate under independence varies between a 9 percent overesti-
mation to a 15 percent underestimation. As m̂00(θ) is relatively small,
the standard error is relatively small. Thus when the true θ = 0.5 but we
estimate under θ = 1 the population size estimate under independence
is fairly robust.
For the people residing in the Netherlands with a Polish nationality in

TABLE 2.5
Sensitivity analysis for the people with an Afghan, Iraqi and Iranian
(AII) nationality residing in the Netherlands in 2007 (upper panel), and
the people with a Polish nationality residing in the Netherlands in 2009
(lower panel), conditional on gender.

Odds Ratio
0.50 0.67 1.00 1.50 2.00

AII m̂00 2,848 3,797 5,696 8,544 11,392

N̂(θ) 30,442 31,391 33,290 36,138 38,986

N̂/N̂(θ) 1.09 1.06 1.00 0.92 0.85
Se 292 390 576 863 1144

Polish m̂00 57,274 76,365 114,548 171,821 229,095

N̂(θ) 98,581 117,672 155,855 213,128 270,402

N̂/N̂(θ) 1.58 1.32 1.00 0.73 0.58
Se 3,814 5,088 7450 11,465 15,135

2009 the covariate gender is also used. Under conditional independence
the estimate m̂00x = 144, 548. The lower panel of Table 2.5 shows the
sensitivity analysis of the population size estimator under conditional
independence. If in the population the registers are dependent with a
true size θ, the population size estimate under independence ranged be-
tween a 58 percent overestimation and a 42 percent underestimation.
Thus when the true θ 6= 1 the population size estimate deviates greatly
from the population size estimate under θ = 1, indicating that for this
dataset the population size estimate under independence is not robust.

We note that this example is using a covariate with only two lev-
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els. One can easily extend this to covariates with more levels. Assume
covariate W has three levels, where the levels of W are indexed by w,
(w = 0, 1, 2). Then there are three zero counts, namely for w = 0, w = 1
and w = 2. One can estimate the zero counts using equation (2.10),
where estimates for the missed portions of the population are found by
m̂000 = exp(λ̂) and m̂001 = exp (λ̂+ λ̂W1 ) and m̂002 = exp (λ̂+ λ̂W2 ).

2.4 Two registers with partially observed covariates

In section 3 we have used covariates that are present in both registers
(fully observed covariates) to replace the strict independence assumption
with an independence assumption conditional on covariates. However, a
register usually also has a set of variables that are only measured in
one register and not in the other register (partially observed covariates).
Partially observed covariates in A are usually ignored because including
them leads to missing data in B for those individuals that are not in A,
and vice versa. When these covariates are related to the inclusion prob-
ability, ignoring the partially observed covariates can lead to a biased
population size estimate (Zwane and Van der Heijden, 2007; Van der
Heijden et al., 2012).

2.4.1 Partially observed covariates

Partially observed covariates can be approached as a missing data
problem (Zwane and Van der Heijden, 2007). If we assume a Miss-
ing At Random (MAR) mechanism for the data, then we can use the
Expectation-Maximization (EM) algorithm to estimate the missing val-
ues of the partially observed covariate of register A (and B) for the in-
dividuals not present in A (and B). MAR assumes that the probability
of missingness depends only on the observed variables in the capture-
recapture model (Little and Rubin, 2002). When the assumption of MAR
has been satisfied the EM algorithm will give unbiased estimates.

Suppose register A has the covariate X1, indexed by k(k = 0, 1),
where the values for X1 are missing for A = 0 because X1 is not in
register B. Assume that register B has the covariate X2, indexed by
l(l = 0, 1), where the values for X2 are missing for B = 0 because X2 is
not in register A. The loglinear conditional independence model for two
registers, with two partially observed covariates X1 and X2, is denoted



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 40 — #62 i
i

i
i

i
i

40 An application of population size estimation to official statistics

as

logmijkl = λ+ λAi + λBj + λX1

k + λX2

l + λAX2

il + λBX1

jk + λX1X2

kl , (2.12)

with identifying restrictions λABij = λAX1

ik = λBX2

jl = λABX1

ijk = λABX2

ijl =

λABX1X2

ijkl = 0. The conditional independence model is denoted by

[AX2][BX1][X1X2]. Inclusion of the parameter λAX2

il instead of the pa-

rameter λAX1

ik may seem counterintuitive but an interaction for A and
X1 cannot be identified as the levels of X1 do not vary over individuals
for which A = 0, and similarly for B and X2 (Zwane and Van der Heij-
den, 2007).
Table 2.6 illustrates that two registers with two covariates lead to

TABLE 2.6
Expected values for two registers and two partially observed covariates.

B = 1 B = 0
X2 = 1 X2 = 0 X2 = 1 X2 = 0

A = 1 X1 = 1 m1111 m1110 m1011 m1010

X1 = 0 m1101 m1100 m1001 m1000

A = 0 X1 = 1 m0111 m0110 m0011 m0010

X1 = 0 m0101 m0100 m0001 m0000

16 cells. However, because our covariates are only partially observed,
columns X2 = 1 and X2 = 0 for B = 0 are collapsed, just as rows X1 = 1
and X1 = 0 for A = 0 are collapsed. In other words, we do not observe
counts for m0111 and m0101 but only one count for the sum m0111+m0101,
and similarly for m0110 +m0100, m1011 +m1010 and m1001 +m1000. Note
that we have no observed values for m0011, m0001, m0010 and m0000, as
these refer to individuals who are in neither of the registers. Thus model
[AX2][BX1][X1X2] is saturated with eight observed values and eight pa-
rameters to be estimated.

Using the EM algorithm we first estimate the four missing cells,
i.e. the cells that are missing because the covariates are only partially
observed. In the E-step we spread out the four sums m0111 + m0101,
m0110 + m0100, m1011 + m1010 and m1001 + m1000 over the eight cells
to get an expectation for the missing data. In the M-step we estimate
loglinear model (2.12) to the completed table of 12 cells. For estimation
we assume that the 12 counts follow a Poisson distribution and a log
link connects the expected counts to the linear predictor. The resulting
estimates are then used for the E-step where in the M-step, following
(2.12), we estimate the parameters again.

To illustrate we use again the data on the people with an Afghan,
Iraqi and Iranian nationality residing in the Netherlands in 2007 with
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two partially observed covariates (Van der Heijden et al., 2012). The
GBA has the partially observed covariate marital status (X1), where
X1 = 1 denotes either being married or living together and X1 = 0 de-
notes either unmarried, divorced or widowed. The HKS has the partially
observed covariate police region (X2), where X2 = 1 denotes residing in
one of the 5 biggest cities of the Netherlands (i.e. Amsterdam, Rotter-
dam, Utrecht, The Hague and Eindhoven) and X2 = 0 denotes residing
in the rest of the country.

Due to the loglinear model used the first four observed values remain
unchanged for each iteration (for GBA = 1 and HKS = 1). The upper
panel of Table 2.7 shows the observed counts and the lower panel of Ta-
ble 2.7 shows the fitted counts after convergence of the EM-algorithm.
As an example, the observed value of 91 (for X2 = 1, where X1 val-
ues are missing under GBA = 0) is spread out into the values 64 for
X1 = 1 and 27 for X1 = 0. After convergence the unobserved part of
the population is estimated. In total, we estimate that there were 33,770
individuals with an Afghan, Iraqi and Iranian nationality residing in the
Netherlands in 2007.

TABLE 2.7
Data for the Afghan, Iraqi and Iranian people residing in the Netherlands
in 2007, spread out over the partially observed covariates Marital status
X1 and Police region X2

Panel 1: The observed counts
HKS = 1 HKS = 0

X2 = 1 X2 = 0 X2 missing
GBA = 1 X1 = 1 259 539 13,898

X1 = 0 110 177 12,356
GBA = 0 X1 missing 91 164 -

Panel 2: The fitted frequencies
HKS = 1 HKS = 0

X2 = 1 X2 = 0 X2 = 1 X2 = 0
GBA = 1 X1 = 1 259 539 4,511 9,387

X1 = 0 110 177 4,736 7,620
GBA = 0 X1 = 1 64 123 1,112 2,150

X1 = 0 27 41 1,168 1,745
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2.4.2 Sensitivity analyses

We again make use of a sensitivity analysis to investigate the unverifiable
assumption of independence conditional on partially observed covariates.
Model violations for more restricted models are verifiable in the data.
For example, using a model such as [AX2][BX1] allows us to investigate
absence of interaction λX1X2

kl in the data. Thus the impact of an interac-
tion between X1 and X2 does not need to be investigated via a sensitivity
analysis. However in this context (2.12) is the saturated model and there-
fore model violations such as dependence between A and X1, between
B and X2, and between A and B are unverifiable, rendering it useful to
conduct a sensitivity analysis. Note that in the previous paragraphs we
have used a sensitivity analysis to assess the interaction between the two
registers. In this paragraph we assess not only the interaction between
A and B, but also the interaction between the register and its partially
observed covariate. To exemplify, we introduce an interaction parameter
that simulates dependence between the GBA and marital status. Such
a dependence would imply that marital status influences the inclusion
probability of being in the GBA.

The loglinear model for an interaction between A and B would be:

logmijkl = λ+λAi +λBj +λX1

k +λX2

l +λAX2

il +λBX1

jk +λX1X2

kl +λ̃ABij , (2.13)

with additional identifying restrictions that λ̃ABij = 0 when i or j equals

0. Here exp(λ̃ABij ) is the conditional odds ratio for the interaction be-
tween A and B.

Assume the partially observed covariate marital status is related
to the inclusion probability of the GBA, thus λAX1

ik 6= 0. Because the
interaction between A and X1 is unverifiable from the data the fixed pa-
rameter λ̃AX1

ik has been added to the loglinear model (2.12). We continue
to work under the saturated model:

logmijkl = λ+λAi +λBj +λX1

k +λX2

l +λAX2

il +λBX1

jk +λX1X2

kl +λ̃AX1

ik , (2.14)

with additional identifying restrictions that λ̃AX1

ik = 0 when i or k equals
0. The same can be done for the interaction between B and X2. When
the partially observed covariate X2 is related to the inclusion probability
of register B, λBX2

jl 6= 0. We add fixed parameter λ̃BX2

jl to the loglinear
model. The loglinear model then becomes:

logmijkl = λ+λAi +λBj +λX1

k +λX2

l +λAX2

il +λBX1

jk +λX1X2

kl +λ̃BX2

jl , (2.15)

with additional identifying restrictions that λ̃BX2

jl = 0 when j or l equals
0. We can estimate (2.13), (2.14) and (2.15) via Poisson regressions
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TABLE 2.8
Sensitivity analysis of the population size estimate for the people residing
in the Netherlands in 2007 with an Afghan, Iraqi and Iranian nationality
with the interaction A and X1 (upper panel) and the interaction between
B and X2 (lower panel).

Odds Ratio
0.50 0.67 1.00 1.50 2.00

AB m̂00(θ) 3.088 4,117 6,176 9,264 12,352

N̂(θ) 30.682 31,711 33,770 36,858 39,946

N̂/N̂(θ) 1.10 1.06 1.00 0.92 0.85
AX1 m̂00(θ) 5,443 5,711 6,176 6,736 7,179

N̂(θ) 33,037 33,305 33,770 34,330 34,773

N̂/N̂(θ) 1.0222 1.0140 1.00 0.9837 0.9711
BX2 m̂00(θ) 6,253 6,220 6,176 6,136 6,112

N̂(θ) 33,847 33,814 33,770 33,730 33,706

N̂/N̂(θ) 0.9977 0.9987 1.00 1.0012 1.0019

with offsets. Do note that in modeling these relationships we have to
fix the offset variable on a log scale. Then we can estimate the por-
tions of the population that both registers have missed by m̂0000 =
exp(λ̂), m̂0010 = exp(λ̂ + λ̂X1

1 ), m̂0001 = exp(λ̂ + λ̂X2
1 ) and m̂0011 =

exp(λ̂+ λ̂X1
1 + λ̂X2

1 + λ̂X1X2
11 ).

The upper panel of Table 2.8 shows the sensitivity analysis for the
interaction between A and B, the middle panel shows the sensitivity
analysis for the interaction between A and X1 and the lower panel shows
the sensitivity analysis for the interaction between B and X2 for the
Afghan, Iraqi and Iranian people. As can be seen, for the interaction
between A and B, the relative bias is similar to the bias found in Tables
2.2 and 2.5. If in the population the GBA and marital status are de-
pendent with a true size θ, the estimation under independence deviates
between a 2.22 percent overestimation to a 2.89 percent underestimation,
and the estimation under independence between the HKS and police re-
gion deviates between a 0.23 percent underestimation and a 0.19 percent
overestimation. Thus for the interactions AX1 and BX2, when the true
θ 6= 1, the population size estimate under independence remains fairly
robust.

We have done the same for the people with a Polish nationality re-
siding in the Netherlands in 2009. The observed values are shown in
the upper panel of Table 2.9 and the expected frequencies are shown in
the lower panel of Table 2.9. Again a sensitivity analysis has been con-
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ducted, which is shown in Table 2.10. Just as with the individuals with an
Afghan, Iraqi and Iranian nationality the estimates and thus the relative
bias under dependence between A and B remains unchanged (compare
Tables (2.2) and (2.5)). If in the population the GBA and marital sta-
tus are dependent with a true size θ, the population size estimate under
independence ranges from a 7 percent overestimation to a 9 percent un-
derestimation (upper panel). The estimate under independence between
the HKS and police region deviates from a 2 percent underestimation to
a 2 percent overestimation (lower panel). Thus when the true θ 6= 1, the
population size estimate under independence remains fairly robust.

Under the use of partially observed covariates it becomes clear why

TABLE 2.9
The observed counts for the people with a Polish nationality residing in
the Netherlands in 2009 (upper panel) and the fitted frequencies spread
out over the partially observed covariates (lower panel).

Panel 1: The observed counts
HKS = 1 HKS = 0

X2 = 1 X2 = 0 X2 missing
GBA = 1 X1 = 1 111 188 25,416

X1 = 2 32 43 14,072
GBA = 0 X1 = 1 603 842

Panel 2: The fitted frequencies
HKS = 1 HKS = 0

X2 = 1 X2 = 0 X2 = 1 X2 = 0
GBA = 1 X1 = 1 111 188 9,435 15,981

X1 = 2 32 43 6,004 8,068
GBA = 0 X1 = 1 468 685 39,787 58,250

X1 = 2 135 157 25,318 29,408

the loglinear Poisson regression provides a more general approach than
using odds ratios to implement the sensitivity analyses. In using loglin-
ear Poisson regression the process becomes vastly simpler, in that the
offset can be set to any number per cell. When multiple different offsets
are in use, the loglinear Poisson regression allows for this complexity,
whereas implementing odds ratios may become gruesome.
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TABLE 2.10
Sensitivity analysis of the population size estimate for the the people
residing in the Netherlands in 2009 with a Polish nationality with the
interaction between A and X1 (upper panel) and the interaction between
B and X2 (lower panel).

Odds Ratio
0.50 0.67 1.00 1.50 2.00

AB m̂00(θ) 76,381 101,842 152,762 229,143 305,524

N̂(θ) 117,688 143,149 194,069 270,450 346,832

N̂/N̂(θ) 1.65 1.36 1.00 0.71 0.56
AX1 m̂00(θ) 139,494 144,238 152,762 163,584 172,582

N̂(θ) 180,801 185,545 194,069 204,891 213,889

N̂/N̂(θ) 1.07 1.05 1.00 0.95 0.91
BX2 m̂00(θ) 156,616 155,004 152,762 150,707 149,429

N̂(θ) 197,923 196,311 194,069 192,014 190,736

N̂/N̂(θ) 0.98 0.99 1.00 1.01 1.02

2.5 Miscellany

2.5.1 Extension to multiple sources

One way to make the impact of possible violations of the independence
assumption less severe is by conditioning on covariates, as we have seen
in section 3 and 4. Another way to make the impact of possible violations
of the independence assumption less severe is by adding registers, when
more registers are available (compare, Baffour et al., 2013). Assume we
have three registers 1, 2 and 3, where respectively variables ’A’, ’B’ and
’C’ stand for inclusion in the registers. We denote the expected values
mijp where i, j, p = 1 stand for the inclusion into A, B and C respectively
and where i, j, p = 0 stands for the absence in A, B and C.

For three variables the saturated loglinear model is denoted by:

log mijp = λ+ λAi + λBj + λCp + λABij + λACip + λBCjp , (2.16)

with identifying restrictions that a parameter equals zero when i, j
or p = 0. We assume that interaction parameter λABCijp = 0. Model
[AB][BC][AC] is the saturated model, as the number of observed pa-
rameters equals the number of parameters to be estimated. With d reg-
isters, we assume that the d-factor interaction is absent.

For estimation assume that nijp follow a Poisson distribution and
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a log link connects the expected value mijp to the linear predictor. We
can estimate the parameters in (5.1) via a Poisson loglinear regression.

Model [AB][BC][AC] assumes that odds conditional on a third vari-
able are equal, for example for the odds ratio between A and B given C
we find

m110m000

m100m010
=
m111m001

m101m011
. (2.17)

Model (5.1) assumes that for estimation with odds ratios under saturated
model [AB][BC][AC] we get:

m̂010m̂001m̂100m̂111

m̂011m̂110m̂101
=
n010n001n100n111
n011n110n101

= m̂000. (2.18)

An estimate for m̂000 is easily derived from (2.17) as [AB][AC][BC] is the
saturated model in this context, absence of the three factor interaction
is an unverifiable assumption as it can not be verified in the data. More
restricted models such as [AB][AC] are verifiable in the data. However,
we can investigate the robustness of the population size estimate against
violations of the assumption that the three factor interaction is absent
by fixing the interaction parameter to anything but 0, i.e. λ̃ABCijp 6= 0.
Thus the loglinear model becomes:

log mijp = λ+ λAi + λBj + λCp + λABij + λACip + λBCjp + λ̃ABCijp , (2.19)

with the additional identifying restriction where parameter λ̃ABCijp equals
zero when i or j or p = 0. The population size estimate under (2.19) can

be estimated using Poisson loglinear regression with parameter λ̃ABCijp as
an offset.

Under dependence between A and B given C, the association be-
tween the odds ratio θ and the loglinear parameters is:

θ
(p=0)
AB =

m110m000

m100m010
= exp(λAB11 ), (2.20)

and:

θ
(p=1)
AB =

m111m001

m101m011
= exp(λAB11 + λABC111 ). (2.21)

When we assume that the odds ratio between A and B is the same for
p = 0 and p = 1, we get

θAB =
m110m000

m100m010
=
m111m001

m101m011
= exp(λAB11 ). (2.22)

When more registers are available we can use these extra registers
to reduce the impact of violations of the independence assumption. As
we have shown the loglinear model is easily generalizable to multiple
registers.
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2.5.2 Multiplier method

The multiplier method is an alternative method to estimate the size of a
population and it is used, amongst others, in drug use research and HIV
prevalence (European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA), 1997; Cruts and Van Laar, 2010; Temurhan et al., 2011).
Multiplier methods are user-friendly for their mathematical simplicity,
the absence of linkage and are straightforward to use. At least two data
sources are needed to use the multiplier method, usually a comprehen-
sive register and a survey. For example, assume we wish to estimate the
number of Polish people residing in the Netherlands in 2013. We assume
that everyone has an equal chance of going to a hospital, thus we go to
hospitals to assess how many Polish patients there are, and ask them
whether they are in the GBA. Then assume the data we found is the
data from Table 2.11. There are 200 Polish people, of which 150 are in
the GBA. Thus p(GBA |Hospital) = 0.75. If in the GBA there is a total
of 40,000 Polish people registered, this means our actual total should be
40, 000/0.75 = 53, 333 and we missed 53, 333 − 40, 000 = 13, 333 people
who are not registered in the GBA.

The multiplier method can also be explained from the perspective
of capture recapture methods. Using the counts provided above we have
n11, n01 and n1+ so that n1+ − n11 = n10 and equation (3.2) gives
(39, 850 ∗ 50)/150 = 13, 283. Then N̂ = 150 + 50 + 39, 850 + 13, 283 =
53, 333, which is the exact same value as we got above. A sensitivity
analysis could be conducted using equation (2.7).

The attractiveness of the multiplier method lies in the absence of
linkage of two sources. When estimating hidden or hard-to-reach popu-
lations it is likely that it is difficult to get identifying variables to link
the individuals in the samples. The absence of linkage is what makes the
multiplier method different from capture-recapture. However, it has to
be kept in mind that the multiplier method also relies on the underlying
assumptions that being in the hospital is statistically independent from
being in the GBA, and that it relies on individuals reporting their GBA
status accurately when being admitted to the hospital.

TABLE 2.11
Artificial observed data for the Polish people in the hospital

Hospital
1 0

GBA 1 150 39,850 40,000
0 50 - -

200 - -
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2.5.3 Confidence intervals

Apart from robustness, another aspect of the usefulness of a point es-
timate is its confidence interval. Parametric bootstrap confidence inter-
vals can be used to find these confidence intervals in a simple way when
dealing with incomplete contingency tables. In a parametric bootstrap
sample the estimate m̂00(θ) for cell (0,0) is used in the multinomial proba-

bilities. So for Table (3.2), the four probabilities are n11/N̂(θ), n10/N̂(θ),

n01/N̂(θ) and m̂00(θ)/N̂(θ). A sample with size N̂(θ) is drawn with re-

placement. This yields four counts nb=1
11 , nb=1

01 , nb=1
10 and nb=1

00 . The first
bootstrap population size estimate N̂ b=1 is found using only nb=1

11 , nb=1
01 ,

nb=1
10 , i.e. ignoring nb=1

00 , and estimating m̂b=1
00(θ). This is repeated 10,000

times, yielding 10,000 bootstrap population size estimates. From these
2.5 and 97.5 percentile scores are derived.

To exemplify we constructed a parametric bootstrapping confidence
interval on the data presented in paragraph 2, which can be found in Ta-
ble 2.12. The R code for the parametric bootstrap confidence interval
can be found in Appendix A.3.

To compare, we also constructed asymptotic confidence es-

timate CI = m̂00 + / − z(.975)(

√
V̂ar(n)), where V̂ar(n) =

(n1+n+1n10n01)/((n11)3) (Bishop et al., 1975). The estimated confidence
interval for the Afghan, Iraqi and Iranian people under independence is
32, 905.44 − 34, 623.16, which is close to the bootstrapped confidence
interval.

TABLE 2.12
Confidence intervals

Odds Ratio AII Polish
0.50 30,254 - 31,132 109,529 - 127,022
0.67 31,156 - 32,288 132,278 - 155,837
1.00 32,931 - 34,654 177,476 - 212,431
1.50 35,607 - 38,125 245,439 - 298,960
2.00 38,292 - 41,682 314,212 - 384,579

2.6 Discussion

We have shown for two different datasets that the population size esti-
mate under dependence could be fairly robust as well as not robust at all.
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Deviations from independence when implied coverage is low (and thus
m̂00 is high) result in bigger deviations from the population size estimate
under fixed dependence than when the implied coverage is higher. Thus
the estimate becomes less robust and this makes the situation worse.
For the Afghan, Iraqi and Iranian people the population size estimate
did not change much when dependence was introduced; it also remained
fairly robust whether or not we assumed conditional independence on
fully observed covariates. However for the Polish people, the implied
coverage is small resulting in a higher m̂00 so that the deviation from
independence will be large. The resulting lack of robustness makes it
even worse. Not only did the population size estimate under indepen-
dence change dramatically under fixed dependence, adding a covariate
to replace the strict independence assumption with the less strict inde-
pendence assumption conditional on covariates changed the population
size estimate but did not improve the robustness.

This reflects that the Polish people are, much more so than peo-
ple from Afghanistan, Iraq and Iran, in the position that they work on
a temporary basis without living permanently in The Netherlands. By
law, it is approved for people from European Union countries like Poland
to work without a working and living permit. This is not the case for
people from Afghanistan, Iraq and Iran. Therefore, the coverage of the
GBA differs between both nationalities which gives a relatively high es-
timation of the missed population of the Polish people compared to the
Afghan, Iraqi and Iranian people. Additionally because we multiply m̂00

with θ it follows that a bigger m̂00 will result in a bigger m̂00θ than a
smaller m̂00 would when multiplied with the same θ.

We also showed how to investigate robustness of the population size
estimate in models with partially observed covariates. For the example
we used the population size estimate was relatively insensitive to vi-
olation of specific conditional independence assumptions. Since adding
covariates reduces heterogeneity and gives the opportunity to assess how
the population is divided over the levels of the covariate it is useful to
include a partially observed covariate.

In this manuscript we assumed that the only assumption that was
violated was the independence assumption. However, also violation of
other assumptions could have a large impact on the population size es-
timate. In particular, research on violation of the assumptions that the
registers are perfectly linked as well as that the population is closed dur-
ing the observation period is needed to conclude on the usefulness of
the capture-recapture method for estimating the undercoverage of cen-
sus data.

We have chosen a range of odds ratio from 0.5 to 2. As per our
knowledge, it is not possible to get an accurate estimation of what a
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realistic θ value would be, since it is impossible to ascertain θ from the
data. One way of dealing with the strict independence assumption is
in adding a third register, hence using another source to estimate θ, as
has been done by Brown et al. (2006) who created an adjustment factor
based on a third source for the Census.

In conclusion, it is important to assess the size of the implied cover-
age of one of the registers. We have shown that lack of robustness under
dependence is easily established when implied coverage is low. However,
when implied coverage is high the population size estimate remains fairly
robust. Thus, instead of accepting the population size estimate as is, re-
searchers should report the robustness of their estimate.

2.7 Appendix

To estimate the population size under loglinear models we have used
Poisson regression with an offset in SPSS and R.

2.7.1 R code

Below is given the R code to get estimates m̂00kl in the EM algorithm,
for the Polish data only.
##Give the data
data = c(111,188,32,43,12708,12708,7036,7036,301.5,421,301.5,421) ##
Polish data
data = data*10000
freqitx = freqit1= data

## Design matrix
A = c(1,1,1,1,1,1,1,1,0,0,0,0)
B = c(1,1,1,1,0,0,0,0,1,1,1,1)
X1 = c(1,1,0,0,1,1,0,0,1,1,0,0)
X2 = c(1,0,1,0,1,0,1,0,1,0,1,0)

## OR for independence
offst=c(0,0,0,0,0,0,0,0,0,0,0,0)
for (i in 1:50000){
glm = glm(freqitx ∼ A*X2+B*X1+X1*X2, offset=offst, family = pois-
son)
freqdata = c(data[1:4])
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freqfit = glm$fitted.values[5:12]
freqitx=c(freqdata,freqfit)
freqitx=round(freqitx)}

## Parameter estimates under independence
par = glm$coefficients
m0011 = as.numeric(exp(par[1] + par[3] + par[5] + par[8]))
m0010 = as.numeric(exp(par[1] + par[5]))
m0001 = as.numeric(exp(par[1] + par[3]))
m0000 = as.numeric(exp(par[1]))
matrix = matrix(c(glm$fitted.values[1],glm$fitted.values[2],
glm$fitted.values[5],glm$fitted.values[6],glm$fitted.values[3],glm$fitted.values[4],
glm$fitted.values[7], glm$fitted.values[8], glm$fitted.values[9], glm$fitted.values[10],
m0011, m0010, glm$fitted.values[11],glm$fitted.values[12],m0001, m0000),
4,4, byrow=TRUE)
N = sum(matrix)

## Define the offsets. Here we only give an example for the offsets
of BX2 = 0.5
offst1=c(-0.6931472,0,-0.6931472,0,0,0,0,0,-0.6931472,0,-0.6931472,0)
## Iterative GLM Loop for the EM algorithm
for (i in 1:50000){
glm = glm(freqitx ∼ A*X2+B*X1+X1*X2, offset=offst1, family = pois-
son)
freqdata = c(data[1:4])
freqfit = glm$fitted.values[5:12]
freqitx=c(freqdata,freqfit)
freqitx=round(freqitx)}

## Calculation of estimated missed frequencies
par = glm$coefficients
m0011 = as.numeric(exp(par[1] + par[3] + par[5] + par[8]))
m0010 = as.numeric(exp(par[1] + par[5]))
m0001 = as.numeric(exp(par[1] + par[3]))
m0000 = as.numeric(exp(par[1]))

m00comp = m0011+m0010+m0001+m0000
PSE = sum(data)+m00comp
print(m00comp)
print(sum(data)+m00comp)
print(N/PSE)
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2.7.2 SPSS syntax

compute freqitx=freqit1.
compute freqitx=rnd(freqitx).
execute.
DEFINE EM PGLM()
!DO !l = 1 !TO 10000.
GENLIN freqitx BY A B X1 X2 (ORDER=ASCENDING)
/MODEL A B X1 X2 A*X2 B*X1 X1*X2 INTERCEPT=YES OFF-
SET=offst05
DISTRIBUTION=POISSON LINK=LOG
/SAVE MEANPRED (pred val).
compute diff=ABS(freqit1-pred val).
means diff.
compute freqitx=pred val.

IF ((A = 1)&(B = 1)&(X1 = 1)&(X2 = 1))freqitx = freqit1.
IF ((A = 1)&(B = 1)&(X1 = 2)&(X2 = 1))freqitx = freqit1.
IF ((A = 1)&(B = 1)&(X1 = 1)&(X2 = 2))freqitx = freqit1.
IF ((A = 1)&(B = 1)&(X1 = 2)&(X2 = 2))freqitx = freqit1.

COMPUTE freqitx = rnd(freqitx).
execute.
delete variables pred val.
!DOEND
!ENDDEFINE.
##run the macro
EM PGLM .

2.7.3 R code parametic bootstrap

The R code presented below represents the parametric bootstrap for the
Polish data from Table 3.2
data = c(374, 39488, 1445) ## Polish data
theta = 2
m00 = (data[2]*data[3])/data[1]
m00theta = m00*theta
datacomp = sum(data,m00theta)
## The estimate of N, under an offset theta
n = sum(data)
N = n + m00theta
##The relative bias under an offset theta
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(n+m00)/N
## Parametric bootstrap
NN = c( N)
p = matrix(c(data/datacomp, m00theta/datacomp),1)
set.seed(N)
library(combinat)
databoot= rmultinomial(rep(NN, 10000),p)
m00boot =theta* (databoot[,2]*databoot[,3])/databoot[,1]
nboot = databoot[,1:3]
Nboot = m00boot + nboot[,1]+ nboot[,2]+ nboot[,3]
quantile(Nboot, c(0.025, 0.5, 0.975), type = 1)
sd = function(x) sqrt(var(x))
sd(Nboot)
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3.1 Introduction

Capture-recapture methods are commonly used to estimate the size of
hard-to-reach populations Fienberg (1972); Bishop et al. (1975); Cor-
mack (1989); International Working Group for Disease Monitoring and
Forecasting (1995). When linking the individuals from two or more regis-
ters we can use these methods to estimate the portion of the population
that was missed by all registers.

Capture-recapture estimation relies on five assumptions: 1) For the
two-register case, the registers are assumed to be independent in the
sense that the inclusion probability of one register is independent of
the inclusion probability of the other register. For three registers this
assumption is relaxed and it is only assumed that the three-factor inter-
action is zero, such that dependence between pairs of two registers may
occur; 2) The registers are perfectly linked: when one unit is captured
in two (or more) registers, perfect linkage assumes that we correctly
identify all of these units as recaptures; 3) The population is closed: reg-
isters with continuous recording such as a population register are closed
when one point in time is chosen. For incidence registers it is recom-
mended to take a small sampling period to limit a possible violation of
the closed population assumption; 4) All individuals in the registers be-
long to the population, i.e. there are no erroneous captures; 5) Assump-
tions related to homogeneity of inclusion probabilities (Van der Heijden
et al., 2012). Heterogeneity occurs when one register has heterogeneous
inclusion probabilities, for example when the probability to include men
is higher than the probability to include women. If there is one source of
heterogeneity, the estimate is unbiased when at least for one of the two
registers the inclusion probabilities are homogeneous (Chao et al., 2001;
Zwane and Van der Heijden, 2007). If there is a source of heterogeneity
in each of two registers, the estimates are unbiased if the inclusion prob-
abilities of the two sources of heterogeneity are statistically independent
(Gerritse et al., 2015b; Seber, 1982, p. 86).

S. C. Gerritse, B. F. M. Bakker, D. Zult, and P. G. M. van der Heijden. The
effects of imperfect linkage and erroneous captures on the population size estimator.
Submitted, 2016. Acknowledgement of author contributions: theoretical development
by SG. BB and DB contributed to theoretical development. Document written by
SG (main document) and DZ (part on simulation study), edited by PvdH and BB.
Analyses carried out by SG (main document) and DZ (part on simulation study).
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In capture-recapture methodology it is not possible to verify from
the data whether the assumptions are met, let alone to verify from the
data to what extent possible violations occur. Some research has been
conducted to investigate the effect of violations of the assumptions of
capture-recapture analysis on the population size estimate for two regis-
ters. For the independence assumption, it has been shown that violating
the independence assumption in the two-register case can lead to biased
results, but the bias is not necessarily large. This result is explained via
the relative size of the implied coverage of the register. Assume that
register 1 has a larger coverage of the population than register 2, such
that some of the units from register 2 lead to an increased coverage of
the population. Then implied coverage is the number of units included
in the first register also being included in the second register, relative
to the size of the second register. High implied coverage results from a
high number of units being included in the second register also being
included in the first register. When the data has a high implied cover-
age the capture-recapture estimation is relatively robust to a violation
of independence between the registers (Brown et al., 1999; Boden, 2014;
Gerritse et al., 2015b).

Boden (2014) used sensitivity analyses to test the effect of violat-
ing the assumptions of independence, perfect linkage and heterogeneity.
The sensitivity analysis conducted on a violation of independence be-
tween the sources showed that dependence between the registers had a
substantial effect on the population size estimate. However, the results of
violating perfect linkage and heterogeneity showed only a small bias. The
small effect of linkage error on the capture-recapture estimation may be
explained by the small number of linkage errors in the paper, although
the author concludes that in his case even a moderate amount of linkage
errors would have a minor impact on the population size estimate.

In this paper we investigate the effect of linkage error and erroneous
captures on the population size estimation, assuming all other assump-
tions have been met. For this purpose, we use administrative data from
Statistics Netherlands: the Population Register (PR), an Employment
Register (ER) and a Crime Suspects Register (CSR), all from 2010. The
three registers used have been linked for the most part via determinis-
tic linkage, made possible by the use of a unique Personal Identification
Number (PIN) that all PR registered individuals in the Netherlands
have. When there are no administrative errors, this PIN can identify
every individual correctly. However, these registers may contain admin-
istrative errors such that deterministic linkage may not identify all links.
To be able to identify these links we also used probabilistic linkage. Prob-
abilistic linkage estimates for each possible pair of individuals in two
registers their probability of a correct link (Fellegi and Sunter, 1969).
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Those individuals in the ER and CSR that did not already link to the
PR were linked probabilistically. The advantage of this method is that
it allows for small errors in the identifying variables.

By using both deterministic and probabilistic record linkage, after
linkage it was found that 37 percent of the individuals in the CSR that
did not link to the PR and ER had missing information on one of the
linkage variables, and could not be linked. It is possible that these in-
dividuals do not belong to the population and it is impossible to know
whether they should have been linked or not. Thus there is the possibil-
ity of two assumptions being violated: perfect linkage and no erroneous
captures. There is also a possibility that part of the data of the CSR
that have missing data are duplicate units, thus one person who is regis-
tered twice but can not be identified as the same person due to missing
information. We assume in this paper that duplicate units do not occur.

Since the number of captured and recaptured units are used to esti-
mate the number of units missed by the registers for population size esti-
mation, the process of record linkage is an important aspect of capture-
recapture methodology when using administrative data. Errors in record
linkage will result in violation of the perfect linkage assumption. There
are two types of linkage errors. For the sake of simplicity we exemplify
the possible errors in linkage for two registers only, register 1 and regis-
ter 2, and two unique units, X and Y . One error in linkage occurs when
unit X in register 1 is falsely linked to unit Y in register 2. This type
of error is also known as a mislink or a false positive. A second error in
linkage occurs when unit X in register 1 is falsely not linked with unit
X in register 2. This type of error is known as a missed link or a false
negative.

If there are no covariates involved, we are in a relatively simple situ-
ation where one false positive can be compensated by one false negative,
and thus there will be no effect on the population size estimation. Thus
linkage errors are the number of false positives minus the number of false
negatives, or in other words the number of mislinks minus the number
of missed links. Then linkage errors are seen as a balance of two possi-
ble errors. Throughout this manuscript we will most commonly refer to
errors in record linkage as linkage error. Erroneous captures occur when
units that do not belong to the population are in the data.

The three registers from Statistics Netherlands together contain
data on individuals residing in the Netherlands. In this manuscript we
study two nationality groups from the three registers. The first national-
ity group contains data from all three registers on one nationality only:
Polish. In the EU, individuals with EU nationalities are free to move
and work within the EU. Hence, Polish individuals are free to live in
the Netherlands and a high number of the labor migrants in the Nether-
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lands in 2010 were from Poland. The second nationality group contains
data from all three registers on individuals with an Iraqi, Iranian and
Afghan nationality. Individuals from these three countries need a visa
and working permit to enter the Netherlands and are undocumented
immigrants when residing in the Netherlands without either of these.
These nationality groups differ substantially in their implied coverage:
the Polish have a low implied coverage, whereas the Iraqi, Iranian and
Afghan have a high implied coverage.

We continue as follows. In section 2, a sensitivity analysis is con-
ducted on these two nationality groups for the simplest form of capture-
recapture: using only two registers. Section 2.1 will discuss the effect of
linkage error on the population size estimate and section 2.2 will dis-
cuss the effect of erroneous captures on the population size estimate.
In section 3 we extend the sensitivity analysis to the multiple-register
case, where three registers are used to exemplify one form of a multiple-
register case. In section 3.1 a simulation study is carried out on the effect
of linkage errors on the population size estimate. A simulation study was
chosen to investigate which error percentage in any of the three regis-
ters will result in the highest bias to the population size estimate. Using
the knowledge gathered in section 3.1, a sensitivity analysis will be con-
ducted in section 3.2 on the effect of linkage errors on the population size
estimate. In section 3.3 the effect of erroneous captures on the popula-
tion size estimate is established via another sensitivity analysis. Section
4 will give a discussion of the results and we conclude this manuscript
in section 5.

3.2 Capture-recapture for two registers

The simplest population size estimation model makes use of two reg-
isters: 1 and 2. Let variables A and B respectively denote inclusion in
registers 1 and 2. Let the levels of A be indexed by i (i = 0 (No), 1 (Yes))
where i = 0 stands for ”not included in register 1”, and i = 1, stands
for ”included in register 1”. Similarly, let the levels of B be indexed by
j (j = 0(No), 1(Y es)). Expected values are denoted by mij and fitted
values are denoted by m̂ij . Observed values are denoted by nij , with
n00 = 0 by design.

The first assumption of population size estimation is that the prob-
ability of being in the first register is independent of the probability of
being in the second register. Under independence the saturated loglinear
model for the counts n01, n10 and n11 is:
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logmij = λ+ λAi + λBj . (3.1)

where we used the identifying restrictions λA0 = λB0 = 0. Two ways
to derive the maximum likelihood estimate of the missed part of the
population, are first, by using Poisson loglinear modeling such that m̂00

= exp(λ̂) and second, by using the property that the odds ratio under
independence is 1, i.e., m00m11/m10m01 = 1 so that:

m̂00 =
m̂10m̂01

m̂11
=
n10n01
n11

. (3.2)

Poisson loglinear modeling is more flexible in more complicated log-
linear models using covariates. The odds ratio provides a simple trick to
explore capture-recapture methodology, but becomes increasingly diffi-
cult to use as the number of registers and covariates increases (compare,
Gerritse et al., 2015b).

3.2.1 Linkage errors in two registers, theoretical exam-
ple

An important assumption of capture-recapture methodology is perfect
linkage. The assumption is met when all units in register 1 that are also
in register 2 are correctly linked to their counterparts in register 2 and
when all units in register 2 that are also in register 1 are correctly linked
to their counterparts in register 1. We are interested in what happens if
the two registers have not been linked perfectly when capture-recapture
analysis is done assuming the assumptions to be met.

When linking two registers the contingency table with the expected
values mij are shown in the left-hand side of Table 3.1, where m00 will be
estimated via a maximum likelihood estimate (3.2). The population size
estimate under assumed perfect linkage is N̂ = m̂11+m̂01+m̂10+m̂00 =
n11 + n01 + n10 + m̂00.

Assume we have linkage errors of size b, where b is the number of
false positive links minus the number of false negative links. In short we
get: linkage error = (b =) number of false positive links - number of false
negative links. Then b is negative when the number of false negative links
outbalances the number of false positive links, and b is positive when the
number of false positive links outbalances the number of false negative
links.

Under perfect linkage we assume that b = 0 for expected values mij

and observed values nij . Under linkage error b 6= 0 we denote expected
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TABLE 3.1
Expected values of being present in register 1 and register 2 under perfect
linkage on the right side of the table and the expected values of being
present in register 1 and register 2 under linkage error on the left side.

A
B 1 (yes) 0 (no) Total

1 (yes) m11 m10 m1+

0 (no) m01 m00 m0+

Total m+1 m+0 m++

A
B 1 (yes) 0 (no) Total

1 (yes) m̃11 m̃10 m̃1+

0 (no) m̃01 m̃00 m̃0+

Total m̃+1 m̃+0 m̃++

values by m̃ij , and observed values are denoted ñij . Then m̃11 = m11+b,
m̃10 = m10 − b and m̃01 = m01 − b, and ñ11 = n11 + b, ñ10 = n10 − b
and ñ01 = n01 − b. The contingency table with the expected values m̃ij

is shown in the right-hand side of Table 3.1.
Unfortunately, we can not verify from the data to what extent per-

fect linkage has been violated. We can however use chosen values of b to
investigate the effect of linkage error on the population size estimate in
a sensitivity analysis. To choose values of b we define linkage error rate
β for m01. For this specific example we have chosen linkage error rate β
on m01 because m01 is the number of added cases of register 2 relative
to register 1, such that β is specified based on the implied coverage of
register 1 given register 2. Then,

β =
ñ01
n01

(3.3)

where β = 1 denotes perfect linkage. Linkage error rate β enables us
to simulate linkage error, where ñ01 = n01 ∗β. In creating such a linkage
error rate β we can denote linkage error in percentages, and by defining
linkage error in percentages we can better compare the effect of β on the
population size estimate between the two nationality groups. Then,

ˆ̃m10
ˆ̃m01

ˆ̃m11

=
ñ10ñ01
ñ11

=
(n10 − b)(n01 − b)

n11 + b
= m̂00(β), (3.4)

where m̂00(β) is the size of the individuals missed by the two regis-

ters. The population size estimate under linkage error is N̂β = m̂00(β) +
(n11 + b) + (n10 − b) + (n01 − b).

It can be shown that if b is positive, and thus the number of false
positive links outbalances the number of false negative links, m̂00(β) will
be smaller than m̂00 and m̂00 is an overestimation of m̂00(β). If b is nega-
tive, and thus the number of false negative links outbalances the number
of false positive links, m̂00(β) will be larger than m̂00 and m̂00 is an un-
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derestimation of m̂00(β). Then, when we estimate m̂00 while we have a
linkage error of size β, estimate m̂00 will be biased.

Note that n1+ and n+1 are fixed values, because these are the total
number of individuals in register 1 and register 2. Under linkage error
the number of individuals for register 1 and register 2 does not change.
However, the sizes of the expected values m̃ij do change.

3.2.2 Implied coverage

Under register 1 and 2, the maximum likelihood estimate of the missed
portion of the population can be estimated via equation(3.2). Under 3.2
we can estimate conditional probabilities:

p̂(0|1) =
n01
n+1

and, p̂(1|1) =
n11
n+1

, (3.5)

where p̂(0|1) is the estimated probability of n01, given n+1: the condi-
tional, estimated probability of only being registered in register 2, given
all registered cases in register 2, including the overlap with register 1.
Similarly, p̂(1|1) is the estimated probability of n11, given n+1: the con-
ditional, estimated probability of being in the overlap between register 1
and register 2, given all registered cases in register 2. Thus p̂(0|1) is the
estimated probability of new cases from register 2, compared to those
cases already registered in register 1, and p̂(1|1) is the estimated proba-
bility of already known cases from register 1, compared to all the cases
from register 2. These two probabilities together add up to 1. Given
these probabilities we can rewrite equation (3.2)

m̂00 =
n10 ∗ p̂(0|1)

p̂(1|1)
, (3.6)

where the number of observations uniquely in register 1, multiplied
with the estimated odds of a new observation found in register 2. The
larger the estimated odds, the larger m̂00 will be. It can be seen from
equation (3.6) that the estimated number of individuals missed by the
two registers is a result of the estimated probability of new cases added
by register 2, compared to the number of cases already known in register
1.

When the estimated probability of new cases p̂(0|1) is relatively
small compared to the estimated probability of already known cases
p̂(1|1), the effect of the added new cases of register 2 on m̂00 will be
small and the population size estimator is robust. Then the coverage of
the population by register 1, implied by register 2 is high, which means
that register 1 already captures a high number of the individuals in the
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population compared to register 2.
However, when the estimated probability of new cases p̂(0|1) is rela-

tively large compared to the estimated probability of known cases p̂(1|1),
the effect of the added new cases of register 2 on m̂00 will be large as
well and the population size estimator is not robust. Then the coverage
of the population by register 1, implied by register 2 is low, such that
register 2 captures a relatively larger number of unique cases compared
to register 1. The coverage of register 1 is implied by register 2 because
these two registers are our reference point, and the true coverage is un-
known. In this paper we will denote the coverage of register 1 implied
by register 2 as implied coverage.

3.2.3 Linkage error for two registers, real data examples

To illustrate, we use the data on individuals with a Polish national-
ity residing in the Netherlands, and data of individuals with anAfghan,
Iraqi and Iranian nationality residing in the Netherlands For this section,
where we investigate the effect of linkage error on the simplest capture-
recapture case with two registers only, we use two of the three registers
introduced in the introduction: the Dutch Population Register (PR) and
a Crime Suspect Register (CSR). The data are shown in Table 3.2.

TABLE 3.2
Left are the values of the Afghan, Iraqi and Iranian individuals and on
the right are values of the individuals of Polish nationality, estimated
values are in italics.

CSR
PR Yes No Total
Yes 1,356 58,891 60,247
No 320 13,898 14,218

Total 1,675 72,789 74,465

CSR
PR Yes No Total
Yes 444 42,109 42,553
No 1,659 157,340 158,999

Total 2,103 199,449 201,552

We illustrate the use of β and b by using data of individuals with
an Afghan, Iraqi and Iranian nationality. Assuming perfect linkage un-
der β = 1, we get a maximum likelihood estimate of the missed part
of the population by 58, 891 ∗ 320/1, 356 = 13, 898. This gives a total
of N̂ = 1, 356 + 58, 891 + 320 + 13, 898 = 74, 465 individuals with an
Afghan, Iraqi and Iranian nationality are residing in the Netherlands.

However, when we introduce a linkage error of size β = 0.9, then
ñ01 = n01 ∗ 0.9 = 320 ∗ 0.9 = 288, and b = 320 − 288 = 32, such that
ñ10 = 58, 891 − 32 = 58, 859 and ñ11 = 1, 356 + 32 = 1, 388, which can
be seen on the right-hand side of Table 3.3. We estimate that 12,213
individuals are missed by all three registers but do belong to the popu-
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lation. Theestimate of the missed portion of the population allows us to
get estimate N̂β = 1, 388 + 58, 859 + 288 + 12, 213 = 72, 748 individuals
with an Afghan, Iraqi and Iranian individuals actually residing in the
Netherlands. Thus the estimate of 74,465 is a result of capture-recapture
analysis when assuming perfect linkage, and will be an overestimation if
we have linkage error and have not adjusted for this.

TABLE 3.3
The left table are the observed values for the CSR for the Afghan, Iraqi
and Iranian people residing in the Netherlands, the right table are the
observed values under error linkage β = 0.9. Estimated values are in
brackets.

CSR
PR Yes No Total
Yes 1,356 58,891 60,247
No 320 13,898 14,218

Total 1,675 72,789 74,464

CSR
PR Yes No Total
Yes 1,388 58,859 60,247
No 288 12,213 12,501

Total 1,676 71,072 72,748

Parameter β enables us to conduct a sensitivity analysis on linkage
errors. The results can be seen in Figure 1 and details can be found
in the Appendix. When a linkage error range of β = 0.5 to β = 1.5 is
introduced on the data of the Afghan, Iraqi and Iranian individuals, the
estimate of the missed portion of the population does not differ greatly
from the estimate under perfect linkage. If we introduce a linkage error
of size β = 0.5 (and also for β = 1.5) and estimate assuming perfect
linkage without adjusting for the linkage error, we see a bias of only
12 percent. Thus there is only a 12 percent difference between the ac-
tual population size estimate N̂β and the population size estimate under

the observed values N̂ where perfect linkage is assumed. Thus for the
Afghan, Iraqi and Iranian individuals the population size estimator is
relatively robust.

To compare we also conducted a sensitivity analysis on the effect of
linkage error on the individuals with a Polish nationality. We introduced
a linkage error range of β = 0.5 to β = 1.5, where the upper range of β
is lower because of the low cell count of 444 in cell (1,1). As can be seen
from the figure, the population size estimator is not robust to linkage
error. Introducing a linkage error of β = 0.5, we overestimate the popula-
tion size estimate by 187 percent, compared to when we would estimate
under β = 1. While the population size estimate under linkage errors is
quite stable for the individuals with an Afghan, Iraqi and Iranian na-
tionality, for the individuals with a Polish nationality this is not the case.

Thus for the Afghan, Iraqi and Iranian individuals the population
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FIGURE 3.1
Population size estimate for the two-register capture-recapture sensitiv-
ity analysis for both nationalities under a β ranging from 0.5 to 1.5.
Under β = 1 perfect linkage is assumed and for β 6= 1 linkage errors are
assumed.
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size estimator is relatively robust under linkage errors, but for the Polish
individuals the population size estimator is not robust. The reason is that
for the former, there is a larger implied coverage of the PR given the
CSR than for the latter. For the Afghan, Iraqi and Iranian individuals
p̂(0|1) = 320/1, 675 = 0.19 and p̂(1|1) = 1, 356/1676 = 0.81, which
means that the CSR does not add many new cases to the PR, and the
estimated conditional coverage implied by the PR given the CSR is high.
For the Polish individuals p̂(0|1) = 1, 659/2, 103 = 0.79 and p̂(1|1) =
444/2, 103 = 0.21, which means that the CSR actually adds many new
cases to the PR, and the estimated conditional coverage implied by the
PR given the CSR is low. For the Afghan, Iraqi and Iranian individuals,
due to the high implied coverage, the population size estimator is robust.
Whereas for the Polish individuals, due to the low implied coverage, the
population size estimator is not robust at all.

3.2.4 Erroneous captures for two registers, theoretical
example

Another important assumption of capture-recapture methodology is that
all the individuals in the observed data belong to the population, and
thus the data contain no erroneous captures. It is not always possible to
assess from the data which units actually belong to the population and
which do not. Therefore we aim to investigate the effect on the popula-
tion size estimate when erroneous captures are present.

Again mij are the expected values of the observed values nij . For
mij and nij we assume no erroneous captures. If erroneous captures are
introduced, expected values are denoted by m̄ij , and observed values un-
der linkage error are n̄ij . We can define an erroneous capture rate γ for
n01, where γ = n̄01/n01, such that n̄01 = n01 ∗γ. Erroneous captures are
units in the data that should not have been observed, and therefore n̄01
will always be smaller than n01, and 0 ≤ γ ≤ 1. The erroneous capture
rate γ has been defined on n01 because that is the number of added cases
by register 2, relative to register 1. We find

m̂00(γ) =
n10(n01∗γ)

n11
=
n10n̄01
n11

= γm̂00, (3.7)

where m̂00 is the estimate when there are no erroneous captures
defined in (3.2). This enables us to choose values for γ and set up sensi-
tivity analyses to the effect of erroneous captures on the population size
estimator.
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3.2.5 Erroneous captures for two registers, real data ex-
ample

For the sensitivity analyses to study the effect of erroneous captures on
the population size estimator, we again use the data from Table 3.2.
We chose the relatively extreme range γ = 0.9 to γ = 0.1. Such ex-
treme ranges may not be very realistic, but they do give us a complete
picture of the effect of γ. Table 3.4 shows the expected values when
there are 10 percent erroneous captures in n01 and hence γ = 0.9. Then
n̄01 = n01 ∗ γ = n01 ∗ 0.9 = 320 ∗ 0.9 = 288.

TABLE 3.4
The values for the Afghan, Iraqi and Iranian nationals residing in the
Netherlands in 2010, adjusted for γ = 0.9 erroneous capture in the CSR.
Values in italics are estimated values

CSR
PR Yes No Total
Yes 1,356 58,891 60,247
No 288 12,508 12,796

Total 1,644 71,399 73,043

It follows that, m̄00(γ) = 12, 508, which is 1,390 less individu-
als estimated to be missed by all three registers than m̂00 = 13, 898.
Figure 2 shows the sensitivity analysis for both nationality groups. For
the individuals with an Afghan, Iraqi and Iranian nationality, erroneous
captures have only a small an effect on the population size estimator
and the estimator is relatively robust. Figure 2 also shows the sensitiv-
ity analysis for the Polish individuals. For these individuals, erroneous
captures have a large effect on the population size estimator and the
estimator is not robust.

Here again the population size estimator is more robust against vi-
olation of an assumption for the data of the Afghan, Iraqi and Iranian
individuals than for the Polish individuals. The effect of erroneous cap-
tures is smaller than the effect of linkage error, because it only affects
one expected value, whereas linkage errors affect all three cells, compare
(3.4) and (3.7).

Here again the relative size of the implied coverage of the PR given
the ER is the explanation why one nationality group results in less bias
in the population size estimate after violated assumptions than the other
nationality group. Given that the erroneous captures are deleted from
n01, the adjusted size of n01 will influence the implied coverage of reg-
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FIGURE 3.2
Population size estimate for the two-register capture-recapture sensitiv-
ity analysis for both nationality groups under a Gamma ranging from 1
to 0.1. Under γ = 1 we assume no erroneous captures, and when γ<1
the data contain erroneous captures.
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ister 1 given register 2. For the Afghan, Iraqi and Iranian individuals
p̂(0|1) = 320/1, 675 = 0.19, but when γ = 0.9, n01 = 288 instead of
320 and p̂(0|1) = 288/1, 675 = 0.17. Thus when eliminating the erro-
neous captures from n01, the implied coverage of the PR given the CSR
increases.

3.3 Capture-recapture for three registers.

In section 2 we discussed the impact of linkage errors and erroneous cap-
tures in the simplest form of capture-recapture for two registers. How-
ever, multiple registers are often available. Additionally in using a third
register, the strict independence assumption can be replaced by a less
strict independence assumption where independence is assumed on the
third register. Thus the use of a third register is not only often available
to the researcher, but also advisable. When linkage errors or erroneous
captures are present in three registers, the effect of these violations may
become more complex. We now investigate for three registers what the
effect is of violations of perfect linkage and no erroneous captures on the
population size estimator.

Assume we have three registers, 1, 2 and 3. Let variables A, B and
C respectively denote inclusion in registers 1, 2 and 3. Let the levels of
A be indexed by i (i = 0,1) where i = 0 stands for ”not included in
register 1”, and i = 1, stands for ”included in register 1”. Similarly, let
the levels of B be indexed by j (j = 0, 1), and let the levels of C be
indexed by k (k = 0, 1). Table 3.5 shows the expected values denoted by
mijk. Observed values are denoted by nijk with n000 = 0.

TABLE 3.5
The table of expected counts for thee registers

C
A B 1 (Yes) 0 (No)

1 (Yes) 1 (Yes) m111 m110

0 (No) m101 m100

0(No) 1 (Yes) m011 m010

0 (No) m001 m000

For three variables the saturated loglinear model is denoted by:

log mijk = λ+ λAi + λBj + λCk + λABij + λACik + λBCjk , (3.8)
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with identifying restrictions that a parameter equals zero when i, j or k =
0. The model assumption is that the three-factor interaction parameter
λABCijk = 0. Model [AB][BC][AC] is the saturated model, as the number
of observed parameters equals the number of parameters to be estimated.
This model assumes that the odds ratio between A and B is the same
for k = 0 and k = 1, i.e.,

m110m000

m100m010
=
m111m001

m101m011
. (3.9)

An estimate for m̂000 is easily derived from (3.9).

m̂010m̂001m̂100m̂111

m̂011m̂110m̂101
=
n010n001n100n111
n011n110n101

= m̂000. (3.10)

When linkage error is present, the same rules apply as for two registers.
Here again we can define a linkage rate β, where we investigate linkage
error only in one register. As an example, linkage error rate β is only
investigated in register 3:

β =
ñ001
n001

. (3.11)

Under these conditions, we can again conduct a sensitivity analysis
on data where the three registers are linked. To assess the effect oflinkage
error on the population size estimator we first conduct a simulation study
to investigate in which register linkage error will have more effect. This
will help determine in which register linkage errors will have more effect
on the population size estimate, so we can then determine one β. For
the sensitivity analysis on real data we use this β to assess the effect of
linkage errors on population size estimation for the three-register case.

3.3.1 Linkage error for three registers, simulation study

We aim to investigate the effect of linkage error on the population size
estimator when three registers are used for capture-recapture analysis.
However the combination of possible linkage errors for three registers
becomes numerous and complex. For that reason we conduct a Monte
Carlo (MC) simulation to assess the effect of different linkage errors on
the population size estimator for three registers.

Table 3.6 shows the parameters used to generate simulated data.
The size of the registers are the actual sizes in the PR, CSR and the ER
for individuals without a Dutch nationality. Note that this encompasses
but is not limited to the two nationality groups used before. The error
percentages are chosen as best resembling the probable error percentages
in these registers. Additionally the three chosen true population sizes are
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TABLE 3.6
MC simulation parameters and their settings

Parameters MC simulation Value
Number of MC iterations per scenario 25

Size of register 1 617,332
Size of register 2 374,803
Size of register 3 12,419
True population 0.7, 1 and 1.3 million

Error percentage register 1 0, 0.5, 2, 10
Error percentage register 2 0, 0.5, 2, 10
Error percentage register 3 0, 10, 40

chosen as the most probable true population sizes. The number of MC
iterations is set at 25.

First a data set is generated, where we set the size of the true popu-
lation at either 700 thousand, 1 million or 1,3 million individuals. These
three population sizes have been chosen because they are deemed the
most probable to be the number of individuals without a Dutch na-
tionality residing in the Netherlands. Then register 1 is generated by
randomly sampling 617,332 units from the true population, register 2 is
generated by randomly sampling 374,803 units from the simulated data
set and register 3 is generated by randomly sampling 12,419 units from
the true population. Note that by randomly sampling the registers from
the simulated data we are operating under loglinear model [A][B][C].

To assess the effect of linkage error on the population size estima-
tor, we destroy links by changing the linkage key according the error
percentages specified in Table 3.6. By renaming linked units, the num-
ber of units in register 1, register 2 and register 3 remain constant, but
records that should have been linked no longer do. In doing so we also
introduce interactions between the registers. These are accounted for by
using model [AB][AC][BC] in the capture-recapture analysis.

3.3.2 MC simulation results

Together the parameter settings from Table 3.6 lead to 144 (3 x 4 x 4 x
3) different scenarios. For each scenario 25 MC iterations are performed,
which implies that for each scenario, 25 times 3 registers are generated
with corresponding error shares and equal capture-recapture population
estimates. A relevant selection is taken from all computations and is
shown in Table 3.7.
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TABLE 3.7
A selection of the MC simulation results

Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4
Population size 1 mln 1 mln 1 mln 1mln 0.7 mln
Error % register 1 0% 10% 0% 0% 0.5%
Error % register 2 0% 0% 10% 0% 2%
Error % register 3 0% 0% 0% 10% 40%
Unobserved population 236,361 296,336 236,196 236,247 37,740
Estimated unobserved population 234,401 280,108 307,636 346,153 590,485
Estimate of total population 998,010 1,043,772 1,071,450 1,109,906 1,252,852
Linking errors between 1 and 2 0% 10% 10% 0% 2.5%
Linking errors between 1 and 3 0% 10% 0% 10% 40%
Linking errors between 2 and 3 0% 0% 10% 10% 41%
Overestimation % of population -1% 4% 7% 11% 79%

Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9
Population size 1mln 1.3 mln 1 mln 1 mln 1 mln
Error % register 1 0.5% 0.5% 0.5% 10% 10%
Error % register 2 2% 2% 2% 2% 10%
Error % register 3 40% 40% 10% 10% 10%
Unobserved population 236,228 481,163 236,249 236,284 236,289
Estimated unobserved population 949,575 1,414,345 363,354 427,606 535,139
Estimate of total population 1,713,425 2,233,240 1,127,143 1,191,266 1,301,293
Linking errors between 1 and 2 2.5% 2.5% 2.5% 12% 19%
Linking errors between 1 and 3 40% 40% 10% 19% 19%
Linking errors between 2 and 3 41% 41% 12% 12% 19%
Overestimation % of population 71% 72% 13% 19% 30%
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Row (1) from Table 3.7 is the true population size. Row (2) through
(4) contain the error percentages that are introduced in the correspond-
ing registers. Row (5) contains the actual size of the population missed
by all three registers. Row (6) contains the estimated size of the popu-
lation missed by all three registers. Under perfect linkage the numbers
in (5) and (6) should be similar. Rows (7) through (10) give descriptive
statistics, i.e. an estimation of the total population and the percentages
of linking errors between the three registers as a result of the error per-
centages in the registers. Finally, row (11) contains the difference (in
percentages) between the estimated population size estimate and real
population size estimate.

Scenario 0 shows the capture-recapture estimation when no linkage
errors are introduced into the simulation study. As can be seen, scenario
0 estimates the missed part of the population with a slight but negligible
underestimation. The next three scenarios differ only with respect to the
register in which errors occur. However, despite their similarity, row (11)
shows that there is a difference between the quality of their estimates.
There is a clear relationship between the bias in population size estimate
relative to the actual population size and the register in which the error
manifests itself. Interestingly, the bias in population size estimation in-
creases when the errors occur in a smaller register. A ten percent linkage
error in a large register biases the population size estimate less than a
ten percent linkage error in a small register, even though the absolute
number of linkage errors in a large register is larger than the absolute
number of linkage errors in the smaller register.

The next three scenarios (4 through 6) differ only with respect to
their real population size. In relative terms the difference between the
estimate of the population size from capture-recapture analysis and the
actual pre-defined population size increases when the population gets
smaller; in absolute terms the relationship is reversed (with larger pop-
ulation sizes come larger errors). In the last three columns there are
three scenarios that have linkage error percentages which are potentially
similar to the Dutch situation, with a varying real population.

3.3.3 Linkage error in three registers, real data example.

The simulation study has shown that the largest bias in population size
estimation results from errors in the smallest register, which in this ex-
ample is the CSR. Thus for our sensitivity analysis we focus on the CSR,
and we use β for our sensitivity analysis on actual data. We again use
data on the Afghan, Iraqi and Iranian individuals residing in the Nether-
lands, which is shown on the left side of Table 3.8. Additionally, we again
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use the data on the Polish individuals residing in the Netherlands, shown
on the right side of Table 3.8.

TABLE 3.8
The observed values for the Afghan, Iraqi and Iranian individuals on the
left side of the table and the observed values for the Polish individuals
on the right side of the Table by three registers.

CSR
PR ER Yes No
Yes Yes 309 13,862

No 1,047 45,029
No Yes 7 266

No 313 0

CSR
PR ER Yes No
Yes Yes 215 24,832

No 229 17,277
No Yes 230 80,406

No 1,429 0

We introduce the linkage error rate β < 1, where individuals in the
CSR are to be linked to either the ER or the PR. Some of the CSR
individuals who did not link to the PR will also partially have to be
linked to the intersection of PR and ER. Then for the individuals in
the CSR who will be linked to the PR, some will also be linked to the
intersection of PR and ER. The proportion of linkage errors in the CSR
to be linked to either the PR or the intersection of the PR and the ER
will be the same as the distribution of the CSR individuals who are in
the PR. 309 individuals with an Afghan, Iraqi and Iranian nationality
are in the intersection of all three registers, compared to 1,647 in the PR
and CSR, which is only 16 percent of all the individuals in both the PR
and the CSR. The percentage linkage error of size β that should have
linked to the PR will link for 16 percent to the intersection of the PR
and the ER and for 84 percent to the PR alone.

As can be seen from Figure 4, the linkage error for the Afghan, Iraqi
and Iranian individuals has again only a small effect on the population
size estimation. However, for the Polish individuals linkage errors have a
large effect on the population size estimation. Table 3.14 in the Appendix
shows the estimates for the full sensitivity analysis. However, compared
to the Polish individuals, the capture-recapture analysis for the Afghan,
Iraqi and Iranian individuals is quite robust under the three registers.

The difference between the effect linkage errors have on the popu-
lation size estimate between the nationalities again are the result of the
implied coverage. In the sensitivity analysis we link individuals from the
CSR to the PR and the ER. However, for the Afghan, Iraqi and Iranian
individuals there are only 313 individuals in the CSR that did not link
to the PR and ER, which is 1,429 cases for the Polish individuals. The
coverage of the PR and ER is smaller for the Polish individuals com-
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FIGURE 3.3
Population size estimate for both nationalities with linkage error rate
β = 0.7, 0.5 or 0.3. The respective b has been distributed over the PR
and ER according the percentages on the X-axis. For example, the first
tick on the X axis, 10/90, means 10 percent of b were linked to the PR
and 90 percent of b to the ER. Note that part of b linked to the PR, a
part is distributed to the intersection of PR and ER.
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pared to the Afghan, Iraqi and Iranian individuals, given 1,429 cases are
new cases added by the CSR compared to only 313. Thus for the Pol-
ish individuals the population size estimate is less robust than for the
Afghan, Iraqi and Iranian individuals.

3.3.4 Erroneous captures in three registers, real data
example

When three registers are used and one register contains erroneous cap-
tures, a sensitivity analysis with γ can be carried out. We present here
one example. We define an erroneous capture rate γ = n̄001/n001. Erro-
neous capture rate γ was introduced for n̄001, because the CSR has the
most administrative error. Thus the added cases of the CSR relative to
the PR and ER may have the highest probability of erroneous captures.
For the sensitivity analysis a range from γ = 0.9 to γ = 0.1 of erroneous
captures are introduced to the observed values.

The bias resulting from erroneous captures in the capture-recapture
analysis for both nationalities can be found in Figure 4. For erroneous
captures in three registers, the population size estimate for the individ-
uals with a Polish nationality is not robust to violate this assumption.
When assuming that all the individuals belong to the population, the
total number of Polish individuals in the Netherlands is 450,945. When,
however, erroneous captures of γ = 0.5 are introduced, the population
size is 286,953. Thus we overestimate the population size estimate by 65
percent when erroneous captures are present.

Again we find that when violating erroneous captures the popula-
tion size estimate for the individuals with an Afghan, Iraqi and Iranian
nationality is quite robust to erroneous captures. Under no erroneous
captures the total number of Afghan, Iraqi and Iranian individuals in
the Netherlands is 68,682. When, however, we operate under γ = 0.5
and we have 50 percent of erroneous captures in the CSR, the popula-
tion size estimate is 64,889, and we overestimate by only six percent.

As was stated in the previous section, the implied coverage of the
PR and ER is higher for the Afghan, Iraqi and Iranian individuals than
for the Polish individuals. As such, the population size estimate under
erroneous captures is more robust for the Afghan, Iraqi and Iranian in-
dividuals than for the Polish individuals.
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FIGURE 3.4
Population size estimate for both nationalities under a Gamma ranging
from 1 to 0.1. Under γ < 1 no erroneous captures are assumed, and for
γ 6= 1 erroneous captures are assumed.
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3.4 Conclusion

In this manuscript we have compared two rather different nationality
groups: data of Afghan, Iraqi and Iranian individuals residing in the
Netherlands are compared to data of Polish individuals residing in the
Netherlands to assess the effect of linkage errors and erroneous captures
on the population size estimate. These two different nationality groups
have been chosen because their implied coverage is different due to dif-
ferent legal requirements to reside in the Netherlands. This results in
two rather different contingency tables, as can be seen from Table 3.2
and 3.8. Both nationality groups have a high number of individuals reg-
istered in the PR only. However, for the individuals registered in the
CSR there is a large difference between the nationality groups on the
implied coverage of the PR over the CSR.

Because individuals with a Polish nationality are free to move and
work in the EU, less Polish individuals registered in the CSR are also
in the intersection with PR. Thus the implied coverage of the PR rela-
tive to the CSR is low. For the individuals with an Afghan, Iraqi and
Iranian nationality we see the opposite. Because these individuals need
a working or residence permit to enter the Netherlands, more individu-
als registered in the CSR are also in the intersection with the PR. This
is probably due to the fact that those CSR registered individuals who
are not registered in the PR are illegally residing in the Netherlands,
whereas legally the Polish individuals only registered in the CSR are not
illegally residing in the Netherlands.

For the two register case we see that because the implied coverage
of the PR over the CSR is different between the two nationality groups,
the effect of linkage errors and erroneous captures is more dramatic for
the Polish data than for the Afghan, Iraqi and Iranian data. The implied
coverage of the PR given the CSR for the Afghan, Iraqi and Iranian indi-
viduals is already relatively high, such that the population size estimate
is more robust to violation of the assumptions. However, for the Polish
data the implied coverage of the PR given the CSR is rather small, such
that the population size estimator is less robust to violations of the same
percentage as for the Afghan, Iraqi and Iranian individuals.

Given the implied coverage has a substantial impact on the popula-
tion size estimation when assumptions are violated, it is important that
all units are linked correctly. Currently there are some developments in
the theory and practice of capture-recapture methods that aims at link-
age error-unbiased estimates. One of which is the research from Consiglio
and Tuoto (2015) based on Ding and Fienberg (1994) for probabilistic
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linkage, where they propose to use the estimated number of false posi-
tives and false negatives. For our current data we were unable to use their
method, because of the 37% of individuals in the CSR who are without
background information. These cases create unrealistic false positive and
false negative probabilities. Additionally, so far this method is only de-
veloped for two registers.

We have assumed in this paper that when assessing the effect of ei-
ther linkage error or erroneous captures on the population size estimate,
all other assumptions are met. This is not very realistic. However, this
did allow us to assess the effect of violating the assumptions on the pop-
ulation size estimator. To introduce more than one violation per data
set would make the presentation more complex.

In this manuscript we have chosen relatively random linkage error
rates and erroneous capture rates. These were chosen to assess the effect
of minor deviations in perfect linkage and no erroneous captures to a
more extreme deviation. Given that we can not assess the extent of de-
viation of the assumptions in observed data, we use sensitivity analyses
to assess the effect of relative to extreme deviations.

We have found that implied coverage is an important aspect of the
effect that violations of assumptions may have on the population size
estimator. When the implied coverage of register 1 given register 2 is
large, the population size estimate is relatively robust to violations of
assumptions. However, when the implied coverage of register 1 given reg-
ister 2 is small, the population size estimate is not robust to violations
of the assumptions. We advise researchers to assess the implied coverage
of the data used, because this will have an effect on the population size
estimate.

3.5 Appendix

3.5.1 Tables for section 3.2.3

Results for the sensitivity analysis for linkage error under error rate β in
two registers for the Afghan, Iraqi and Iranian individuals can be found
in Table 3.9. The first row shows the estimate of the missed portion
of the population under a β from 0.5 to 1.5. The second row gives the
population size estimate N̂ = m11 + m01 + m10 + m̂00. The third row
gives a relative bias, the bias of the estimate under assumed perfect
linkage N̂ to the estimate adjusted for linkage error N̂(β), where N̂(β) =
m̂00(β) +m11+b +m10−b +m01−b.
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TABLE 3.9
Robustness analysis of the population size estimate for the people re-
siding in the Netherlands in 2010 with an Afghan, Iraqi and Iranian
nationality.

β 0.5 0.6 0.7 0.8 0.9 1
m̂00(β) 6,199 7,603 9,070 10,605 12,213 13,898

N̂(β) 66,606 68,042 69,541 71,208 72,748 74,465

N̂/N̂(β) 1.12 1.09 1.07 1.05 1.02 1

β 1.1 1.2 1.3 1.4 1.5
m̂00(β) 15,665 17,522 19,475 21,531 23,699

N̂(β) 76,264 78,153 80,138 82,226 84,426

N̂/N̂(β) 0.98 0.95 0.93 0.90 0.88

Results for the sensitivity analysis for linkage error under error rate
β in two registers for the Polish individuals can be found in Table 3.10.
The first row shows the estimate of the missed portion of the population
under a β from 0.5 to 1.2, given that it was impossible to take more
linkage error. The second row gives the population size estimate N̂ . The
third row gives a relative bias, the bias of the estimate under assumed
perfect linkage N̂ to the estimate adjusted for linkage error N̂(β).

TABLE 3.10
Robustness analysis of the population size estimate for the people resid-
ing in the Netherlands in 2010 with a Polish nationality.

β 0.5 0.6 0.7 0.8 0.9 1
m̂00(β) 26,894 37,218 51,285 71,441 102,657 157,340

N̂(β) 70,278 80,766 94,999 115,321 146,703 201,552

N̂/N̂(β) 2.87 2.50 2.12 1.74 1.37 1

β 1.1 1.2
m̂00(β) 277,525 754,465

N̂(β) 321,903 799,009

N̂/N̂(β) 0.63 0.25

3.5.2 Tables for section 3.2.5

Table 3.11 shows the robustness analysis for the Afghan, Iraqi and Ira-
nian people considering erroneous captures of size γ in the CSR register.
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Row m̂00(γ) shows the maximum likelihood estimate under erroneous
captures of size γ. The second row is the total population size estimate
N̂(γ) = m̂00(γ) +m10 +m01γ +m11 = N̂ + (γ−1)(m̂00 +m01). The third

row is the relative bias of N̂(γ) to N̂ .

TABLE 3.11
Robustness analysis of the population size estimate for the people re-
siding in the Netherlands in 2010 with an Afghan, Iraqi and Iranian
nationality when adjusting for γ erroneous captures.

γ 1 0.9 0.8 0.7 0.6
m̂00(γ) 13,898 12,508 11,118 9,728 8,339

N̂(γ) 74,465 73,043 71,621 70,199 68,778

N̂/N̂(γ) 1 1.02 1.04 1.06 1.08

γ 0.5 0.4 0.4 0.2 0.1
m̂00(γ) 6,949 5,559 4,169 2,780 1,390

N̂(γ) 67,356 65,934 64,512 63,091 61,669

N̂/N̂(γ) 1.11 1.13 1.15 1.18 1.21

Table 3.11 shows the robustness analysis for the Polish people con-
sidering erroneous captures of size γ in the CSR register. Row m̂00(γ)

shows the maximum likelihood estimate under erroneous captures of size
γ. The second row is the total population size estimate N̂(γ). The third

row is the relative bias of N̂(γ) to N̂ .

TABLE 3.12
Robustness analysis of the population size estimate for the people resid-
ing in the Netherlands in 2010 with a Polish nationality,when adjusting
for γ erroneous captures.

γ 1 0.9 0.8 0.7 0.6
m̂00(γ) 157,340 141,596 125,853 110,109 94,366

N̂(γ) 201,552 185,642 169,733 153,824 137,914

N̂/N̂(γ) 1 1.09 1.19 1.31 1.46

γ 0.5 0.4 0.3 0.2 0.1
m̂00(γ) 78,717 62,974 47,230 31,487 15,743

N̂(γ) 122,100 106,190 90,281 74,372 58,462

N̂/N̂(γ) 1.65 1.90 2.23 2.71 3.45
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3.5.3 Tables for section 3.3.3

Table 3.13 shows the sensitivity analysis for the individuals with a Polish nationality by the three registers. The rows
display the percentage that has been taken from the CSR. The columns show how much of the percentage taken from
the CSR has been linked to either the PR or the ER.

TABLE 3.13
Resulting population size estimates when percentages linkage errors are taken from the CSR (rows) and they are divided
differently over the PR and ER (columns) for the Polish individuals.

Percentage
in PR→ 10 20 30 40 50 60 70 80 90
Percentage
in ER → 90 80 70 60 50 40 30 20 10
Percentage
from CSR
10 188,054 195,671 204,215 211,794 222,621 232,873 245,087 258,598 273,813
20 122,628 129,366 137,900 148,190 159,065 171,643 186,595 205,168 226,379
30 84,768 90,377 97,674 105,885 116,075 127,696 142,554 161,835 186,264
40 55,395 64,623 70,021 76,776 84,787 95,314 108,542 125,916 150,558
50 46,185 45,966 54,906 54,723 54,544 70,060 81,068 96,087 118,808
60 29,404 30,769 35,100 39,108 43,869 54,047 53,828 70,987 89,733
70 19,542 22,000 23,439 26,110 29,520 34,019 40,220 53,220 63,912
80 11,684 12,730 14,074 15,668 17,805 20,644 24,625 30,536 40,534
90 5,280 5,754 6,366 7,132 8,146 9,477 11,372 14,290 19,259

Table 3.14 shows the sensitivity analysis for the individuals with an Afghan, Iraqi and Iranian nationality by the
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three registers. The rows display the percentage that has been taken from the CSR. The columns show how much of
the percentage taken from the CSR has been linked to either the PR or the ER.

TABLE 3.14
Resulting population size estimates when percentages linkage errors are taken from the CSR (rows) and they are divided
differently over the PR and ER (columns) for the Afghan, Iraqi and Iranian individuals.

Percentage in PR → 10 20 30 40 50 60 70 80 90
Percentage in ER → 90 80 70 60 50 40 30 20 10
Percentage
from CSR
10 7,695 7,686 7,671 7,657 7,647 7,632 7,623 7,609 7,594
20 6,813 6,788 6,766 6,745 6,724 6,699 6,678 6,658 6,637
30 3,024 3,185 3,340 5,868 5,843 5,814 5,785 5,757 5,729
40 2,190 2,377 2,547 2,733 4,973 4,942 4,909 4,880 4,847
50 1,488 1,675 1,856 2,042 2,235 4,061 4,030 3,998 3,967
60 923 1,104 1,285 1,455 1,635 3,223 3,194 3,164 3,134
70 495 651 810 965 1,117 2,402 2,375 2,350 2,324
80 133 214 295 376 457 1,595 1,575 1,556 1,537
90 39 133 224 314 405 495 585 693 769
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3.5.4 Tables for section 3.3.4

Table 3.15 shows the robustness analysis for the Afghan, Iraqi and Ira-
nian people considering erroneous captures of size γ in the CSR register.
Row m̂00(γ) shows the maximum likelihood estimate under erroneous
captures of size γ. The second row is the total population size estimate
N̂(γ). The third row is the relative bias of N̂(γ) to N̂ .

TABLE 3.15
Erroneous captures for three registers for the Afghan, Iraqi and Iranian
individuals

γ 1.00 0.90 0.80 0.70 0.60
m̂00(γ) 7,249 6,531 5,790 5,072 4,354

N̂(γ) 68,682 67,932 67,160 66,411 65,662

N̂/N̂(γ) 1.00 1.01 1.02 1.03 1.05

γ 0.50 0.40 0.30 0.20 0.10
m̂00(γ) 3,613 2,895 2,177 1,459 718

N̂(γ) 64,889 64,140 63,391 62,642 61,869

N̂/N̂(γ) 1.06 1.07 1.08 1.10 1.11

TABLE 3.16
Erroneous capture for three registers for the Polish individuals

γ 1.00 0.90 0.80 0.70 0.60
m̂00(γ) 326,327 293,671 261,016 228,360 195,705

N̂(γ) 450,945 418,146 385,348 352,549 319,751

N̂/N̂(γ) 1.00 1.08 1.17 1.28 1.41

γ 0.50 0.40 0.30 0.20 0.10
m̂00(γ) 163,049 130,622 97,966 65,311 32,655

N̂(γ) 286,953 254,383 221,584 188,786 155,987

N̂/N̂(γ) 1.57 1.77 2.04 2.39 2.89
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4.1 Introduction

In this manuscript we are interested in the estimation of the population
size of the so-called usual residents in the Netherlands. According to the
European Union, Regulation (EU) No 1260/2013 of the European Parlia-
ment, usual residence is defined as ”The place where a person normally
spends the daily period of rest, regardless of temporary absences for
purposes of recreation, holidays, visits to friends and relatives, business,
medical treatment or religious pilgrimage”. An individual is considered
a usual resident when they have lived in the Netherlands for a contin-
uous period of 12 months before the reference time, or if they arrived
in the 12 months before the reference time and intend to stay for at
least a year. When these circumstances can not be established, ”usual
residence” means the place of registered residence. The registers used in
this manuscript however may register a form of length of stay based on
registration date, but not an intent to stay. Hence, only a length of stay
may be used to assess usual residence.

The Netherlands has the advantage of having a population register
(PR), wherein all registered individuals are documented. Even though
for a large part the PR entails the usual residents, for obvious reasons
part of the usual residents will be missed by the PR. This incomplete-
ness of the PR has more than one reason. First, within the European
Union there is free movement and employment for individuals with a
European Union nationality. Usual residents with a European Union na-
tionality do have to register themselves in the PR. Specific rights and
services can be provided only to individuals officially registered in the
PR. However, unregistered individuals might have forgotten to register,
do not know they need to register, or do not want to. Second, the PR is
also incomplete due to immigrants, coming from outside the European
Union without a working or residence permit. Additionally, as the actual
population of the Dutch Census is restricted to those who are registered

This chapter has been published as: S. C. Gerritse, B. F. M. Bakker, and P. G. M.
van der Heijden. Different methods to complete datasets used for capture-recapture
estimation: estimating the number of usual residents in the Netherlands. Statistical
Journal of the IAOS, 31, 613627. 2015. Acknowledgement of author contributions:
Theoretical development by BB, SG and PvdH. Document written by SG (main
document) and BB (part on previous research), edited by PvdH and BB. Analyses
carried out by SG. The authors gratefully acknowledge support in programming by
Peter-Paul de Wolf and Maarten Cruyff.



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 87 — #109 i
i

i
i

i
i

Different methods to complete datasets used for estimation 87

in the PR regardless their residence duration, the estimated true number
of usual residents minus the registered population is an indicator of its
under count. The registered population will also contain an over count.
An over count may occur when registered individuals no longer reside in
the Netherlands because of emigration, because they passed away or in
the case of administrative delay. In the Netherlands however this is not
as big a problem as the under count. Bakker (2009) estimated an over
count of 31 thousand individuals, which is only 0.2 percent of the Dutch
population.

Because the PR alone is not sufficient to determine the number
of usual residents, we linked the PR to an Employment Register (ER)
and a Crime Suspects Register (CSR). This enables us to use capture-
recapture methodology to assess the part of the population missed by
all three registers (Fienberg, 1972; Bishop et al., 1975; Cormack, 1989;
International Working Group for Disease Monitoring and Forecasting,
1995). However, because we are interested only in the usual residents
of this population, the statistical problem is more complicated. For the
PR and the ER residence duration can be derived. However, in the CSR
there is no information on residence duration at all. Part of this lack of
information in the CSR is solved because this register is linked to the
PR and the ER. For the CSR individuals not linked to the PR and/or
the ER the information on residence duration is missing.

Therefore we are dealing not only with estimating a population size,
but also with handling missing data, since the covariate usual residence
is partially missing. Partially missing covariates are usually ignored in
capture-recapture problems because they lead to missing data in one or
more registers. However, because the covariate usual residence is central
in our research question, we cannot ignore it, and we have to solve this
missing data problem before we can estimate the population size using
capture-recapture methodology.

In estimating usual residence we are interested in what method
handles our missing data problem best. When missingness is Missing
At Random (MAR) the Expectation Maximization (EM) algorithm can
be used to handle the missing data problem (Dempster et al., 1977). In
previous research on capture-recapture problems with missing covariates
the EM algorithm has been used (Zwane and Van der Heijden, 2007;
Sutherland et al., 2007; Van der Heijden et al., 2012; Gerritse et al.,
2015b). In these contributions the data are coded into a contingency
table format for which the missing data problem is solved by methods
developed by Little and Rubin (2002) and Schafer (1997c). See also Fien-
berg and Manrique-Vallier (2008) for a discussion on the EM algorithm
in capture-recapture methods.

However, only part of the information in the observed data seems
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relevant for solving the missing data problem, as we have great reserva-
tions of using the information from individuals that are observed in the
PR. The reason is that it is unlikely that individuals that are registered
in the PR are relevant for the CSR registered individuals that do not link
to the PR or ER. Large part of the individuals in the CSR that are not
registered in the PR and do not work in the Netherlands, are assumed to
stay in the Netherlands for only a short period; on the other hand, in the
PR almost all individuals reside longer than a year in the Netherlands.
From the foreign individuals not in the PR but registered in the ER,
only 30 percent are usual residents. If only 30 percent of the individuals
registered in the ER, but not the PR, are usual residents, compared to
nearly 100 percent of the PR registered individuals, it seems implausible
to assume that the CSR registered individuals that are not in the PR
and ER resemble PR registered individuals. Then the ER registered in-
dividuals provide better information about the missing observations in
the CSR on the variable usual residence. We note, though, that the EM
algorithm is not flexible enough to use only a subpopulation of the data
for solving the missing data problem. However, given the missing data
is unlikely to resemble the observed data, but only a part of it, the EM
algorithm may give biased results.

Another method to handle missing data is multiple imputation. In
the context of in capture-recapture analyses we know of one application
of multiple imputation used before to impute missing values (Zwane and
Van der Heijden, 2007), as well as more general imputation methods
(ONS, 2012a). For categorical data Kropko et al. (2014) found that con-
ditional multiple imputation, such as PMM, gave more accurate results
in a simulation study on categorical missing data compared to multi-
ple imputation from a joint distribution. In a comparison of imputation
methods for binary data (not including EM), PMM outperformed the
other imputation methods (Peeters et al., 2015). In this paper we use
PMM De Waal et al. (2011); Buuren (2012) as a method to be compared
to the EM algorithm. PMM is a sequential multiple imputation method.
When data are missing PMM enables the researcher to search the data
for a unit that has the same characteristics as the unit that is to be im-
puted (De Waal et al., 2011). The advantage of PMM is that it provides
the researcher with the possibility to use only part of the observed data
set as donor to impute the missing usual residence. Thus, where EM has
the drawback that it has to use the complete data to impute the missing
information, PMM is able to solve the missing data problem in a more
appropriate way when only part of the data is relevant for the missing
data.

This paper contributes by comparing the EM algorithm and PMM
to handle partially missing covariates in capture-recapture analyses. Four
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scenarios were identified. First, the EM algorithm with a so-called maxi-
mal loglinear model will be used to complete usual residence in the CSR.
In this scenario, the maximal model is used for both EM algorithm and
capture-recapture estimation. Scenario 2 and 3 are used to explore dif-
ferent models for the EM algorithm and the capture-recapture analysis.
In scenario 2 the data are completed via the EM algorithm under the
maximal loglinear model, comparable to scenario 1. However, capture-
recapture is now used on this completed dataset to select the best fitting
model. Scenario 3 was used to select the best fitting loglinear model for
both the EM algorithm and capture-recapture. Whereas in scenario 2
the loglinear model for EM and capture-recapture will be different, here
the restrictive model was kept constant for both completion via EM al-
gorithm and estimation via capture-recapture. The fourth scenario will
use the PMM imputation to impute the missing residence duration and
will use only ER registered individuals that are not in the PR as donors.
Then capture-recapture analysis was carried out on the completed data
set.

We continue as follows. In section 2 the data sources used in this
manuscript and the linkage process will be explained. In section 3 we
will present the results from previous research on the size of usual res-
idents. In section 4 we describe the methods to complete the data and
the estimation of the population size in more detail. In section 5 we will
present the results, and discuss which scenario gives the best estimate
of the usual residents missed by the population register. In section 6 we
will conclude this manuscript.

4.2 Data sources and their linkage

Our capture-recapture analysis makes use of three linked registers.
The PR is the official Dutch Population Register, in which individuals
actively have to register themselves. The ER is a register not document-
ing individuals but documenting jobs. For the purpose of our analyses
the job-register of 2010 has been transformed into a register on individu-
als. Jobs were attributed to the individuals holding those jobs. Moreover,
if a job started in 2010 or was ended in 2010, the jobs are registered with
a starting and/or an ending date. The CSR is a register in which sus-
pects of crimes of which the police makes a report are recorded. This
register is event based: the units are the reports of the police in which
one or more crimes are recorded. There is little information in the CSR
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and the ER on individuals with ages under 15 and over 65, individuals
under 12 can not be registered in the CSR and the ER only registers
between 15 and 65. Thus the population specified in this paper consists
of the population aged 15 to 65.

The data have been linked for the most part deterministically us-
ing a personal identification code that is widely used in Dutch registers.
Probabilistic linkage was used to improve this linkage. During linkage it
was found that 38 % of the units that were registered only in the CSR
had missing information in the linkage variables and therefore were diffi-
cult to link to the PR and ER. There is a chance that this group consists
mostly of individuals that were either tourists or criminals entering the
Netherlands for a short period. This would mean that these individuals
are erroneous captures because they do not belong to the population
of Dutch residents. It is important to assess whether these individuals
substantially affect the population size estimate. However, this research
topic is not in the scope of this article and is discussed elsewhere (Bakker
et al., 24 - 24 november 2014). In this manuscript we have eliminated a
sample of 30 percent of the individuals in the CSR population that did
not link to the PR or the ER, assuming that these individuals are erro-
neous captures. Of these 30 percent 80 percent were individuals that had
missing values in the linkage variables and 20 percent were individuals
that did not have missing values in the linkage variables. This distri-
bution was chosen assuming that individuals with missing values in the
linkage variables had a higher chance of not belonging to the population.

Neither of the three registers has a covariate directly measuring res-
idence duration. However, for two of the three registers we can derive
residence duration from information available in those registers. In the
PR data are available on the date of registration. In the ER there are
data available on joblength. For more details on how the ER residence
duration was derived, see Bakker et al. (24 - 24 november 2014). For
those individuals in the CSR that link to either the PR, the ER or to
both we use the residence duration from the PR or the ER. When res-
idence duration is available from both the PR and the ER the longer
residence duration is assumed superior over the residence duration of
one of them. In the CSR only there are no variables available to derive
residence duration from.

The three linked registers were analysed with loglinear models, as is
the standard approach in capture-recapture of human populations, com-
pare (International Working Group for Disease Monitoring and Fore-
casting, 1995). Four covariates were used in the loglinear models: na-
tionality group, age, sex and usual residence. Initially nationality group
has 8 categories : (1) EU15 (excl. Netherlands) (2) Polish (3) Other EU
(4) Other western (5) Turkish, Moroccan, Surinam (6) Iraqi, Iranian,
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Afghan, asylum seeker countries Africa (7) Other Balkan, former So-
viet Union, other Asian, Latin American, and (8) other nationalities,
not mentioned elsewhere. The countries are clustered according to likely
migration motives, migration legislation, regulations of the PR and size.
However, in the analysis the last nationality group gave numerically un-
stable results, and therefore the last two nationality groups were taken
together, resulting in 7 nationality groups. For age, we use four levels:
(1) 15-24 (2) 25-34 (3) 35-49 and (4) 50-64 years of age.

TABLE 4.1
Observed values for the three registers.

PR ER CSR Total
Yes No

Yes Yes 2,115 259,804 261,919
No 4,862 350,551 355,413

No Yes 355 112,529 112,884
No 3,561 0 3,561

Total 12,419 722,884 735,303

Table 5.1 shows the counts for the individuals in the three linked
registers ignoring the distribution over the four covariates. The zero
count is a structural zero as it represents the number of individuals
that belong to the population but are not registered in any of the three
registers. One of the aims of the analysis is to find an estimate for this
cell and for this purpose a capture-recapture analysis will be executed.
Table 1 shows that for the CSR there are more individuals not present
than present. In particular the number of individuals in the ER and
CSR, but not in the PR is small (355), much smaller than, for example,
the number of individuals that are only in the PR (355,413). Given that
these 355 individuals are distributed over four covariates, there are many
small cell counts in our data, including observed zeros.

4.3 Previous findings

There is previous research on the estimation of population sizes (most
notably, Hoogteijling (2002), Bakker (2009) and Van der Heijden et al.
(2011)) that overlaps with the population of usual residents that we
study in this paper, and these estimates are able to place the estimates
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found in our scenarios in perspective. However, this previous research
shows a wide variety of estimated population sizes depending on the
definitions of the population and the methods used, and therefore these
studies cannot be used as a simple benchmark for judging the outcomes
of our scenarios. Table 4.2 shows their estimates on individuals not reg-
istered in the PR.

Hoogteijling (2002) collected different estimates from earlier re-
search in the nineties. In order to achieve an estimate of the size of the
population not registered in the PR and living four months or longer in
the Netherlands in 2000, she combined the available information from
different sources. Neglecting some very small categories, the popula-
tion can be estimated by adding illegal immigrants, adding the balance
of wrongfully not registered residents and wrongfully registered non-
residents, and recently arrived asylum seekers who have not registered
because they are not allowed to do so yet. This results in an estimate
of 73 to 149 thousand missed residents, with a mean of 111 thousand,
being less than 1% of the registered population (Table 4.2).

Bakker (2009) also used information from different sources to get an
estimate of the under and over coverage of the PR in 2006, having the
same definition of usual residence as Hoogteijling (2002), so those who
stay longer than four month in the Netherlands are supposed to be usual
residents. He distinguishes the different categories of which it is known
that they are missed or are over counted in the PR and he estimates their
numbers with different sources. He estimates the total under count as
205 thousand usual residents. However, there is a large uncertainty be-
cause some of the estimates are quite arbitrary. The largest contribution
is from illegal immigrants whose size is estimated between 74 and 184
thousand. The total number of missed persons is 236 thousand, where
31 thousand persons are still in the population register while they have
left the country or have died.

Van der Heijden et al. (2011) used capture-recapture methodology
to estimate the missed portion of the population in 2009 from Poland,
Bulgaria, Romania and other nationality groups in middle and eastern
Europe new in the EU (i.e. Hungary, Czech republic, Slovakia, Slovenia,
Latvia, Lithuania and Estonia). Therefore, their outcomes can only be
compared to two nationality groups used in this paper. They used the
PR and the CSR as sources and applied capture-recapture methods to
estimate usual residents in the same definition as we do. A difference
between Van der Heijden et al. (2011) and this manuscript is that in
this manuscript assumed erroneous captures have been excluded from
the analysis, whereas in Van der Heijden et al. (2011) these may still
have impact on the estimate. Additionally, the number of usual residents
is given for the total population of individuals with a middle and eastern
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European nationality from new EU countries residing in the Netherlands,
including those registered in the PR. There are 200 thousand usual res-
idents with a middle and eastern European nationality not registered in
the PR.
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TABLE 4.2
Overview of previous research to individuals residing in the Netherlands.

min. max. Total/mean of which usual residents
x1000 % x1000

Hoogteijling (2002), estimates for the year 2000
Registered population 15987

plus illegal immigrants 46 116 81 80 65
balance wrongfully not registered residents -15 -16 -15.5 80 -12

and wrongfully registered non-residents
plus asylum seekers not yet registered as residents 42 49 45.5 80 36

missed population of residents (≥4 month) 73 149 111 89
Total population of residents (≥4 month) 16,060 16,136 16,098 16,076

Bakker (2009), estimates for the year 2006
Registered population 16,334

plus illegal immigrants 74 184 129 80 103
plus foreign labour force 64 30 19
plus foreign students 25 30 8
plus diplomats and NATO military 6 80 5
plus asylum seekers not yet registered as residents 6 80 5

balance administrative delay 5 80 4
minus non-residents working abroad temporarily -29 30 -9

missed population of residents (≥4 month) 205 135
Total population of residents (≥4 month) 16,509 16,469



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 95 — #117 i
i

i
i

i
i

Different methods to complete datasets used for estimation 95

It is difficult to describe the expected value of the size of the popu-
lation of usual residents in 2010, because some estimations are outdated
and some do not use the same definition, or both. However, by har-
monizing the results for the definitional differences and looking at the
developments of the number of new asylum seekers and the number of
foreign workers, we can provide a range of expected outcomes. These ex-
pected outcomes could help in providing a perspective where the current
estimate of usual residents may be compared to.

In the under count of 111 thousand found by Hoogteijling (2002)
the majority is former or present asylum seeker. Because the procedures
for seeking asylum had a long duration, certainly with a mean longer
than a year, we assume that most residents who were not registered as
such stayed for longer than a year in the Netherlands. Therefore we as-
sume 80 percent of the 111 thousand not registered to be usual residents,
which comes down to 89 thousand usual residents in 2000.

Bakker (2009) estimated an over count of 205 thousand and this
estimate is difficult to harmonize with the definition of usual residence
in this manuscript, because we do not have empirical information on the
residence duration of the different categories that are over counted in
the PR. However, if we assume (i) that 80% of the illegal immigrants are
a usual resident because they still are in majority former asylum seekers
and (ii) that the same percentage is true for smaller categories like asy-
lum seekers, diplomats and NATO military and administrative delay of
new born and immigration, and (iii) that 30% of the foreign work force
and foreign students is a usual resident, the same percentage as we found
for the foreign work force in 2010 (Bakker et al., 24 - 24 november 2014),
then the estimated number of usual residents not registered in the PR
is 135 thousand in 2006.

The estimate of Van der Heijden et al. (2011) for the usual resi-
dents in 2009 from Eastern European countries uses the same definition
and does not have to be harmonized. However, as they did not adjust
their estimation for erroneous captures, the estimate of 200 thousand is
expected to be too high. Bakker et al. (24 - 24 november 2014) show
a decrease of approximately 37% if they correct for erroneous captures,
we expect that the estimation of the size of the usual residents would be
126 thousand only from Eastern Europe.

Two significant developments have to be mentioned to explain
changes in the number of not registered usual residents between 2000
and 2010. The first is the decline of the number of asylum seekers be-
tween 2000 and 2010 (Figure 1). The numbers dropped from almost 45
thousand in 2000 to 10 thousand in 2004, among else due to changed
regulations. After 2004 there is a more or less constant number of asy-
lum requests between 7 and 15 thousand. The other one is the sharp rise
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FIGURE 4.1
Number of asylum requests in the Netherlands 1995-2010 (Central Bu-
reau of Statistics)

of the foreign workforce from the year 2006, in particular from Eastern
Europe, who did not register themselves in the population register. This
was in 2006 121 thousand and increased to 182 thousand in 2010 (CBS,
StatLine, 2015). This development was possible because the civilians of
these countries could enter the Netherlands without a residence permit
and after 2007 for the most part could also work without a working per-
mit.

We arrive at the following conclusion, cautiously indicating that it
is always dangerous to extrapolate earlier estimates to later periods. We
expect that the number of usual residents not registered in the PR has
been increased since the year 2000 to 175 to 225 thousand. The total
number is certainly much higher than the 135 thousand in 2006 because
of the inflow of migrant workers from Eastern Europe since then. On
the other hand, the number of asylum seekers has been constant since
2006 and will not cause important developments. If the estimation of
the number of not registered usual residents from Eastern Europe in
2009 is correct, then it is reasonable to assume that the upper bound is
approximately 225 thousand, because the 100 thousand not registered
usual residents from other countries will not have disappeared.

As can be seen from Table 5.1 there are 116,445 registered individuals
not in the PR but in the CSR and/or the ER. Of these 116 thousand
individuals, we found that 33 thousand are usual residents, and thus are



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 97 — #119 i
i

i
i

i
i

Different methods to complete datasets used for estimation 97

part of the known under coverage, these individuals have to be added to
the estimate from the scenarios (Bakker et al., 24 - 24 november 2014).

4.4 Methods

We will use different scenarios for handling the missing data and esti-
mating the part of the population missed by all three registers. Here, we
describe the scenarios and evaluate them in the context of our problem.
We will first give a short introduction to capture-recapture analysis us-
ing loglinear modelling and then we will discuss the EM algorithm and
multiple imputation in this context.

4.4.1 Capture-recapture methodology using loglinear
modelling

For estimating the size of human populations loglinear modelling seems
to be the most popular method. It was discussed in depth in the stan-
dard work by Bishop et al. (1975) and since then it has been reviewed
regularly, for example by Cormack (1989), the International Working
Group for Disease Monitoring and Forecasting (1995) and Chao et al.
(2001).

The simplest loglinear model for estimating the size of a population
is based on two linked registers, A and B. Let the levels of A be indexed
by i (i = 0,1) where i = 0 stands for ”not included in register A”, and
i = 1, stands for ”included in register A”. Similarly, let the levels of B be
indexed by j (j = 0, 1). Expected values are denoted by mij . Observed
values are denoted by nij with n00 = 0, because there are no observa-
tions for the cases that belong to the population but were not present
in either of the registers.

After linkage there is an observed number of individuals both in
A as well as in B, n11, an observed number of individuals only in A
but not in B, n10 and an observed number of individuals only in B
and not in A, n01. Individuals being neither in A nor B are missed and
capture-recapture can estimate this missing number, where we denote
this estimate by m̂00. Assuming statistical independence of being in A
and being in B, the odds ratio between being in A and being in B is
1, i.e. n11m̂00/n10n01 = 1. It follows that m̂00 = n10n01/n11. Then the
population size N is estimated as N̂ = n+ m̂00, where n is the observed
number of individuals, i.e. n = n11 + n10 + n01. The link between these
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equations and loglinear modelling is that loglinear parameters are func-
tions of odds ratios. In the loglinear model for two variables, assuming
that the odds ratio is 1 comes to the same as assuming that the inter-
action parameter between A and B is absent. The independence model
just described is denoted in loglinear model notation as [A][B], showing
that being in register A is unrelated to being in register B.

By including a third register C the assumption of statistical inde-
pendence is replaced by the assumption that there is no three factor
interaction. This model is denoted by [AB][AC][BC]. In other words,
there may be interaction between A and B, but this interaction is iden-
tical in the sub-tables for individuals included in C and not in C. This
also suggests a way to find an estimate m̂000: as the odds ratios are iden-
tical, n111n001/n101n011 = n110m̂000/n100n010, and this can be solved for
m̂000.

Categorical covariates that are available in each of the registers,
such as age and sex, can be easily added. If we collect them in a stacked
variable X, the model becomes [XAB][XAC][XBC]. This model is satu-
rated as the number of parameters is identical to the number of observed
counts, and fitted values are equal to observed counts.

It is a crucial part of the capture-recapture procedure to search for
a model that is more parsimonious than [XAB][XAC][XBC], yet fits
the data well. Parsimonious models have the advantage that the result-
ing estimate of N is more stable (i.e. has a smaller confidence interval)
than saturated models (Agresti, 2013). The fit is usually evaluated using
the deviance, that follows a chi-squared distribution with the number of
counts minus the number of independent parameters when the model is
true. Here the number of counts is (2*2*2 -1)*(number of levels of the
stacked covariates), where the 1 refers to the cell that has a count of
zero by design, hence this cell is called a structural zero. The number
of possible models is large and there often is lack of theory that points
out which models are of particular interest. Therefore exploratory model
searches are usually employed, such as forward selection, backward elim-
ination and stepwise procedures, that we also know from linear multiple
regression. Using the difference deviance test, the AIC or the BIC a final
model is chosen, where a model with either the lowest AIC or the lowest
BIC is preferred. In contrast to the difference deviance test the AIC and
the BIC can also be used to choose between non-nested models. Both
the AIC as well as the BIC are a function of the deviance. The BIC leads
to more parsimonious models, because the AIC has a penalty of 2k but
the BIC a penalty of k log n, where k is the number of free parameters
and n the observed count. We use the BIC, because in capture-recapture
problems with a large observed count n, we prefer the BIC to prevent
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over fitting.

4.4.2 Missing covariate

The capture-recapture problem becomes more complicated when there
are covariates involved that are not observed in every register. In the
data that we study in this paper this holds for usual residence, which is
not observed in the police register CSR. We consider this to be a missing
data problem: the variable usual residence is missing for those individu-
als who are only in the register CSR. This type of missing data problem
has been worked out in detail for two registers, see (Zwane and Van der
Heijden, 2007; Van der Heijden et al., 2012; Gerritse et al., 2015b). Here
we have a capture-recapture problem with three registers instead of two,
so this case deserves careful attention. Table 4.3 illustrates.

TABLE 4.3
The Polish individuals by the three registers and usual residence. The
two missing cells add up to 1,043.

UR PR ER CSR
Yes No

No Yes Yes 32 3,523
No 34 3,225

No Yes 149 60,190
No missing 0

Yes Yes Yes 183 21,309
No 195 14,052

No Yes 81 20,216
No missing 0

Table 4.3 shows the cross-classified counts for the three registers
PR, ER and CSR, split out by UR and non-UR, for Polish individuals.
Notice that there are 16 cells in total, where two are structurally zero
(they refer to the individuals that are missed by all three registers), and
for two cells we only know the sum, namely for not in PR, not in ER,
but in CSR. Only the sum is known because for these individuals usual
residence is missing, so we cannot split them up over the cells yet. This
holds for 1,043 individuals, as indicated in the header of the table.

To simplify the discussion of loglinear models, we now use the vari-
ables P for PR, E for ER and C for CSR, and U for usual residence.
If usual residence would not be missing, the saturated model with as
many parameters as counts would be [PEU ][PCU ][ECU ]. The satu-
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rated model has 14 parameters, and it is saturated with the property
that the fitted counts are identical to the observed counts. However, due
to the missingness of the variable usual residence in the CSR there is one
count less (the two missing counts add up to 1,043) and the maximal
model for these data only has 13 parameters. The distinction between a
so-called maximal model and the standard saturated model is that in the
maximal model certain parameters are zero by design. The parameter for
the interaction between P , C and U can be estimated from the counts
32, 3,523, 149, 60,190, 183, 21,309, 81 and 20216; the parameter for the
interaction between P , C and U can be estimated from 32, 3,523, 34,
3,225, 183, 21,309, 195 and 14,052; but the parameter for the interaction
between P , E and U is not identified because for the 1,043 individuals
their level on U is not identified. Therefore the maximal model becomes
[PE][PCU ][ECU ]. Interestingly, because of the identification problem
the model has no parameter for the interaction between P, E and U.
When individuals are not in P and E but only in C, the data for usual
residence are missing by design. As a result the information on U in the
maximal loglinear model is only available in the margins of the variables
P , C and U , and the margin of E, C and U , but not in the margin of P ,
E and U . For more results on maximal models, see (Zwane and Van der
Heijden, 2007).

For evaluating scenarios it is important to note that model
[PE][PCU ][ECU ] makes two assumptions. First the three-factor inter-
action between P , E and C is zero. In other words, the relation between
P and E is identical for those who are in C and those who are not in
C (and, similar statements can be made for the relation between P and
C and between E and C). Secondly, the interaction between P , E and
U is zero, meaning that the interaction between P and E is identical
for those individuals who have a usual residence shorter than a year and
those who have a usual residence longer than a year. However, this last
assumption is not very plausible. It is known that those who stay longer
in the country, in particular from Eastern Europe, assimilate fast in so-
ciety, find permanent work and a partner (Gijsberts and Lubbers, 2015).
Therefore they will register themselves more frequently than those who
only live in the Netherlands for a short period. In other words, it is
plausible that for those who reside in the Netherlands for longer than
a year the odds ratio between P and E will be larger than for those
who reside in the Netherlands for shorter than a year. Yet the maximal
model cannot accommodate this because the interaction between P , E
and U cannot be estimated.

These preliminaries bring us to the definition of the scenarios. Our
statistical problem has two aspects:

(i) there are missing data on the variable usual residence, and
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(ii) using capture-recapture methodology we are going to fit a log-
linear model under which the part of the population that is missed by
all three registers is estimated.

Our scenarios differ in the way that the two steps are taken. We
make use of two procedures for handling the missing data problem: the
Expectation-Maximization method (EM) and multiple imputation using
Predictive Mean Matching (PMM).

4.4.3 Scenarios using the EM algorithm

The EM algorithm is a general iterative algorithm for maximum like-
lihood estimation when data are incomplete (Little and Rubin, 2002).
The EM algorithm consists of an Expectation (E) step and Maximization
(M) step. In general in the E step the algorithm replaces missing values
by values that are expected under a given model. Then under the M step
the algorithm estimates parameters that are maximized on the expected
values of the E step. Then in the next E step expectations are calculated
for the missing values using the current best parameter estimates found
in the last M step, after which a new M step maximizes the parameters
using the data completed in the E-step. This is repeated until conver-
gence occurs, where the joint distribution of the register and covariate
variables are preserved, under the loglinear model specified. Hence MAR
is assumed under the joint distribution given loglinear modeling. For the
maximal model, convergence is after only one iteration.

After completion of the EM algorithm, the completed data can be
used for capture recapture estimation. When the loglinear model for
capture-recapture estimation is identical to the loglinear model the pa-
rameter estimates from the EM algorithm can be used to estimate the
population size. Then the EM algorithm alone suffices to estimate the
missed portion of the population. However, when after EM completion
another loglinear model is preferred for capture-recapture analysis, the
EM completed data can be used as input for the capture recapture anal-
ysis.

We distinguish the following scenarios. For scenario 1 we use the
EM algorithm where the loglinear model chosen is the maximal model.
For capture recapture analysis the maximal model is also used, and thus
the parameter estimates from the EM algorithm can be used to estimate
the missed portion of the population. In scenario 2 we also use the max-
imal model for the EM algorithm to complete the data. However, this
completed data are then used as input for capture-recapture analysis
where the function STEP in R is used to look for the best fitting, parsi-
monious loglinear model to the completed data. Then the EM algorithm
and capture-recapture are done in 2 steps. In scenario 3, just as in sce-
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nario 1, we use the parameters from the EM algorithm to estimate the
missed portion of the population. However, unlike scenario 1, scenario 3
will use more restrictive models for the EM algorithm.

4.4.4 Scenario for multiple imputation using predictive
mean matching

A fourth scenario is multiple imputation using Predictive Mean Match-
ing (PMM). When an individual has missing data PMM enables the
researcher to search in the data for individuals that have the same char-
acteristics as the individual that has values that need to be imputed, and
use their observed values to impute the missing value (De Waal et al.,
2011). MAR is assumed, in that units with the same background charac-
teristics will have similar values on the missing variable, if this variable
would have been observed.

Predictive mean matching is an example of a hot deck, nearest
neighbour multiple imputation method. Missing values are imputed us-
ing values from the complete cases matched with respect to some metric.
All individuals with the same background variables as the missing value
are candidate donors for imputing. From these donors, one random donor
is sampled from the candidates and the value on usual residence from
this donor candidate is taken as a value for the missing unit (Buuren,
2012; Little and Rubin, 2002). By selecting individuals from the same
background values, the joint distribution based on the background vari-
ables is preserved.

The PMM procedure has been repeated ten times, to account for
the uncertainty of the individual imputations. To estimate the number
of usual residents, the capture-recapture method has been applied to all
imputed datasets. To estimate the number of usual residents, the mean
of the ten estimates has been computed.

PMM has the advantage that it allows to select a specific subpopu-
lation for which it can be assumed that it resembles the subpopulation
that has to be imputed best. In this case, we have to find a donor pop-
ulation for the CSR-records that do not link to the PR and ER. In this
donor population it is presumable that the residence duration is rela-
tively short, because there is a positive association between residence
duration and registration. Therefore, for the donors we choose individ-
uals in the ER that do not link to the PR, i.e. individuals who are
working but did not register as a resident of the Netherlands, thus we
assume MAR in a conditional distribution. They also have a relatively
short residence duration because of this aforementioned association.
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4.4.5 Concluding remarks

We summarize the scenarios here. Both the EM algorithm and multiple
imputation using PMM are established methods with a solidly grounded
base in literature. Both methods assume Missing At Random (MAR).
There are also two important differences.

First, the EM algorithm cannot make use of models that are more
complicated than the maximal model. In the maximal model the inter-
action between P , E and U cannot be estimated. For the EM algorithm
the missing data are completed from a joint distribution of the observed
data under a given loglinear model. It has been argued above that this
is a drawback for our missing data, which is assumed to resemble only a
subpopulation of the observed data. On the other hand, PMM is applied
using as a donor population the subpopulation of individuals that are
in ER but not in PR. For this subpopulation the relation with usual
residence is used.

Second, both methods handle missing data differently. EM algo-
rithm completes the incomplete data according the loglinear model spec-
ified. Note that differences in loglinear models may result in different
estimates (Little and Rubin, 2002; Van der Heijden et al., 2012). Thus
the choice of the loglinear model is important. Predictive Mean Match-
ing (PMM) is a sequential multiple imputation method. When data are
missing PMM enables the researcher to search the data for a unit that
has the same characteristics as the unit that is to be imputed (De Waal
et al., 2011). The advantage of PMM is that a missing unit will be given
the same value on the missing variable of an observed unit. It is as-
sumed that units with the same background characteristics will have
similar values on the missing variable, if this variable would have been
observed. Then PMM has the advantage of assuming MAR between the
missing data, and the observed data that resembles the missing data
best. Multiple imputation using PMM is flexible in the sense that it is
possible to use only that part of the table that seems most appropriate
to use for the problem at hand. So in an evaluation of both differences
multiple imputation by PMM seems better suited to handle the problem
that we study.

Throughout the paper, the software R has been used for all com-
putations. For the EM algorithm the package CAT (Meng and Rubin,
1991; Schafer, 1997a,b) was used. For multiple imputations using PMM
the package MICE was used (Buuren, 2012). After completion, the R-
function GLM was used to estimate the missing part of the population.
We used parametric bootstrap confidence intervals to estimate a 95%
confidence interval for the point estimate of usual residents. 10,000 boot-
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strap samples are used.

4.5 Results

4.5.1 Scenario 1: Maximal model for EM estimation and
capture-recapture analysis

In our first scenario the missing data are completed under the maximal
loglinear model, and the missing part of the population is also estimated
under this model. This approach is carried out for the nationality groups
separately.

For almost all of the nationality groups the population size estimates
tend to infinity. To examine why we get these results, we have to take
in mind that we employ a two-step process. First the incomplete data is
completed via EM algorithm and then the capture-recapture analysis is
carried out to get an estimate of the missed portion of the population,
and problems can occur in both completion of the data or estimation
under capture-recapture analysis.

As an illustration of what goes wrong we go back to Table 4.3,
which is a marginal table of individuals with a Polish nationality where
we added up over the covariates sex and age. There are two structurally
zero cells, representing the part of the population that is not observed,
and two cells that are zero for which usual residence has to be estimated,
but where the sum should be 1,043.

First the missing values for usual residence is estimated under
the maximal model. This yields 655 individuals categorized as residing
shorter than a year, and 376 as longer than a year. The resulting table is
the input data for the capture-recapture analysis. Estimates are derived
again under the maximal model. As in the maximal model fitted counts
are equal to observed counts, it is important to realize that the observed
counts in Table 3 are further split up over age and sex. Hook and Regal
(2000) discussed that some models, especially the saturated model (in
our case, the maximal model), is sensitive to small or zero cells. As an
example, Table 4.4 shows the 376 out of 1,043 individuals in the CSR
only, classified as usual residents. There are only 2 women with an age
between 50 and 64, whereas there are 137 young men. Because our data
consists of both large and small cell numbers, and in this scenario we
used the maximal model for capture-recapture analysis, it follows that
the resulting estimate is implausibly high. Capture-recapture analysis
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thus is sensitive under the maximal model in contingency tables with
small and zero cells, which we have. Thus the maximal model cannot be
reliably used for capture-recapture analysis under the current data.

TABLE 4.4
Estimated Polish usual residents that are missed by all three registers,
by Age and Sex

Age Men Women
15 - 24 137 26
25 - 34 138 10
35 - 49 53 3
50 - 64 7 2

4.5.2 Scenario 2: Maximal model for EM estimation, re-
strictive models for capture-recapture analysis

In this scenario, after the EM algorithm was used for completing the
missing data under the maximal model, we used the function STEP in
R to choose the best fitting loglinear model via the BIC for the capture-
recapture analysis. Table 4.5 shows the results. We find a total of 659
thousand individuals missed by all three registers, 139 thousand of those
individuals are usual residents (confidence interval 120 – 176 thousand).
The usual residents are 21 percent of the total missed portion of the
population. Scenario 2 resulted in parsimonious and more stable models
where the outcome seemed more plausible.

The loglinear models for this scenario can be found in the Ap-
pendix. The models for scenario 2 are more parsimonious and restrictive
than the maximal model from scenario 1. For example, take the model
of the individuals with a Polish nationality. The last term in this model
[PUSA] is comparable to the first term in the model for scenario 1, which
was [PCUSA], but in scenario 2 the data are collapsed over the CSR. In
deleting CSR from the interaction term the distribution of individuals
over the contingency table becomes more balanced, and this leads to es-
timates from the capture-recapture analysis that are numerically more
stable.
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TABLE 4.5
Estimates for scenario 2

Nationality Total missed < 1 year ≥ 1 year 95% CI
x1000 x1000 x1000 x1000

EU15 146 104 42 30 - 47
Polish 265 211 53 49 - 69
Other EU 155 132 23 13 - 30
Other West 16 12 4 3 - 5
Turkey, etc. 3 1 1 .8 - 2
Iraq, etc. 9 8 2 1 - 2
Balkan, etc. Other. 65 51 14 10 - 28
Total 659 520 139 120 - 176
Estimates of the missed portion of the population per nationality for
scenario 2, where the maximal model is used for EM algorithm. The
analysis was done with the best fitting restrictive loglinear model.

4.5.3 Scenario 3: Restrictive models for both EM esti-
mation and capture-recapture analysis

In scenario 3 we use more restrictive models for the EM algorithm, and
keep models for EM and capture-recapture analysis equal. This is the
standard approach of using the EM algorithm. Results can be found in
Table 4.6. There are 129 thousand usual residents missed (CI is 111–170
thousand), which again is 20 percent on 608 thousand total individu-
als missed by the three registers. This total estimate is similar to the
estimate for scenario 2, however, the estimates per country are some-
what different. Interestingly, as can be seen in the Appendix, the best
fitting models for capture-recapture analysis on the completed datasets
are quite different between these two scenarios.

Table 4.7 shows the data after completion via EM algorithm under
a more restrictive model. Note that the data differ compared to Table
4.3. Under more restrictive models the content of the table can change
to maximize the fit of the margins under the loglinear model. Thus the
completed table differs from the observed Table 4.3.

4.5.4 Scenario 4: multiple imputation using PMM

Table 4.8 shows that when we use multiple imputation using PMM and
conduct a capture-recapture analysis on the data, 610 thousand individ-
uals are missed by all three registers, of which 179 thousand are usual
residents(with a larger CI of 121–237 thousand). Now there are 29 per-
cent usual residents on the total number of individuals missed by all
three registers, a slight increase compared to scenario 2 and 3. The CI
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TABLE 4.6
Estimates for scenario 3

Nationality Total missed < 1 year ≥ 1 year 95% CI
x1000 x1000 x1000 x1000

EU15 147 104 42 31 - 59
Polish 243 195 48 38 - 62
Other EU 142 123 20 13 - 35
Other West 18 13 4 3 - 7
Turkey 3 2 2 1 - 2
Iraq 10 8 2 2 - 3
Balkan, etc, Other. 45 34 11 9 - 13
Total 608 480 129 111 - 170
Estimates of the missed portion of the population per nationality for
scenario 3, where the same restrictive loglinear model is used for EM
algorithm and capture-recapture analysis.

TABLE 4.7
The data for the Polish individuals after completion with EM algorithm
via restrictive loglinear models

UR PR ER CSR
Yes No

No Yes Yes 23 3,530
No 33 3,226

No Yes 158 60,180
No 781 0

Yes Yes Yes 193 21,300
No 196 14,050

No Yes 71 20,225
No 261 0

for usual residents is higher than the estimates resulting from the EM
algorithm when more restrictive models are used, such as in scenario 2
and 3.

After PMM imputation the data are similar to Table 4.3 in that
the observed part of the data remains unchanged. However, the 1,043
individuals in the CSR are distributed differently per imputation, where
generally less usual residents are imputed than for scenarios 2 and 3.
As can be seen from the Appendix the loglinear model best fitting this
completed data is different from the other three scenarios and a different
estimate results.
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TABLE 4.8
Estimates for scenario 4

Nationality Total missed < 1 year ≥ 1 year 95% CI
x1000 x1000 x1000 x1000

EU15 156 112 46 24 - 68
Polish 240 178 61 28 - 95
Other EU 138 95 42 16 - 68
Other West 15 11 5 1 - 9
Turkey, etc, 4 2 2 .5 - 4
Iraq, etc, 9 3 6 5 - 7
Balkan, etc, Other. 48 31 17 12 - 22
Total 610 431 179 121 - 237
Estimates of the missed portion of the population per nationality for
scenario 4, after PMM imputation and restrictive loglinear modelling
capture-recapture analysis.

4.6 Discussion

Four scenarios were defined to assess the effect of different methods of
completing missing data on the population size estimate from capture-
recapture. Usual residence has been completed in three different ways.
For scenario 1 and 2 the maximal loglinear model was used via EM
algorithm. The first scenario turned out to be plagued by numerical
difficulties and will be further ignored in the discussion. The second sce-
nario yielded a point estimate of 139 usual residents with a 95 percent
confidence interval of 120 – 176 thousand. The third scenario also em-
ployed the EM algorithm but used more restrictive loglinear models.
This scenario led to a point estimate of 129 thousand with a confidence
interval of 111–170 thousand. Scenario 4 used multiple imputation by
means of PMM. Here the point estimate was 179 thousand with a larger
confidence interval of 121 –237 thousand. Therefore the focus of our dis-
cussion is on scenario 2 and 3, with a lower point estimates and lower
confidence intervals, versus scenario 4, with a higher point estimate and
a wider confidence interval.

In Section 3, in the discussion of earlier estimates it became clear
that approximately 33 thousand individuals in the ER and CSR that
did not link to the PR are usual residents. This number has to be added
to the estimate of usual residents missed by all three registers for the
scenarios 2, 3 and 4. Then we get 172 thousand for scenario 2, 152 thou-
sand for scenario 3 and 212 thousand for scenario 4. This means that
only the estimate of scenario 4, for the PMM imputed data, lies within



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 109 — #131 i
i

i
i

i
i

Different methods to complete datasets used for estimation 109

the range of 157 to 225 thousand that was based on earlier estimates.
Both the EM algorithm and the PMM method are respected meth-

ods that work well when the assumptions are fulfilled. When used in an
identical context, both methods perform equally well in terms of point
estimates and confidence intervals (Buuren, 2012). However, in this ap-
plication the important difference is that the EM uses the complete data
set for deriving information on how to impute usual residence whereas
PMM only uses the observations that are not in the PR. We have argued
that the approach of PMM has a better theoretical motivation because
it is likely that the persons with a missing value for usual residence will
be similar to the persons not in the PR. Thus the use of PMM is theo-
retically better motivated. We note also that the observed number not
in the PR is with 116 thousand much smaller than the observed number
in the PR, which is 617 thousand. So in PMM the size of the population
used for imputation is smaller than the size of the population used in
the PR. This leads to the following interpretation: we expect that on
average PMM will lead to a population size estimate that is closer to the
true population size estimate than the EM estimate. However, because
the number of observations used in PMM is smaller, the estimated con-
fidence interval is larger.

It is not easy to make a choice between bias and variance. Choos-
ing for the EM algorithm would mean that the point estimate of PMM
would be outside the EM confidence interval. So by choosing the EM
algorithm it would be likely that the point estimate would be too low.
This is a first reason to prefer the PMM estimate. A second reason is
that it falls in the range of what we expected based on earlier results.
We understand that both of these reasons are not completely convincing
and satisfactory. This holds in particular for the second reason, as the
range based on earlier research is based on studies that overlap with
the research described in this manuscript, but the earlier research differs
from the research discussed here in terms of data sources and models
used.

We shortly discuss a capture-recapture estimation without using
the CSR. When a capture-recapture analysis is conducted on PR and
ER alone only 27 thousand individuals are estimated as the missed por-
tion of the population. This estimate is implausibly low, given that half
of that number alone is an asylum seeker (See Figure 4.1). In deleting
the CSR from all interaction terms we assume being in PR and being
in ER are statistically independent, which is not realistic. Moreover,
capture-recapture analysis for only PR and ER will result in a very spe-
cific population, that does not include illegal immigrants. Hence CSR is
important for our capture-recapture analysis, but may be deleted from
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some interaction terms.

4.7 Conclusion

Often covariates are used in capture-recapture estimation for estimating
hard-to-reach populations. When covariates are important for answering
a research question, missing data in these covariates can pose a problem.
Since such a covariate cannot be left out of the analysis, a solution has
to be sought to handle the missing data problem. In this paper the co-
variate that poses a problem is usual residence. Since we are interested
in estimating usual residents we cannot exclude the covariate.

There are multiple ways of handling the missing data for categorical
data sets. In this paper we have chosen to compare the EM algorithm and
multiple imputation using PMM. For EM algorithm three variants were
chosen, (i) a maximal model for EM completion and capture recapture
estimation, (ii), a maximal model for EM algorithm and a more restric-
tive model for capture-recapture analysis, and (iii) a restrictive loglinear
model that is identical for EM completion and capture-recapture anal-
ysis. After multiple imputation using PMM the best fitting loglinear
model is chosen for capture-recapture analysis

Scenario 1 gave unrealistic estimates, scenario 2 and 3 gave lower
estimates which are similar to one another, and scenario 4 gave a higher
estimate than scenario 2 and 3. The confidence intervals of scenarios 2
and 3 were smaller than that of scenario 4. Theoretically PMM is better
motivated to handle missing data in our context because PMM is more
flexible in dealing with missing data when a specific subpopulation is
missing. Additionally, the estimate after PMM imputation of 212 thou-
sand usual residents not registered in the PR was the only one that lies
in the prespecified range. For this reason we have a preference for the
estimate of scenario 4, noting that both reasons are not completely con-
vincing and satisfactory.

At the beginning of this manuscript we stated that the registers do
not register intent to stay, but only a length of stay. However, we assume
the individuals in the PR do have an intent to stay for a longer period.
Individuals register themselves in the PR, which by law has to be done
when an individual is in the Netherlands for four months or longer, or
intents to stay for four months or longer. Given the assumption that a
person registers in the PR with the intent to stay for a longer period,
we assume all PR registered individuals to intent to stay for longer than
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a year. Thus all PR registered individuals will be considered usual resi-
dents. Given that there are 16,638 thousand individuals registered in the
PR, and assuming these individuals have registered to reside for a longer
period in the Netherlands and thus are usual residents, the total number
of usual residents in the Netherlands is 16,856 thousand, of which 1.3%
are not registered in the PR.

4.8 Appendix

Maximal model for scenario 1.
[PCUSA][ECUSA][EPSA]

TABLE 4.9
Loglinear models per nationality for scenario 2

Nationality Model
EU15 [CS] [CE] [SE] [PE] [PCU] [PUS] [PCA] [PUA] [CUA] [PSA]

[USA] [USE] [UAE] [SAE]
Polish [PC] [CE] [PE] [PUS] [CUS] [PUA] [CUA] [PSA] [USA] [USE]

[SAE] [PUSA]
OthE EU [CE] [PE] [PCU] [PCS] [PUS] [CUS] [PCA] [PUA] [CUA]

[PSA] [USA]
[USE] [UAE] [SAE] [PCUS] [PUSA] [USAE]

OthE West [PU] [PS] [CS] [PA] [PE] [USA] [USE] [UAE] [SAE]
TUkey etc. [PE] [PCU] [PCS] [PUA] [CUA] [CSE] [CAE] [USAE]
Iraq, etc. [PU] [PS] [CS] [US] [PA] [CA] [UA] [CE] [UE] [PE] [SAE]
Balkan, etc. Other. [[CE][PE][PCU][PCS][PUS][CUS][PCA][PUA][USA][USE]

[UAE][SAE][PCUS]

TABLE 4.10
Loglinear models per nationality for scenario 3

Nationality Model
EU15 [PC] [PE] [PU] [PS] [PA] [CE] [CS] [EU] [ES] [EA] [US]

[UA] [SA]
Polish [PC] [PE] [PU] [PS] [PA] [CE] [CU] [CS] [CA] [EU] [ES]

[EA] [US] [UA] [SA]
Other EU [PC] [PE] [PU] [PS] [PA] [CE] [CS] [CA] [EU] [US] [UA] [SA]
Other West [PU] [PS] [PA] [CE] [CU] [CS] [EU] [ES] [EA] [US] [UA] [SA]
Turkey, etc. [PC] [PE] [PU] [PS] [PA] [CE] [CU] [CS] [CA] [EU] [ES] [EA]

[US] [UA] [SA]
Iraq, etc, [PE] [PU] [PS] [PA] [CE] [CU] [CS] [CA] [EU] [ES] [EA] [US]

[UA] [SA]
Balkan, etc. Other. [PE] [PU] [PS] [PA] [CE] [CU] [CS] [CA] [EU] [ES] [EA]

[US] [UA]
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TABLE 4.11
Loglinear models per nationality for scenario 4

Nationality Models
EU15 [PE] [CS] [CA] [PC] [EAU] [SAU] [ESA] [PAU] [ESU]

[PSU] [PSA] [ECU]
Polish [EC] [CS] [EA] [EU] [CU] [PC] [PE] [CA] [PSA] [PSU]

[SAU] [PAU] [PSAU]
Other EU [EC] [PC] [PSA] [PSU] [PEU] [PEA] [SAU] [PCS]
Other West [PS] [CS] [PA] [ESA] [EAU] [PEU]
Turkey, etc. [PC] [ESA] [SAU] [PEU] [ECA] [EAU] [ECS] [PES] [CAU]
Iraq, etc. [CS] [PE] [CA] [SU] [PS] [PA] [EC] [PEU] [ESA] [EAU]
Balkan,etc. Other [CS][PS][EC][PA][CA][CU][PEU][EAU][ESA][ESU][SAU]

[PAU][CAU]
These models are exemplary for one of the ten multiple imputations
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5.1 Introduction

In this manuscript we are interested in estimating the under coverage of
the Dutch Population Register (PR). The PR is an important register for
Census purposes, and the undercoverage of this register gives an indica-
tion of the quality of the register. One common method is to link the PR
to other registers and estimate the portion of the population missed by
the registers using capture-recapture estimation, also known as multiple
systems estimation (Fienberg, 1972; Bishop et al., 1975; Cormack, 1989;
International Working Group for Disease Monitoring and Forecasting,
1995).

Capture-recapture methodology is a general method to estimate the
size of populations. An early example is estimating population specifics
such as birth and death rates in an area near Calcutta, India (Sekar and
Deming, 1949). The methodology has also been used regularly for Cen-
sus purposes, for instance in the United Kingdom (Brown et al., 1999;
ONS, 2012b) and in the US (Wolter, 1986a; Bell, 1993; Nirel and Glick-
man, 2009).

The capture-recapture methodology is well documented. The chal-
lenge, however, lies in the practical application of the methodology. For
example, difficulties can arise in identifying which data sources best de-
scribe the population. Moreover, sometimes missing values are present
in data on crucial variables, or assumptions of the method may be vi-
olated. Such difficulties can often not be avoided and solutions have to
be found in order for the population size estimation to lead to correct
outcomes.

This chapter is accepted as: Gerritse, S.C., Bakker, B.F.M., de Wolf, P-P., and
van der Heijden, P.G.M. (2016). Undercoverage of the population register in the
Netherlands, 2010. CBS publication. Acknowledgement of author contributions: the-
oretical development by BB, SG and PvdH. The analyses are carried out by SG. SG
(main document) and PdW (variance estimation) wrote document, that was edited
by BB and PvdH. The authors gratefully acknowledge support by Jan van der Laan
(Statistics Netherlands) in linking the registers and other computational help, and
Coen van Duin and Jeroen Pannekoek (Statistics Netherlands) and the CBS Advisory
Committee on Census Under Coverage for their valuable comments.
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Assessing the undercoverage of the Dutch Population Register asks
for a definition of the Dutch population. Defining the rules according
to which a person is, or is not, part of the population of a country has
a lot of consequences, such as allocation of parliamentary seats in the
EU and the attribution of funds depending on population size. Thus the
definition of the population of a country is important statistical infor-
mation and the Census is the primary framework to define a population
(Lanzieri, Geneva, 30 September 3 October 2013). According to the
United Nations Statistics Division (2008), we can define the population
of a European country along the terms of usual residence:

”1.461. In general, ”usual residence” is defined for census purposes as
the place at which the person lives at the times of the census, and has
been there for some time or intends to stay there for some time”,

According to the European Union, Regulation (EU) No 1260/2013
of the European Parliament, usual residence is defined as

”The place where a person normally spends the daily period of rest, re-
gardless of temporary absences for purposes of recreation, holidays, visits
to friends and relatives, business, medical treatment or religious pilgrim-
age”.

An individual is considered a usual resident when they have lived in
the Netherlands for a continuous period of 12 months before a Cen-
sus reference time, or if they arrived in the 12 months before a Census
reference time and intend to stay for at least a year. When these cir-
cumstances can not be established, ”usual residence” means the place
of registered residence (European Parliament, 2008). In accordance with
the European Union regulations, in this manuscript we use the definition
of residing for 12 months for usual residence. However, intention to stay
is not registered and instead we define usual residence as residing more
than 12 months continuously in the Netherlands.

This manuscript will document the steps needed for the applica-
tion of capture-recapture methodology on the case of the undercoverage
of the Dutch PR using usual residents. In doing so, we document the
problems that arose in achieving this research goal, and how they were
handled. This research poses as an example of how to deal with possible
problems in the practical application of capture-recapture methodology
in Official Statistics.

The Dutch Population Register (PR) used for the 2011 Census
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round was still the Gemeentelijke BasisAdministratie (GBA1) Under
Dutch regulations, every individual residing in the Netherlands for longer
than four months, or is planning to do so, should register in the PR. As
such, the PR contains demographic information on the de jure popula-
tion and differs from the de facto population, which is the actual number
of individuals residing in the Netherlands regardless of registration. The
coverage of the PR alone is not sufficient to provide a valid estimate of
the ’de facto’ population, in this manuscript defined by number of usual
residents.

This incompleteness of the PR has more than one reason. First,
within the European Union there is free movement and employment for
individuals with an EU nationality. When an individual with an EU
nationality resides in the Netherlands for longer than four months with-
out having registered in the PR, they are not illegal residents, despite
that they can be fined by Dutch law for not registering. Individuals that
have not registered themselves may have forgotten to do so, or simply
do not want to. These individuals are considered usual residents by the
definition of the European Union but belong to the undercoverage of
the PR. Second, the PR is also incomplete due to immigrants, coming
from outside the European Union without a working or residence permit.
These individuals then are illegally residing undocumented immigrants.
These illegally residing undocumented immigrants are also considered
usual residents, but are part of the undercoverage of the PR.

The registered population will also contain an overcoverage, and this
may occur when registered individuals no longer reside in the Nether-
lands because of, for example, administrative delay of registering em-
igration and death. In the Netherlands, however, this is not as big a
problem as the under coverage. (Bakker, 2009) estimated an over cov-
erage of 31 thousand individuals, which is only 0.2 percent of the PR
registered population.

To estimate the number of individuals missed by the PR, we linked
three registers: the PR, an Employment Register (ER) and a Crime Sus-
pects Register (CSR). In the ER jobs are documented. In the CSR sus-
pects of all known crimes are registered. Unfortunately we can easily de-
duce residence duration for the PR only. For the ER usual residence can
in part be deduced based on job lengths, assuming individuals residing in

1The GBA is currently replaced by the Basis Registratie Personen, (BRP). The
BRP differs from the GBA because it also registers foreign individuals that have some
sort of relationship with the Netherlands, and covers more individuals. This includes
individuals with a Dutch nationality living abroad. Also, municipalities can register
individuals that have not registered themselves, something which was not possible
with the GBA. It is possible however is that the BRP, compared to the GBA, has a
higher overcoverage of the Dutch population.
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the Netherlands during the period that they hold a job. Consecutive and
overlapping jobs were considered as one residence duration. However, for
individuals that are unemployed between jobs, a decision had to be made
on a length of unemployment that will be allowed between two jobs to
still be considered as one continuous residence duration. The CSR has
no information to deduce residence duration and for those individuals
not linked to the PR and/or the ER we use missing data methodology.

During the linkage process it was found that 37% of the individuals
in the CSR that did not link to both the PR as well as the ER, had
incomplete linkage key information. It may be possible that these indi-
viduals are also in one or both of the other two registers but could not
be linked because they had incomplete linkage key information. A part
of these individuals could be erroneous captures. When individuals that
are suspected of a crime are not registered in the PR, he police can not
verify their information in the PR. Then, inaccurate information may
occur, or even missing data. Therefore, when individuals have no crucial
linkage key information, such as address and nationality, it is possible
that these individuals do not belong to the population and, from our per-
spective, are erroneous captures. Hook and Regal (1995) and Gerritse
et al. (2016) found that erroneous captures and linkage error can result
in bias in the population size estimate resulting from capture-recapture
analysis. In this paper, we propose different scenarios where, for the in-
dividuals in the CSR that cannot be linked and have missing data, the
proportions of linkage error and erroneous captures are varied to assess
the effect on the population size estimator.

Additionally, capture-recapture methodology relies heavily on a cou-
ple of assumptions Van der Heijden et al. (for example 2012), that can
not be verified from the data. In this manuscript every assumption of
capture-recapture methodology will be discussed and we will use the in-
formation and resources available to meet these assumptions as best as
possible.

The manuscript is structured as follows. In section 2 the linkage
of the data sources used will be discussed. In section 3 we will discuss
residence duration. First, in section 3.1, the sensitivity analysis for the
residence duration of the ER will be discussed, followed by, in section
3.2, the missing data methodology used to impute the residence duration
of the CSR. In section 4 we shortly discuss capture-recapture methodol-
ogy and its assumptions of capture-recapture analysis and the scenarios
we use, and it discusses how the analysis is conducted. Section 5 gives
the results from the capture-recapture estimation. The results will be
discussed and concluded in section 6.



i
i

“PhDSCGerritse” — 2016/6/5 — 16:40 — page 118 — #140 i
i

i
i

i
i

118 An application of population size estimation to official statistics

5.2 Linkage of data sources

We use three registers in this manuscript, the PR, the ER and the CSR.
For the capture-recapture analysis only individuals that did not have a
Dutch nationality were considered. Individuals with a Dutch nationality
were considered Dutch residents and were excluded from the analysis.
This also included individuals who had two nationalities, of which one
of them was Dutch. We use ultimo September 2010 as the reference time
point, or reference date.

For the purpose of our analyses the ER has been transformed into
a register on individuals, where jobs were attributed to the individuals
holding those jobs. The ER adds new cases of usual residents to the PR
because it also registers individuals working in the Netherlands that have
not registered themselves in the PR. Individuals with an EU nationality
are free to work in other EU countries, but for salary and tax purposes
employers will register these individuals in the ER.

The CSR documents individuals that are suspected of a known
crime. In principle, this register can hold information on everyone in
the Netherlands, including undocumented immigrants or other non PR
registered individuals, because every individual residing in the Nether-
lands has a chance to become a suspect of a crime. Thus, it may provide
cases that were not found in the PR but do belong to the population.

There is little information in the CSR and the ER on individuals
with ages under 12, and over 65, because individuals under 12 can not
be registered in the CSR and the ER only registers between 15 and 65:
As such it was decided that the population specified in this paper will
consist only of the population aged between 15 to 65.

To link the three registers we used two types of linkage, deterministic
and probabilistic, both of which are considered a type of exact matching
(Herzog et al., 2007). For a pair to be a link under deterministic linkage,
the two records have to agree exactly on each element in a set of identi-
fiers. One example is when two records match on name, address, date of
birth and city of birth, or on a Personal Identification Number. Fellegi
and Sunter (1969) formalized probabilistic linkage where all records in
one register are paired to all records of a second register. Based on their
agreement on a set of identifiers, a weight is given to each pair. A pre-
defined cut-off determines whether pairs are links, non-links or possible
links (Herzog et al., 2007). To reduce the number of possible pairs for
computational efficiency we can block the data on one, or more variables.

At statistics Netherlands all registers are linked deterministically to
the PR via a PIN and a linkage key. The PR is the backbone of Statis-
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tics Netherlands, such that all registers and surveys are linked to the
PR. Linking other registers, of which also the ER and the CSR, to the
PR via a Dutch PIN, enables about 96 to 98 percent of the cases to be
linked to the PR. When a case has no PIN, the registers are linked on
postal code, house number, date of birth and sex. Then 93 to 95 percent
of individuals can be linked to the PR (Arts et al., 2000). Thus it seems
that when cases have complete linkage keys, linkage to the PR can be
done in more than 90 percent of the cases. However, there are cases with
incomplete linkage key information, such that they can not be linked.
These cases are often without a Dutch nationality and are in the sub-
population of interest for this study. To improve upon the deterministic
linkage we also used probabilistic linkage.

For the individuals in the PR and ER we used a combination of
date of birth, sex, postal code, house number and suffix as linkage key
to probabilistically link the remaining ER units to the whole of the PR.
This resulted in an overall improvement of 0.1% of the remaining ER-
units that can be linked. The same linkage key is used to probabilistically
link the remaining units in the CSR to the whole of the PR, which led
to an overall improvement of 3.3% of extra individuals linked. For both
the linkage of the ER to the PR and the CSR to the PR we blocked first
on postal code or date of birth to reduce the number of possible pairs.
To probabilistically link the whole of the ER to the whole of the CSR
we used a combination of birth date, sex, city of residence, country of
residence, street name and house number as linkage key. For the prob-
abilistic linkage of the ER to the CSR, the data was blocked on either
city of residence of birth date had to be equal to at least day or month
of birth and led to an overall improvement of 9.9% of extra individuals
linked.

Figure 5.1 shows the linkage of the PR to the ER, the PR to the
CSR and the ER to the CSR, and more specifically the percentage of
each register linked either deterministically (in yellow) or probabilisti-
cally (orange). It was found that 37.7% of the individuals in the CSR
that could not link to the PR or the ER had incomplete linkage key
information. Thus these individuals were unable to be linked.
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FIGURE 5.1
Linkage of the PR to the ER, the PR to the CSR and the ER to the CSR. Of the first figure, the first column shows
all the individuals in the PR, where the second column shows all the individuals in the ER. The overlapping parts in
yellow represent the percentage of individuals that have been linked deterministically, and the parts in orange represent
the percentage of individuals that have been linked probabilistically. The last column shows the linked part between the
PR and the ER, where it can be seen that probabilistic linkage led to an improvement of 0.1%. The other two figures
show the same kind of information for respectively the PR linked to the CSR, and the ER linked to the CSR.
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We use four covariates for capture-recapture analysis: nationality
group, age, sex and usual residence. Nationality group has 7 categories:
(1) EU15 (excl. Netherlands) (2) Polish (3) Other EU (4) Other west-
ern (5) Turkish, Moroccan, Surinam (6) Iraqi, Iranian, Afghan, asylum
seeker countries Africa (7) Other Balkan, former Soviet Union, other
Asian, Latin American and other nationalities. The countries are clus-
tered according to likely migration motives, migration legislation, reg-
ulations of the PR and size. For age, we use four levels: (1) 15-24 (2)
25-34 (3) 35-49 and (4) 50-65.

TABLE 5.1
Observed values for the three registers.

PR ER CSR Total
Yes No

Yes Yes 2,115 259,804 261,919
No 4,862 350,551 355,413

No Yes 355 112,529 112,884
No 5,087 0 5,087

Total 12,419 722,884 735,303

Table 5.1 shows the counts for the individuals in the three linked
registers ignoring the distribution over the four covariates, as was also
used in Gerritse et al. (2015a). Table 2 shows that the individuals are
not evenly distributed over the three registers, which may lead to small
cell counts in the capture-recapture analysis when the four covariates are
taken into account. This may complicate the population size estimation.
It was found in previous research, which also used this data set, that
even the smallest changes in the data can result in different population
size estimates (Gerritse et al., 2015a). For that purpose, we use different
scenarios to account for the biggest variability in this manuscript, and
assess the impact on the population size estimation.

5.3 Methods for deriving residence durations

Neither register has a direct measure of residence duration. For the PR a
measure of residence duration can be deduced. The PR has a registration
date, the date at which either a person was born into the Netherlands or
when immigrants registered themselves in the PR as a Dutch resident.
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Then the reference date of ultimo September 2010 minus the registra-
tion date can be used as a residence duration. Additionally, when a PR
registration was consecutive or overlapping with a job, such as when a
job was registered in the ER before the PR registration, the combined
length of PR and ER registration was also considered a residence dura-
tion. The following sections will document the steps taken for the usual
residence measure of the ER and the CSR.

5.3.1 Residence duration ER

In the ER, amongst others, the start date and the end date of the job
are registered. Assuming that individuals that have a job in the Nether-
lands, also reside in the Netherlands during the time they hold that job,
we can use the information on successive jobs previous to the reference
date as a residence duration. For individuals that held more than one
job that were consecutive or overlapping we perceive these jobs as one
period of work and therefore residence. A total of 77% of the 374,803
individuals in the ER had one period of residence.

When there was a period of unemployment between two jobs, the
question is whether this affects an individual’s usual residents status.
For the individuals in the ER that did not link to the PR, and thus did
not have a residence duration from the PR, a decision had to be made
on the length of unemployment between jobs that would be allowed,
wherein the individual still perceived as residing in the Netherlands. We
investigated seven scenarios. A total of 1, 8, 15, 22, 31, 62 and 93 days
were allowed between two jobs for an individual. In the first column of
Table 5.2 are the observed values of all individuals ER by nationality
groups. The other columns show for each of the scenarios the observed
number of individuals in the ER but not in the PR that reside in the
Netherlands for longer than a year. As can be seen, for an individual
with a EU15 nationality 7,781 individuals are considered residing in the
Netherlands for longer than a year based on their job length when we ac-
cept an unemployment of 8 days between two jobs. If we increase this to
15 days the number of individuals residing in the Netherlands increases
to 7,915, up to 10,861 when we consider 93 days. The different scenarios
give different numbers of usual residents.
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TABLE 5.2
Scenarios for deducing residence duration from joblengths in the ER, per nationality group. The first column shows the
observed counts of all the individuals in the ER that are not in the PR. The other columns show the count of individuals
that would be considered usual residents under the specified scenario

Nationality Total 1 day 8 days 15 days 22 days 31 days 62 days 93 days
EU15 18,727 7,548 7,781 7,915 8,093 8,862 9,982 10,861
Polish 80,738 14,711 15,677 16,301 16,904 20,315 25,520 29,399

Other EU 10,765 2,201 2,267 2,331 2,369 2,617 3,095 3,420
Other West 509 216 218 220 221 222 231 242
Turkey, etc. 647 341 349 354 363 380 425 457

Iraq, etc. 274 142 145 149 155 166 179 194
Balkan, etc. Other. 1,378 530 539 543 553 567 615 671

Total 113,038 25,631 27,034 27,871 28,717 33,193 40,126 45,325
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It is difficult to choose which scenario will be more realistic. As such
a choice has to be made on the few indications that can be found in
Table 5.2. We have chosen for the scenario of 31 days. A choice could be
made for a smaller scenario, but it seemed more realistic to allow for one
month, given that jobs often start at the beginning of a month and end at
the end of the month. Thus allowing at least a month is plausible. Also, it
can be seen from Table 5.2 that the biggest, absolute, increase in usual
residents is between 31 and 62 days, which indicated a turning point
between these scenarios where more individuals may decide to leave the
country for a longer period. The biggest group of non-Dutch individuals
is of European nationality, and the probability that they return to their
home country after 31 days increases. Additionally, it is slightly more
conceivable that when individuals are unemployed for up to 31 days that
they are still in the Netherlands, compared to when more months are
allowed. A total of 113,0382 individuals in the ER are not in the PR, of
which we consider 33,135 individuals are usual residents. The remaining
79,903 individuals in the ER that did not link to the PR are non usual
residents. Note that for the individuals that are registered in the ER and
that do link to the PR, we have two residence durations, one from the
PR registration and one deduced from job lengths in the ER. Of these
two measures of residence duration, we chose the one that is the longest,
either the PR residence duration or the ER job lengths duration.

5.3.2 Residence duration CSR

For the CSR it is not possible to define a residence duration based on
the variables in the register itself. Moreover, the CSR is an event based
register in which crimes are recorded on one particular date. Most of
the suspects are first offenders, which means that there is only one date
recorded for most individuals and a residence duration can not be de-
duced from this one date. For the records that link to the PR and/or
the ER, we use the residence duration from these sources. When usual
residence was available from both the PR and ER, the longest residence
duration of either the PR or the ER was chosen. However, for the re-
maining records in the CSR, residence duration is missing, and we have
to impute it.

In earlier research it was found that the missing residence duration
values for the CSR will probably resemble the usual residence values
from the ER more than the usual residence values from the PR (Ger-
ritse et al., 2015a). The CSR records will resemble the ER records rather

2After probabilistic linkage of the ER and PR to the CSR it was found that 154
ER registered individuals, and 7 PR registered individuals, were erroneously seen as
CSR registered individuals only.
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than the PR records, because the individuals that register themselves in
the PR have the intention to stay for a longer period in the PR. This
can not be assumed for the individuals in either the ER or the CSR that
do not link to the PR, given there is a reason why these individuals have
not registered themselves. As such we need an imputation method that
imputes missing data with this very specific subset of data in the ER
that it resembles most. It was found that for our specific missing data
problem, multiple imputation by Predictive Mean Matching (PMM) will
most likely handle the missing data best, given that PMM allows the user
to ignore individuals in the PR (Gerritse et al., 2015a).

Predictive Mean Matching is an example of a hot deck, nearest
neighbour multiple imputation method. For each missing entry, PMM
samples a small set of candidate donors from the observed complete cases
(Buuren, 2012). The predicted values are estimated based on the infor-
mation in the predictor variables and their ”closeness” is estimated by
their absolute difference. From this small set of cases, one is randomly
chosen to replace the missing value. The assumption here is that the
missing value follows the same distribution as the observed values cho-
sen in the small set (Buuren, 2012).

This means that we use all 113,038 records from the ER and CSR
that did not link to the PR to impute the missing usual residence value
for the individuals in the CSR only. These donors will be used to impute
the missing residency variable in the CSR units that do not link to either
of the other sources. PMM has been repeated ten times, to account for
multiple imputation variability. The PMM multiple imputation has been
done via the package mice in R (Buuren, 2012)

5.4 Method for estimating the number of unregis-
tered individuals

Capture-recapture methodology is an often used methodology for popu-
lation size estimation. The simplest form of capture-recapture method-
ology consists of linking two sources of data, such as samples, lists or
registers. Assume we have two registers. Record linkage finds cases in
both registers that are from the same individual by using identifying
variables, such as a PIN or a combination of linkage key variables like
name, address, etc. The result is a count of individuals in either register
alone or in the overlap of both registers. Additionally there is a zero
count of individuals that do belong to the population but were not ob-
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served in either register.
Assume we have two registers, register 1 and register 2. Let i = (0,

1) respectively denote not included in register 1 and included in regis-
ter 1. Also, let j = (0, 1) respectively denote not included in register 2
and included in register 2. Let mij denote the expected values for regis-
ters 1 and 2, and nij denote the observed counts. Then odds ratios can
be used assuming independence between register 1 and register 2, such
that m11m00/m01m10 = 1. However m00 is a structural zero and is the
value we are interested in. Assuming independence, this odds ratio can
be rewritten to get maximum likelihood estimate

m̂00 =
m̂01m̂10

m̂11
=
n01n10
n11

. (5.1)

This odds ratio is for two registers only, but can be easily ex-
tended from 5.1 to the three register case. Let mijk be expected val-
ues for registers 1, 2 and 3. Let variable C denote inclusion in register
3, such that k = (0, 1) respectively denotes not included in register
3 and included in register 3. Then odds ratios are used assuming the
three factor interaction to be absent, so that m110m000/m101m011 =
m111m001/m100m010. Expected value m000 is a structural zero and can
be estimated by

m̂000 =
m̂010m̂001m̂100m̂111

m̂011m̂110m̂101
=
n010n001n100n111
n011n110n101

. (5.2)

Equations 5.1 and 5.2 assume saturated loglinear models and can be
readily implemented. More parsimonious models, compared to the satu-
rated model, are possible and may fit the data better. Such models will
be used in capture-recapture estimation later in this manuscript.

The capture-recapture analysis has been conducted via Generalized
Linear Modeling (GLM) in R. The function STEP in R enables the
researcher to select the best fitting loglinear model. By default STEP
selects models based on the AIC. However since our sample size is quite
large, the AIC will lead to models that are unnecessarily complicated.
Therefore we used the BIC, since the BIC has a larger penalty for sample
size. The details on how the variance for confidence interval testing was
estimated can be found in the Appendix.

A summary has been made of previous research on the past number
of unregistered individuals in the Netherlands in Gerritse et al. (2015a).
We present here only the conclusion of this summation, as the arguments
are presented in that manuscript. We expect that the under coverage of
the PR will lie within a range of 175 to 225 thousand individuals. This
range has been deduced from research by Hoogteijling (2002), Bakker
(2009) and Van der Heijden et al. (2012), and migration flows and asylum
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requests since these research articles. We acknowledge that this range is
based on a couple of assumptions that may not be met, and we use this
range with caution as an indication where the undercoverage may lie.
Thus possible estimates of the under coverage of the PR that falls out-
side this range is not necessarily false. However, when our estimates lie
far from the lower or upper boundary of this range, the estimate does
become rather implausible.

5.4.1 Implied coverage

Capture-recapture relies heavily on a couple of assumptions
(Van der Heijden et al., 2012). Violation of these assumptions could lead
to biased estimates, as was found in Brown et al. (2006); Boden (2014);
Gerritse et al. (2015b, 2016). These researchers found that sometimes
violated assumptions have little effect on the population size estimate,
whereas sometimes it had a large impact on the population size estimate.
The effect a violated assumption has on the population size estimator
has been found to be a direct result of the implied coverage of the main
register (Gerritse et al., 2016). Implied coverage describes the observed
coverage of register 1, given register 2. As such, it describes the number
of new cases added by register 2, compared to the already known cases
in register 1.

From equation (5.1) we can estimate conditional probabilities
p̂(0|1) = n01/n+1 and, p̂(1|1) = n11/n+1. Thus p̂(0|1) is the estimated
probability of new cases from register 2, among all cases in register 2,
and p̂(1|1) is the estimated probability of already known cases from regis-
ter 1, among all the cases from register 2. Then equation (5.1) changes to

m̂00 =
p̂0|1n10

p̂1|1
. (5.3)

When p̂(0|1) is relatively small compared to p̂(1|1), the effect of
the added new cases of register 2 on m̂00 will be small and the population
size estimator is robust to violations of the assumptions. However, when
p̂(0|1) is relatively large compared to p̂(1|1), the effect of the added new
cases of register 2 on m̂00 will be large as well and the population size
estimator is not robust to possible violations of the assumptions.

The use of a third register and multiple covariates make it more com-
plex to investigate the effect of the implied coverage on the population
size estimator. From Table 5.1 we cautiously conclude that the implied
coverage of the PR given the ER, and the implied coverage of the PR
given the CSR seems relatively low. A low implied coverage will result
in a higher number of individuals in the numerator of equations (5.1)
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and (5.2), compared to the denominator, and will result in an unstable
estimate. To avoid any effect implied coverage has on the population size
estimator when assumptions are violated, extra care has been taken to
make sure the assumptions were met.

5.5 Implied coverage for three registers

Implied coverage can be extended to the three register case. Assume
that register 1 covers most of the population, then register 2 and then
register 3. For our purposes it suffices here to discuss coverage of registers
1 and 2 implied by the third register. For this purpose Equation (5.2)
is complicated, as n111, the number of cases seen in all three registers,
is in the numerator. We focus on the observed counts n101, n011 and
n001, i.e. the number of individuals seen only in register 3, i.e. n001,
compared to the individuals seen in register 3 and only in register 1, i.e.
n101, and compared to the individuals only seen in register 3 and only
in register 2, i.e. n011. We focus first on n001 and n101. Notice that these
counts refer to individuals missed by register 2. Therefore we will speak
of coverage conditional on being missed by register 2. Now, similar to the
discussion of implied coverage in a two-way table above, if n001 is large
in comparison to n101, the conditional coverage of register 1 implied by
register 3 is low, where conditional refers to being missed by register 2.
Thus the estimator in equation (5.2) becomes unstable when the number
n001 becomes unstable. Similarly, for n001 and n011, if n001 is large in
comparison to n011, the conditional coverage of register 2 is low and
the estimator in equation (5.1) becomes unstable when the number n001
becomes unstable (where conditional refers to being missed by register
1. Anyhow, for all practical purposes it will be clear that when n001 is
large, the estimator defined in (5.2) will become unstable.

Table 5.1 reveals that the implied coverage of the PR, given the
ER is relatively high. The implied coverage of the PR, given the CSR
however is rather low. The implied coverage of the ER, given the CSR
is also low. Summarizing, the conditional coverage implied by the CSR
is low. This indicates that the population size estimator is not robust to
possible violations of the assumptions.

5.5.1 Assumptions

Capture-recapture analysis relies heavily on a couple of assumptions of
which can not be verified from the data whether they are met. Above we
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stated that implied coverage seems low and thus the estimator may not
be robust to possible violations of the assumptions. As such we discuss
below the extra steps taken to make sure the assumptions are met as
best as possible.

Closed Population

The first assumption is that the population is closed. For the PR and the
ER this assumption can be easily met. The PR and ER contain informa-
tion on individuals over a period of time, such that one timepoint can
be chosen to keep a closed population. In our case the timepoint chosen
is the reference date of ultimo September 2010. The CSR however is a
register containing solely reports on suspects of all known crimes, and
one specific day cannot be chosen since on that day only a limited num-
ber of of reports could have been filed.

Thus a specific time period has to be chosen in which observations
are taken from the CSR. This makes it difficult to assume a closed pop-
ulation. For the CSR a time period of half a year, the second half of
2010, has been chosen. We have chosen for half a year because then the
number of individuals in the CSR is still relatively large, but also this
time period is short enough so that a violation of the closed population
assumption will be relatively minor. The second half of 2010 has been
chosen because then the reference point used for the PR and ER lies in
the middle of the six months considered.

Independence and homogeneous inclusion probabilities

Under independence one assumes that the probability to be included in
the first register is independent on the probability to be included in the
second register. This is a rather strict assumption. There are two ways
to relax the independence assumption. One way is in using multiple
sources. In using three registers the strict independence assumption is
relaxed into the assumption that the three way interaction is zero. Addi-
tionally, in adding covariates heterogeneity due to these covariates can be
removed (compare, International Working Group for Disease Monitor-
ing and Forecasting, 1995). In this manuscript we use three registers and
four covariates, i.e. age, sex, nationality group and residence duration,
to relax the strict independence assumption and account for possible
heterogeneity in these covariates.

It has to be noted that the covariate usual residence is opera-
tionalised differently per register. Additionally, when cases were in the
overlap of two registers, the longest usual residence value was chosen,
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and as such the operationalisation of usual residence in the overlap of
registers is different to the operationalisation of the individual registers
as well. Then dependence may well be introduced in usual residence
considering the registers. In using usual residence as a covariate in the
loglinear model in estimation, this dependence can be accounted for.

Perfect linkage

In this manuscript two methods for linkage have been used to increase
the probability that we linked all cases that had to be linked. At Statis-
tics Netherlands every register is linked deterministically to the PR, such
that the PR and the ER, and the PR and the CSR, were already linked
deterministically. However, due to errors in the variables used for linkage
of the CSR and ER it was difficult to deterministically link the CSR to
the ER. To improve the deterministic linkage, probabilistic linkage was
used (see section 2 for more details).

No erroneous captures

The last assumption considered here is that the registers only contain
information on the specified population, and thus do not contain any
erroneous captures. When registering in the PR an individual has the
intention to stay for a longer period, and thus they are assumed to be
usual residents. Then for the PR we assume that there will be no er-
roneous captures. Individuals with an address in Belgium or Germany
are removed from the analysis, as we assume that individuals from our
neighbouring countries will probably still live in Belgium and Germany
and only cross the border for work, school or possibly crime related ac-
tivities. Additionally individuals are removed that were caught by the
border police and thus did not enter the Netherlands at all.

Concluding remarks assumptions

It was found that 37 percent of the individuals in the CSR that did
not link to the PR and the ER had missing or incomplete linkage key
information. There is a chance that these individuals do belong to the
population and had to be linked to the PR and the ER. There is also the
possibility that these individuals have missing information for the reason
that they do not belong to the population and thus are erroneous cap-
tures. Unfortunately, we cannot deduce from the data to which extent
the assumption that there are no erroneous captures is violated. Addi-
tionally, we found that implied coverage is low due to a large number of
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individuals in the CSR that cannot be linked to the PR and the ER,,
and as a result the population size estimator will not be robust to pos-
sible violations of the assumptions. For that reason, we will investigate
via scenarios which percentage of linkage errors and erroneous captures
seem most realistic.

For the individuals in the CSR that did not link to the PR and the
ER there is still the probability of duplicate cases. Due to the incomplete
linkage key information we cannot establish the number of duplicates.
We can however treat such cases as erroneous captures, and investigate
the effect of removing these individuals from the analysis.

5.5.2 Scenarios

Main scenarios

Because implied coverage for the three registers is low, we use different
scenarios to assess the effect of the presence of linkage error and erro-
neous captures in the 37% of individuals in the CSR that had incomplete
linkage key information on the population size estimate. A baseline sce-
nario will be set up where we assume no linkage error and no erroneous
captures, and consider all 37% to belong to the population and to have
only been registered in the CSR. For scenario 1 and 2 we will divide up
the 37 percent of individuals in the CSR without linkage key information
as either linkage error or erroneous captures.

The probability is higher that the individuals with incomplete link-
age key information do not belong to the population and are more likely
to be in the Netherlands as a tourist or for criminally related purposes.
The police uses the PR to identify suspects. When the police cannot find
suspects in the PR, they will denote whatever information is available
on the suspect. It is plausible that the police cannot denote information
for individuals that do not belong to the population. When these indi-
viduals have no Dutch residence it will be a hard task to procure such
information, resulting in missing information.

Methodologically this argumentation can be supported by the re-
cent investigations of Zhang (2015) and Zhang and Dunne (2015), who
researched capture-recapture methodology in the presence of erroneous
captures. A trimmed dual system estimation method was set up. Erro-
neous captures are identified by linking the register to a post enumera-
tion survey (PES). By assuming that the PES does not have erroneous
captures, the size of the over coverage due to erroneous captures can be
estimated. The next step is that records are to be excluded from capture-
recapture analysis. The trimmed dual system estimator reduces the bias
caused by erroneous captures by deleting them from the analysis. How-
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ever, identifying erroneous captures is a hard task and the researchers
advise against randomly deleting cases. Knowing that the 37 percent
have no linkage key information, removing most of these individuals is
a first step in deleting erroneous captures.

Therefore, we assume that for scenario 1 and 2 the majority of the
37 percent are erroneous captures. In scenario 1 we will consider a ran-
dom selection of 75% of the individuals without linkage key variables as
erroneous captures and remove them from the analysis, and the other 25
percent will be considered as linkage errors and these individuals from
the CSR that did not link to the PR and ER will be linked to the PR
and ER. Scenario 2 will investigate the effect of removing all individuals
without the linkage key variables, the total of 37 percent, as though they
are all erroneous captures.

Subscenarios

Additionally, there is a possibility that of the 63 percent of indi-
viduals in the CSR that did not link to the PR and ER, and do have
complete linkage key information, there still are some linkage errors or
erroneous captures. The CSR might contain possible administrative er-
rors that have to be dealt with, even though these errors will be small.
As such, scenarios 1 and 2 will have four possible outcomes, as shown in
Table 5.3. Subscenario a from Table 5.3 (scenarios 1a and 2a) will have
no linkage error or erroneous captures taken from the 63% individuals
with complete linkage key variables. This will provide a baseline esti-
mate for the scenario. In subscenario b (scenarios 1b and 2b from Table
5.3) an extra 5 percent of erroneous captures will be removed from the
individuals with complete linkage key information and in subscenario c
(scenario 1c and 2c from Table 5.3) an extra 5 percent of linkage errors
will be taken from the individuals with complete linkage key informa-
tion. In subscenario d (scenario 1d and 2d from Table 5.3) both an extra
5 percent of erroneous captures and linkage errors will be taken from the
individuals with linkage key information.

For the individuals under subscenarios c and d that are considered
linkage error we have to decide to which register the individuals in the
CSR would link. We have stated before that we think that the individ-
uals in the CSR resemble those in the ER most that did not link to
the PR. As such, when individuals in the CSR were linkage error, the
probability will be higher that they should have been linked to the ER,
rather than to the PR. Due to possible errors, some will however have
been linked to the PR. It has been chosen that 80 percent will be linked
to the ER. The remaining 20 percent will be linked to either the PR or
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the PR and ER in accordance with the distribution of how the observed
data are distributed over the PR or the PR and ER. Given that 60 per-
cent of all observed PR values do not link to the ER and 40 percent do,
60 percent will be linked to the PR and 40 percent will be linked to the
PR and the ER.

Note that the individuals will be randomly assigned to link to either
the PR, ER or both registers. This will have an effect on the population
size estimator. However, this effect will be considerably smaller than ran-
domly assigning all of the 37% of individuals as either linkage error or
erroneous captures because the number of observations considered are
smaller.

5.5.3 Analysis

The analysis has been conducted as follows. The dataset used contained
all the individuals in the PR, ER and the CSR that did not have a Dutch
nationality. We also removed individuals that had a German or Belgium
registered place of residence and individuals apprehended by the border
police at Schiphol. Usual residence for the PR and ER have been de-
duced as described in section 3. For the individuals in the CSR that did
not link to the PR and ER, usual residence was still missing.

Table 5.1 shows that we have 5,087 individuals in the CSR that did
not link to the PR and ER. Of these 5,087 individuals, 1,917 individ-
uals (37%) have an incomplete linkage key. Scenario 1 is investigated
as follows. From the 1,917 individuals 75% will be considered erroneous
captures and 25% will be considered linkage error. First, we remove the
75% of erroneous captures, which entails 1,438 of the 1,917 individuals
from the CSR that did not have complete linkage key variables. Then
25% of the individuals in the CSR without complete linkage key vari-
ables are considered linkage error, which entailed 479 individuals. As was
discussed in section 4.4, we assume 80 percent of the individuals to have
linked to the ER, 12 percent to the PR and 8 percent to the intersection
of the PR and ER, such that 383 individuals will be linked to the ER,
57 to the PR and 38 to the PR and ER.

Every scenario has a subscenario, where we consider also 5% linkage
error and/or erroneous captures from the 3,170 individuals, or 63 per-
cent, that did have complete linkage key values. Assume we took both,
and we operate in scenario 1d. Then first, from the 5, 087−1, 917 = 3, 170
we delete 5% which are considered erroneous captures, such that 158 in-
dividuals are removed from the data. From the 3,170 - 158 = 3,012
individuals remaining, another sample of 5% is considered linkage error.
Note that this is 5% of the 3,170 and not 5% of the 3,012 individuals
remaining after having already taken 5% erroneous captures. Of these
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158 individuals, we link 80 percent, or 126 individuals, to the ER, 12
percent to the PR (19 individuals) and 8 percent to the PR and the ER
(13 individuals).

After having dealt with the simulated linkage error and erroneous
captures we conduct the multiple imputation using Predictive Mean
Matching. We use the package MICE to impute the missing values on
the variable usual residence for the CSR using every variable (except
the PR) in the imputation model. Mice has been programmed to impute
ten times with only one iteration, given that there was only one variable
that had missing values.

What follows is carried out for M = 10 imputations and N = 7 na-
tionality groups. First, a loglinear model has been estimated using main
effects only. This model is used as a starting point to use the function
STEP which selects the best fitting loglinear model on the data. The
selection has been done using the BIC. The best fitting loglinear model
is used to estimate the size of the population missed. The estimates are
stored, averaged over the M = 10 imputations, and reported in this
manuscript. The estimate on the total missed portion of the population
is found by summing the estimates of all 7 nationality groups. For the
two estimates for which a sampling analysis will be done, the analysis
also includes a bootstrap with 10,000 iterations to estimate the variance
of the resulting estimate. However, we use multiple imputations and for
some estimates also multiple samples. We also need to take into account
the variance due to both multiple imputation and sampling. The vari-
ance for multiple imputations has been coined by (Little and Rubin,
2002), and an extension from this variance to incorporate variance from
multiple samples can be found in the appendix.

5.6 Results

The results can be found in Table 5.3. The maximum likelihood estimates
of the missed portion of the population that is estimated by capture-
recapture methodology vary considerably over the scenarios. When we
consider all 37% of individuals with an incomplete linkage key as be-
longing to the population that were only registered in the CSR, thus
the baseline scenario, the three registers miss a total of 249 thousand
individuals. However, when we consider 75% of individuals that have an
incomplete linkage key as erroneous captures and the remaining 25% as
linkage error the estimate drops to 66 thousand individuals. Thus when
we remove 1,438 of the 1,917 individuals as erroneous captures and link
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the remaining 479 individuals to the other two registers, the resulting
population size estimate is rather different than when we consider these
1,917 individuals to belong to the population that are only registered
in the CSR. When we consider the full 37% of individuals with an in-
complete linkage key as erroneous capture the estimate becomes 151
thousand.

TABLE 5.3
Overview of the scenarios and the resulting maximum likelihood esti-
mates of the missed portion of the population.

37% with incomplete 63% with complete
linkage key variables linkage key variables

Scenario Err. Capt. Link. error Err. Capt. Link. error Mle
x1000

Baseline 0% 0% 0% 0% 249
1a 75% 25% 0% 0% 66
1b 75% 25% 5% 0% 66
1c 75% 25% 0% 5% 54
1d 75% 25% 5% 5% 56
2a 100% 0% 0% 0% 151
2b 100% 0% 5% 0% 151
2c 100% 0% 0% 5% 91
2d 100% 0% 5% 5% 92

Interestingly, linking an additional 5 percent of the 3,170 individuals
with complete linkage key information to the PR and/or ER decreases
the population size estimate considerably, whereas removing an addi-
tional 5% of erroneous captures from the 3,170 individuals with complete
linkage key information does not. From both scenarios it is obvious that
linkage error has a bigger effect on the population size estimation than
erroneous captures do.

From the scenarios, not considering the baseline scenario, we see
that the lowest estimate was 54 thousand and the highest estimate was
151 thousand individuals missed by all three registers. We found that
there are 33 thousand usual residents in the ER that were not registered
in the PR and thus are part of the undercoverage of the PR. Of the 5
thousand individuals in the CSR that did not link to the PR and ER,
approximately 1 thousand individuals are residing longer than a year
and have to be considered as part of the under coverage of the PR.
Thus, there are 34 thousand usual residents in the undercoverage of the
PR that are registered in the ER and CSR and have to be added to the
estimates from the analysis to know the undercoverage of the PR.
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This means that for the lowest estimate there are 88 thousand indi-
viduals in the under coverage of the PR, with a confidence interval of 57
to 151 thousand. For the highest estimate we have 185 thousand indi-
viduals not covered by the PR, with a confidence interval of 149 to 222
thousand individuals. Given that there are 16,638 thousand individuals
registered in the PR, the undercoverage of the PR of 88 to 185 thousand
usual residents means that we have an under coverage of the PR of only
.5 to 1.1 percent.

5.7 Discussion

We are interested in estimating the number of usual residents via
capture-recapture analysis to estimate the under count of the PR. We
documented in this manuscript the steps taken to overcome the practical
challenges that arose during the analyses. As such this manuscript is an
example of how the well known capture-recapture methodology can be
used in a practical applications such as estimating the undercoverage of
a register.

It has to be noted that the data that was used in this manuscript
was of individuals aged 15 - 65 years. This was due to restrictions in the
registers. As such, the population size estimates and the resulting under
coverage of the PR that are described in this manuscript consider only
a population of 15 to 65 years of age. To estimate children up until 15
years of age and the elderly over 65 years, other information is needed.

In section 4.2. we found that implied coverages of the PR en the ER
are low, which was caused by of the large number of individuals in the
CSR that could not be linked. Because of the low implied coverage, the
population size estimator will not be robust to possible violations of the
assumptions and different scenarios were used to deal with the 37% of
individuals in the CSR that had incomplete linkage keys. In the scenarios
we randomly assigned cases as either erroneous captures or linkage error
because there is no information to know which case belongs to the pop-
ulation and which does not. Unfortunately this random sampling does
have an impact on the population size estimate and the variance of the
estimate. The confidence interval for our highest estimate becomes as
high as 185 thousand. This means that we have an under coverage of
the population aged 15 to 65 of maximally 1.1 percent. Even though the
confidence interval is high, the under coverage remains rather small.

In Gerritse et al. (2015a) we determined a range of possible out-
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comes, where we expect the population size estimate would lie within.
The range of maximum likelihood estimates given in this manuscript
includes the lower part of this range of possible outcomes of 175 to 225
thousand individuals. This range of possible outcomes has been created
on outcomes of previous research on foreigners and their residence dura-
tion. A couple of assumptions had to be made, given that these previous
research did not always had the information needed, such as residence
duration (Hoogteijling, 2002), or only had information on part of the
data (Van der Heijden et al., 2012). Thus, even though it is interesting
to note that the ranges overlap, implications from this are not straight-
forward.

It is interesting that the range of possible outcomes of previous
research overlaps with the current estimates of 88 to 185 thousand indi-
viduals. This may indicate that there is higher possibility that the actual
number of usual residents missed by the PR lies close to the upper end
of the range of 88 to 185 thousand individuals. If the actual number
of under coverage is in the upper end of our range, there is only about
a 1 percent undercoverage of the PR of the population of Dutch usual
residents aged 15 to 65.

Extra precautions have been taken to make sure all assumptions
have been met. Also, our estimates overlap with a range of possible out-
comes by former research. However, it has to be acknowledged that our
population size estimates may be biased still, due to unknown violations.

In this manuscript we have given an overview of what was deemed
best for the data used at Statistics Netherlands to estimate the under
coverage of the PR. The results and their implications do not only apply
to the data used in this manuscript, it can be used as a caution for other
research as well, especially the more similar their data is to this research.
It has to be kept in mind that the capture-recapture methodology can
be very sensitive to small changes in the data, but also in the estimation
process. It is a useful method yet has strict assumptions which have to
be taken into account, but it also becomes more complex when missing
data is introduced. In this manuscript we have given our view on a pos-
sibility to work with this.

Appendix - variance estimation

For the maximum likelihood estimates the analysis also included a
bootstrap with 10,000 iterations to estimate the variance of the result-
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ing estimate. This bootstrapped variance is used as the within variance
to estimate the total variance for multiple imputation, which is the left
hand side of equation (5.5). In a last loop the stored estimates and vari-
ance are used to estimate the variance via (5.5). This variance is used
to derive a 95% confidence interval on the two chosen estimates.

For the estimate of 151 thousand individuals missed (scenario 2a),
all individuals with 37% of incomplete linkage key are considered erro-
neous captures. Thus there is no random assignment of erroneous cap-
tures or linkage error and we do not take extra samples to account for
variability due to random assignment. For that scenario the variance
needed for the confidence interval is estimated via the variance estima-
tion formula of Little and Rubin (2002) that takes into account variance
due to multiple imputations.

However, for the estimate of 54 thousand individuals (scenario 1c)
there is random assignment of both the linkage error and erroneous cap-
tures of the 37% of individuals that have incomplete linkage keys, as well
as an additional 5% of linkage error for the individuals in the CSR that
did have a complete linkage key. In this manuscript we have multiple
sources that affect the variance of the estimate. To assess the variance
from multiple imputation, Little and Rubin (2002) have formulated a to-
tal variance that combines the within and between imputation variance.
Thus the variance for multiple imputation can be accounted for. How-
ever, because we also take different samples of erroneous captures and
linkage errors we want to account for that variance as well. We formulate
here how the total variance formula from Little and Rubin (2002) can
be extended to a third source of variance.

Consider the situation where we have taken a sample d of records,
to simulate removing erroneous captures. For this sample we perform
i = 1, . . . ,M imputations. Per imputation we can calculate the capture-
recapture estimator θ̂id. An estimate of the variance of θ̂id, conditional
on the taken sample, is obtained by applying a parametric bootstrap
resampling procedure. We will denote this variance by

W i
d = V̂ar

(
θ̂id

)
.

The final estimator for sample d is averaged over all imputations:

θ̂d =
1

M

M∑
i=1

θ̂id.
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Applying the formula for the total variance of θ̂d in case of multiple
imputation as given e.g. in Little and Rubin (2002) yields

V̂ar(θ̂d) =
1

M

M∑
i=1

W i
d +

(
1 +

1

M

)
1

M − 1

M∑
i=1

(
θ̂id − θ̂d

)2
.

We thus have an estimator of the variance for the estimate of θ based
on a single sample, with M imputations. Denote this variance by

Wd = V̂ar(θ̂d).

To be able to estimate the variance due to sampling records to simulate
erroneous captures, we will replicate the procedure D times. That is, we
will perform the sampling D times and for each sample d = 1, . . . , D we
will calculate θ̂d and its variance estimate Wd. The total variance we will
then estimate by applying the general total variance formula

VarX = IE (Var(X|Y )) + Var (IE(X|Y )) , (5.4)

i.e., the sum of the within-variance and the between-variance. Condi-
tioning on the sampling, we get

V̂ar(θ̂) =
1

D

D∑
d=1

Wd +
1

D − 1

D∑
d=1

(
θ̂d − θ̄D

)2
, (5.5)

where θ̄D = 1
D

∑
θ̂d Finally, equation (5.5) can be rewritten into

V̂ar(θ̂) =
1

D

D∑
d=1

(
1

M

M∑
i=1

V̂ar
(
θ̂id

))
+

1

D

D∑
d=1

((
1 +

1

M

)
1

M − 1

M∑
i=1

(
θ̂id − θ̂d

)2)
+

1

D − 1

D∑
d=1

(
θ̂d − θ̄D

)2
.
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6.0.1 Nederlandse samenvatting

Statistische bureaus zoals het Centraal Bureau voor de Statistiek (CBS)
worden periodiek gevraagd om aan te geven hoeveel inwoners een land
bevat. Het aantal inwoners van een land wordt in het Engels aangeduid
met usual residents, ofwel de gewoonlijke bevolking. Volgens EU regel-
geving wordt de gewoonlijke bevolking gedefinieerd als de mensen die
langer dan 12 maanden in een land verblijven, of de intentie hebben dat
te doen. In Nederland maakt het Centraal Bureau voor de Statistiek
gebruik van een Populatie Register (PR) om het aantal inwonenden te
schatten: de Gemeentelijke basisadministratie (GBA) en vanaf 1 januari
2014 de Basisregistratie personen (BRP). De Nederlandse wet schrijft
voor dat mensen zich moeten inschrijven in de PR als zij langer dan 4
maanden verblijven in Nederland, of de intentie daartoe hebben. Echter,
de PR alleen is niet afdoende om de omvang van de gewoonlijke bevolking
te schatten, aangezien er ook mensen zijn die wel in Nederland wonen,
of de intentie hebben voor minstens 12 maanden in Nederland te wonen,
maar die zich niet hebben ingeschreven. Twee zulke grote groepen zijn
voormalige asielzoekers die uitgeprocedeerd zijn, en Europese arbeidsmi-
granten die wegens vrij verkeer van personen niet illegaal in Nederland
verblijven als ze zich niet inschrijven in het GBA. Om de gewoonlijke
bevolking te schatten heeft de PR daarom een onderdekking, en een
oplossing moet gevonden worden om deze onderdekking te schatten.

Vangst-hervangst methodologie word gebruikt om te schatten welk
deel van de gewoonlijke bevolking wordt gemist door de PR. Als twee of
meer registers aan elkaar gekoppeld worden, kan met de vangst-hervangt
methode worden geschat hoeveel mensen in deze registers zijn gemist ter-

149
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wijl zij wel tot de populatie behoren. In dit proefschrift worden een poli-
tieregister, de HerKenningsdienst Systeem (HKS), en de werknemersdeel
uit de Polisadministratie, het WerkNemersBestand (WNB), gekoppeld
aan de PR om te schatten welk deel van de populatie deze registers teza-
men missen om zodoende tot een onderdekking te komen van de PR.

De vangst-hervangst methodologie is ontwikkeld om dierpopulaties
te schatten en is later uitgebreid om aantallen mensen te schatten. In
het simpelste voorbeeld worden twee registers gebruikt, waarbij mensen
in ieder van de registers wel of niet zijn opgenomen. Hierdoor kunnen
aantallen mensen worden geclassificeerd in een 2 bij 2 tabel. Echter,
het aantal mensen dat in beide registers niet voorkomt maar wel tot de
bevolking hoort, is een zgn. structurele nul in de 2 bij 2 tabel, aangezien
deze mensen per definitie niet zijn geobserveerd in beide registers. Deze
structurele nul wordt bijgeschat door toepassing van de methode. Er
zijn uitbreidingen van de methode naar meer dan twee registers en naar
covariaten. De methode werkt goed als er aan een aantal aannames is
gedaan. Echter, deze aannames worden vaak geschonden. Vanuit de geob-
serveerde data kan niet worden geverifieerd of de aannames geschonden
zijn, laat staan in welke mate.

De registers die worden gebruikt zijn aan elkaar gekoppeld door ge-
bruik te maken van een combinatie van deterministisch en probabilistisch
koppelen. Op het CBS worden alle registers standaard deterministisch
gekoppeld aan de PR. Om deterministisch te koppelen moeten twee in-
dividuen op een zgn. koppelsleutel exact overeenkomen, waarbij enkel
kleine fouten zoals spelfouten nog meegenomen kunnen worden. Echter,
het zijn vooral de mensen die in Nederland verblijven zonder Nederlandse
nationaliteit die zich vaak ook niet hebben geregistreerd als inwoner. De
van deze mensen in de registers aanwezige informatie bevat ook vaak
registratiefouten en daarom is het lastig om hen deterministisch te kop-
pelen aan de PR. Zodoende maken we ook gebruik van probabilistisch
koppelen, om de kans te vergroten om alle individuen in het HKS en de
WNB te vinden die in de PR zijn ingeschreven.

Om tot een schatting te komen van de omvang van de gewoonlijke
bevolking, moeten aantallen personen worden uitgesplitst naar verblijfs-
duur. Dat kan door verblijfsduur als covariaat in het model dat gebruikt
wordt voor de vangst-hervangst schatting op te nemen. Echter, de drie
gebruikte registers hebben geen kant-en-klare variabele voor verblijfs-
duur. In de PR is een dag van inschrijving bekend, waaruit verblijfsduur
kan worden afgeleid. In de WNB zijn baanduren bekend en deze kunnen
worden gebruikt om tot een schatting te komen van verblijfsduren. In
de HKS moet een schatting voor verblijfsduur worden ingevuld, geim-
puteerd, gebruikmakend van de informatie van de andere twee bronnen.

In dit proefschrift worden er twee hoofdvragen beantwoord: 1) Wat
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is het effect van schending van aannames en ontbrekende waarden op de
populatieschatter, en 2) hoe kun deze informatie worden gebruikt om
tot een accurate, realistische schatting te komen voor de onderdekking
van de PR? Hoofdstuk 1 geeft achtergrondinformatie over het proef-
schrift. Hoofdstukken 2 tot en met 4 gaat in op hoofdvraag nummer 1,
en hoofdstuk 5 gaat in op hoofdvraag 2. En term overkoepelt het hele
proefschrift en dat is implied coverage, de dekking van register 1 die
wordt gempliceerd door andere registers. Gempliceerde dekking wordt
kort besproken in hoofdstuk 2, maar pas in hoofdstuk 3 is beschreven
dat de gempliceerde dekking van registers een grote invloed heeft op de
mate waarin geschonden aannames van effect zijn op de populatieschat-
ter.

In hoofdstuk 2 wordt de gevoeligheid besproken van populatieschat-
ters wanneer bepaalde parametrische aannames worden geschonden. In
het bijzonder wordt in dit hoofdstuk schending van de aanname van on-
afhankelijkheid besproken. Onder onafhankelijkheid nemen we aan dat
de insluitkansen van register 1 onafhankelijk zijn van de insluitkansen
van register 2. Omdat we onafhankelijkheid niet kunnen verifieren uit de
data, is er een methode bedacht om afhankelijkheid te simuleren en het
effect hiervan op de schatter te onderzoeken. In dit hoofdstuk worden
er twee nationaliteitsgroepen vergeleken: de eerste groep bevat mensen
met een Poolse nationaliteit en de tweede groep bevat mensen met een
Afghaanse, Iraakse of Iraanse nationaliteit. Bij simulering van afhanke-
lijkheid bleek voor de individuen met een Poolse nationaliteit dat de
uitkomsten een grote spreiding te zien gaven. Daarom kan, bij onzeker-
heid over de mate van schending van de onafhanklijkheidsaanname, een
schatting niet zomaar vertrouwd worden. De schatting voor de mensen
met een Afghaanse, Iraaks en Iraanse nationaliteit was wel robuust onder
gesimuleerde afhankelijkheid. Deze conclusie bleef overeind bij toevoeg-
ing van een covariaat (geslacht). Ook wordt er in dit hoofdstuk besproken
hoe men ten dele geobserveerde covariaten toch kan gebruiken als co-
variaat in de vangst-hervangst schatting. Tussen de deels geobserveerde
covariaat en het register werd afhankelijkheid gesimuleerd, waarbij voor
beide nationaliteiten de schatter robuust bleef.

In hoofdstuk 3 wordt de gevoeligheid besproken van de populati-
eschatter onder simulering van foutieve koppelingen en foutieve vang-
sten. In de vangst-hervangst methode wordt aangenomen dat er perfect
kan worden gekoppeld en dat er geen foutieve vangsten zijn, zodat elk
individu in de registers tot de populatie behoort. Dezelfde twee nation-
aliteitsgroepen werden gebruikt, maar dan voor zowel het twee register
model als het drie register model. Weer werd gevonden dat de schatter
voor de Poolse groep niet robuust was onder geschonden aannames, en
deze voor de groep Afghanen, Irakezen en Iranezen wel. Er werd onder-
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zocht waarom dit zo is. Voortbouwend op eerder uitgevoerd onderzoek,
is de term geimpliceerde dekking in dit hoofdstuk verder uitgewerkt. In
het geval van twee registers, is de geimpliceerde dekking hoog als register
2 weinig nieuwe personen toevoegt aan register 1. Als deze dekking hoog
is, dan is de schatter robuust voor schendingen van de aannames. Is de
dekking echter laag, dan is de schatter niet robuust en is de schatting
onbetrouwbaar.

In hoofdstuk 4 wordt besproken hoe er omgegaan kan worden met
ontbrekende gegevens (missing values) op de verblijfsduur variabele.
Verblijfsduur is van cruciale betekenis voor dit onderzoek, daarom moest
er een oplossing worden gevonden voor de ontbrekende gegevens. Voor de
ontbrekende gegevens zijn op vier manieren, scenarios, waarden ingevuld
en de resulterende populatieschattingen zijn met elkaar vergeleken. Drie
van de vier scenarios gebruikten het Expectation Maximization (EM)-
algoritme, en het laatste scenario maakte gebruik van Predictive Mean
Matching (PMM). De uitkomsten van de vier scenarios zijn met elkaar
vergeleken om te besluiten welke methode het beste de missende waardes
kan voorspellen en de beste uitkomst geeft. Om tot dit besluit te komen
is er allereerst literatuuronderzoek gedaan naar eerder onderzoek met
vergelijkbare schattingen, waaruit een verwachting kon worden afgeleid
voor de schatting voor de cijfers uit 2010. Daarnaast gebruikten we in-
formatie over de asielaanvragen in 2010 en de jaren ervoor. De verwachte
schatting voor 2010 zou moeten liggen tussen 175 en 225 duizend per-
sonen, en alleen de schatting voor de PMM-imputatie viel daarbinnen.
Methodologisch was er ook een voorkeur voor de PMM-imputatie omdat
dit de enige methode is die de mogelijkheid biedt slechts een deel van de
geobserveerde data te gebruiken voor het imputeren in plaats van alle
geobserveerde data. De schatting kwam er op uit dat 212 duizend indi-
viduen worden gemist door de PR . Let wel, deze schatting had alleen
betrekking op mensen met een leeftijd tussen de 15 en 65, vanwege de
begrenzing van de registers. De schatting moet nog worden aangevuld
met een schatting van mensen jonger dan 15 en ouder dan 65.

Hoofdstuk 5 gebruikt de informatie die is verkregen uit de eerdere
hoofdstukken en ander voorgaand onderzoek om tot een accurate schat-
ting te komen van de onderdekking van de GBA om het aantal perso-
nen te schatten dat deel uit maakt van de gewoonlijke bevolking. Dit
hoofdstuk kan als voorbeeld worden gebruikt van hoe er omgegaan kan
worden met de praktische problemen die men aantreft bij het schatten
van de bevolkingsgrootte. Zo wordt elke aanname afzonderlijk bespro-
ken, alsmede wat er is gedaan om aan deze aannames te voldoen. Het
bleek dat 37% van de individuen in de HKS die niet koppelen aan de an-
dere registers, incomplete koppelsleutels hadden, waardoor deze mensen
niet gekoppeld konden worden en niet bepaald kon worden of het hier
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wellicht om foutieve vangsten ging. Een aantal scenarios wordt gebruikt
om te beoordelen hoe groot de spreiding is van de geschatte uitkom-
sten. Uiteindelijk komen we tot een schatting die ligt tussen 88 tot 186
duizend individuen die gemist worden door de PR, wat neerkomt op een
onderdekking van maar 0.5 tot 1.1%. Ook hier moet worden opgemerkt
dat het gaat om de mensen tussen 15 en 65 jaar, en de onderdekking
van de PR zal iets hoger liggen als ook kinderen tot 15 jaar en ouderen
vanaf 65 jaar worden meegenomen.

In dit proefschrift is besproken hoe de vangst hervangst methode
gebruikt kan worden om tot een schatting te komen van de gewoonli-
jke bevolking van Nederland. Er is onderzocht hoe de aannames en de
gempliceerde dekking van invloed zijn op de schatter. Eveneens is er
onderzocht hoe er omgegaan kan worden met mogelijke praktische prob-
lemen zoals missende waardes. Het proefschrift draagt hiermee bij aan
algemene kennis over de vangst-hervangst methode alsmede over schat-
ten binnen de officile statistiek.
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156 An application of population size estimation to official statistics
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”The thing I treasure most in life, cannot be taken away
There will never be a reason why, I will surrender to your advice

To change myself, I’d rather die
Though they will not understand
I won’t make the greatest sacrifice

You can’t predict where the outcome lies
You’ll never take me alive

I’m alive!”

Disturbed - I’m alive


