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PREFACE

After graduating in the summer of 2015, I was pondering whether to start a PhD
or a job at Statistics Netherlands. Eventually, I chose the latter hoping to someday
reignite my scientific spark. That day came sooner than I imagined. In 2016 I had
the pleasure to meet my current supervisors Cees Diks, Jaap van den Herik, and
Frank Takes. I recall that we connected on a scientific level as well as on a personal
level and that we decided to start working together rather quickly.

Initially, our research focused on an applied problem: how can we accurately
estimate cross-border Internet purchases within the European Union? It was a
continuation of work that I took up earlier that year together with Arjan van Loon.
When we achieved our first successful results in 2017 using statistical learning
methods, Statistics Netherlands proposed to publish a news article on our work.
As usual, the draft was reviewed by the Director-General, Tjark Tjin-a-Tsoi. His
comments were: ‘Amazing work. I only have a few remarks. First, we are
suggesting impeccability, but I think that there must be at least some form of
measurement error [...].’

As a consequence of this first remark, I soon discovered how misclassifications
led to bias. I turned to my colleagues Arnout van Delden and Sander Scholtus.
They had recently written a paper on the topic of classification errors together
with Joep Burger, but they had not yet discovered the implications of their work
to statistical learning. We decided to work on the topic together, for example
by supervising Kevin Kloos, which resulted in Chapter 2 of this thesis. I truly
enjoyed working closely with all four of you.

Next to having worked at Statistics Netherlands, I must say that I feel very
privileged to have met so many inspiring colleagues at both CeNDEF (University
of Amsterdam) and LIACS (Leiden University). Many of you directly or indirectly
taught me about economics, econometrics and computer science, for which I am
truly thankful.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
We live in a society that is driven by information. Currently, the most striking ex-
ample is how governments deal with the COVID-19 pandemic. Lockdown rules
and other restrictive measures are based predominantly on confirmed cases of
coronavirus. The impact of these restrictive measures on our everyday lives is
huge and therefore the swift availability of detailed and highly accurate informa-
tion in this context is essential.

Confirmed cases of coronavirus are an example of statistical information about
groups of people provided by the national government. Such information is re-
ferred to as official statistics and is often provided by national statistical institutes
(NSIs). Over the past few years, NSIs have experienced an increase in the de-
mand for official statistics, spanning across the following three dimensions: (1)
statistics on new topics, including economic developments such as globalisation
or the Internet economy, (2) more detailed statistics, both in space (e.g., small-area
estimates) and time (e.g., at a higher frequency), and (3) more timely availability
of statistics (Braaksma & Zeelenberg, 2015; De Broe et al., 2020). At the same time,
NSIs not only experience budget cuts, but are also obliged to reduce the response
burden on companies and citizens.
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The consequence of these two conflicting developments (increased demand
versus budget cuts) is that NSIs are in need for readily-available, detailed, and
high-frequent data, which are often referred to as big data. Due to the high
dimensionality of big data, new statistical methods have to be developed as well
(Hastie, Tibshirani & Friedman, 2009). These methods are often referred to as
methods in data science, machine learning or artificial intelligence. We prefer
the term statistical learning, following Hastie et al. (2009). Although big data and
statistical learning have been popular topics in the quantitative sciences for at least
two decades (the first edition of The Elements of Statistical Learning was published
in 2002), NSIs have started embracing them only a few years ago. Briefly put, the
main obstacles have been the quality of the data and the quality of the methods
(Struĳs, Braaksma & Daas, 2014).

This thesis focuses on understanding and improving the quality of the meth-
ods. We will concentrate on a specific impediment called misclassification bias.
This is a type of statistical bias that occurs when imperfect classifications are
subsequently counted or otherwise aggregated. The bias might be large, even
for highly accurate statistical learning methods. Therefore, we believe that this
thesis contributes to a more thorough evaluation of statistical learning methods,
enabling more reliable use of these methods in official statistics in particular and
the quantitative sciences in general.

Below we provide a brief introduction to official statistics, statistical learning
and misclassification bias. In Section 1.2, we describe how NSIs nowadays em-
brace model-based statistics besides design-based statistics. In Section 1.3, we
discuss statistical learning in official statistics. In Section 1.4, we introduce mis-
classification bias and indicate an open problem in the academic literature. We
then formulate the main problem statement and the three research questions in
Section 1.5. The research methodology is given in Section 1.6. The four contribu-
tions of the thesis are listed in Section 1.7. Finally, the structure of the thesis is
outlined in Section 1.8.

1.2 Official statistics
NSIs all over the world produce statistical information on social and economic
issues, including economic growth, safety and healthcare. Such information is re-
ferred to as official statistics. The aims and scope of NSIs are based on fundamental
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principles that are agreed upon within international and intergovernmental or-
ganisations, including the United Nations (Statistical Commission of the United
Nations, 2014) and the OECD (OECD, 2011). Within the European Union, the
fundamental principles are established in the Regulation on European Statistics
(European Commission, 2009) and in the European Statistics Code of Practice
(Eurostat, 2017). The fundamental principles that relate to the output quality
of official statistics (including statistical accuracy) were a reason for NSIs to re-
strict themselves to design-based statistics, as opposed to model-based statistics
(Braaksma & Zeelenberg, 2015).

However, three interrelated developments have initiated and accomplished a
paradigm shift within official statistics over the last two decades (Buelens, Boon-
stra, van den Brakel & Daas, 2012; De Broe et al., 2020). The first development is
the rise of big data. These data are not suitable for classical design-based statistics
due to the issue of selectivity (Daas, Puts, Buelens & Van den Hurk, 2015; Van den
Brakel & Bethlehem, 2008). The second development is the sophistication of sta-
tistical learning methods, including both statistical models and learning algorithms,
which currently are able to deal with the high dimensionality encountered in big
data (Hastie et al., 2009). The third development, the significance of which is
often underestimated, is the implementation of learning algorithms into easy-to-use
open source software. A noteworthy example is the scikit-learn module in Python
(Pedregosa et al., 2011). Nowadays, one can employ the most complex learning
algorithms within a few lines of code, whereas just over a decade ago the com-
plexity of such models hampered their adoption into the production process of
official statistics (Van den Brakel & Bethlehem, 2008).

The consequence of these three developments is that NSIs are now embracing
both model-based statistics and algorithm-based statistics. The most profound
example is the production of the consumer price index. A few years ago, ex-
perimentation with web scraping and scanner data was initiated at Statistics
Netherlands (Chessa, 2016) and as of 2020 no other sources of information are
used anymore1. It should be stressed that NSIs still comply to the same funda-
mental principles of official statistics, also for the production of model-based or
algorithm-based statistics, albeit by adopting additional guidelines (Buelens, de
Wolf & Zeelenberg, 2016). Therefore, it might be argued that the paradigm in
official statistics is not shifting but rather being updated (cf. De Broe et al., 2020).

1See https://www.cbs.nl/en-gb/corporate/2020/02/manual-retail-price-observations
-discontinued.

https://www.cbs.nl/en-gb/corporate/2020/02/manual-retail-price-observations-discontinued
https://www.cbs.nl/en-gb/corporate/2020/02/manual-retail-price-observations-discontinued
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Nonetheless, the adoption of models and algorithms in the field of official statis-
tics generates a wide variety of methodological challenges concerning the quality
of the resulting statistical output. These methodological challenges are discussed
next.

1.3 Statistical learning in official statistics
The rise of big data has sparked the adoption of statistical learning methods
at NSIs worldwide. Recently, Beck, Dumpert and Feuerhake (2018) reported
136 ongoing machine learning projects at NSIs in 25 countries, most of which
(78) aim at producing new or improved statistical output using classification
algorithms. Despite the fact that NSIs seem to be focused on creating new output,
the methodological challenges of applying statistical learning methods to big data
are widely recognised (see, e.g., Kitchin, 2015 and MacFeely, 2016)

From the viewpoint of Statistics Netherlands, De Broe et al. (2020) address the
most significant challenges encompassing the use of statistical learning in the pro-
duction of official statistics. Many of the methodological challenges they present
are due to biases encountered in big data sources, which have been described ex-
tensively in the scientific literature recently (Baeza-Yates, 2018; Mehrabi, Morstat-
ter, Saxena, Lerman & Galstyan, 2019). Moreover, De Broe et al. (2020) summarise
four challenges encompassing big data methods (cf. statistical learning methods)
in official statistics. The four challenges are dealing with (1) noise, (2) selectivity,
(3) spurious correlations, and (4) concept drift. All four of these have impact on
the classification accuracy of the statistical learning methods used. In this thesis,
we will devote specific attention to concept drift. It is defined as a change in the
joint distribution of the dependent and independent variables (Gama, Žliobaitė,
Bifet, Pechenizkiy & Bouchachia, 2014; Webb, Hyde, Cao, Nguyen & Petitjean,
2016). As official statistics often describe non-stationary stochastic processes, like
economic growth, concept drift always occurs, even if the data contain no errors
or biases.

Subsequently, De Broe et al. (2020) provide a general quality framework for
the use of big data and statistical learning in the production of official statistics,
complementing the guidelines by Buelens et al. (2016) mentioned above. Within
that general quality framework, this thesis focuses on improving the accuracy (as
part of the output quality) of what we will refer to as classifier-based statistics, i.e.,
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aggregate statistics that are based on categorical variables predicted by statistical
learning methods.

There are two main reasons for focusing on the accuracy of classifier-based
statistics. First, improving the accuracy of classifier-based statistics also con-
tributes to other scientific disciplines that are interested in aggregate statistics,
including epidemiology, remote sensing and political science. In fact, the results
that we have obtained are not restricted to big data sources, but apply to classifier-
based statistics regardless of which type of data is used. Second, the underlying
problem that causes inaccuracy of classifier-based statistics, namely misclassifica-
tion, has always been a neglected problem in categorical data analysis (Schwartz,
1985). Even today, retrieving aggregate statistics from learning algorithms is mis-
takenly believed to be a trivial task, leading to severe statistical bias (González,
Castaño, Chawla & del Coz, 2017).

In Section 1.4, we show how misclassification may lead to statistical bias. We
then indicate an open problem in the academic literature on misclassification bias
in statistical learning. It leads to the formulation of the problem statement of this
thesis in Section 1.5.

1.4 Misclassification bias in statistical learning
Misclassification bias is defined as the statistical bias of an estimator of an ag-
gregate statistic, which results from errors in the classifications on the level of
individual objects (Czaplewski, 1992). An illustrative example is provided in the
box titled “The Election Prediction Example”. The example shows that misclassi-
fications do not cancel out by aggregation, but yield biased estimates of aggregate
statistics. This is in contrast to what is sometimes claimed (cf. O’Connor, Bala-
subramanyan, Routledge and Smith, 2010, p. 125). Estimating aggregate statistics
using statistical learning methods is referred to as the quantification task for machine
learning (Forman, 2008):

“Given a limited training set with class labels, induce a quantifier that takes
an unlabeled test set as input and returns its best estimate of the number of
cases in each class.” (Forman, 2008, p. 167)

The quantification task for machine learning (in brief, quantification learning)
was first described by Forman (2005). His key observation was that accurate
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classification is not necessary for accurate quantification. Indeed, it is true to
some extent, as depicted in Fig. 1.1, adapted from Scholtus and Van Delden
(2020). The figure shows that increasing classification accuracy might increase
misclassification bias, but will also often reduce standard deviation.

The Election Prediction Example. (adapted from Meertens, Van Delden,
Scholtus and Takes, 2019).

Assume that we are interested in predicting the outcome of the popular
vote of the US election between two candidates, named A and B. We assume
that 140 million (M) people will vote, of which we assume 66M will vote
for candidate A and 74M for candidate B. Clearly, candidate B will become
the winner of the popular vote.

To predict the election outcome, we consider opinion polling based
on Twitter data (Jaidka, Ahmed, Skoric & Hilbert, 2018; O’Connor et al.,
2010). We assume that we have trained a classifier predicting the candidate
preference for each voter based on the voter’s tweets (for the purpose of
this example, it is assumed that all voters are active on Twitter). We write
?�� for the probability that the classifier correctly predicts the political
preference of a voter that will vote for candidate A. We define ?⌫⌫ similarly.
We use E� for the actual number of voters for candidate A and bE� for
the classifier’s predicted number of voters for candidate A. We use similar
notation for candidate B.

Taking the accuracy scores from the sentiment analysis performed by
Jaidka et al. (2018), we obtain misclassification probabilities ?�� = 0.93 and
?⌫⌫ = 0.87. Based on such a classifier, the expected numbers of predicted
votes for candidates A and B are given by

(
E(bE�) = ?�� · E� + (1 � ?⌫⌫) · E⌫ ,
E(bE⌫) = (1 � ?��) · E� + ?⌫⌫ · E⌫ ,

(1.1)

which yields E(bE�) = 71M and E(bE⌫) = 69M (with negligible standard
deviation). It means that the algorithm would predict the wrong winner
of the popular vote, despite being a rather accurate predictor of the political
preference of individual voters.
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(�) Misclassification bias (�) Classification accuracy (�) St. dev. (# = 2,000)

F��. 1.1: Contour lines showing the difference between (A) quantification performance and
(B) classification performance for base rate � = 0.3 and varying classification probabilities
?00 and ?11. The quantification performance is maximised at the red line (no bias). The
key observation is that the directions of the contour lines are opposite (and will be perpen-
dicular if � = 0.5). Panel (C) depicts the standard deviation of classifier-based statistics.
Observe how reducing the classification accuracy might also reduce misclassification bias,
but will always increase standard deviation. Panels (A) and (C) adapted from Scholtus and
Van Delden (2020).

Moreover, we may observe that producing official statistics based on statistical
learning methods is the exact same task as the quantification task for machine
learning. Therefore, methods for quantification learning are immediate candi-
dates for reducing misclassification bias in classifier-based statistics. A recent
taxonomy of quantification learning methods is provided by González et al. (2017).
They distinguish between three categories of methods: those that (1) correct
classifier-based statistics, (2) adjust classifiers, and (3) match class distributions.
Many methods in these three categories have been proposed and they have been
evaluated empirically, but, as González et al. (2017) stress in their conclusions,

“First, more solid theoretical analyses are needed to better understand not only
the behavior of these algorithms but also the learning problem in general.”
(González et al., 2017, p. 74:37),

so theoretical evaluations are missing.
In this thesis we will provide theoretical analyses for the first category of

methods. Our starting point is the statistical literature on misclassification bias in
categorical data analysis, dating back to at least the seminal work by Bross (1954).
The literature is rather comprehensive, as the overlapping period is almost 70
years. Therefore, we will rely on the relatively recent overview provided by
Buonaccorsi (2010). There, the misclassifications are attributed to measurement
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errors instead of prediction errors. Nonetheless, the mathematical descriptions
of misclassification bias in (a) categorical data analysis and (b) quantification
learning are identical. The mathematical description used is captured by three
ingredients: (i) a statistical model for the true values, (ii) a measurement error
model, and (iii) extra data, information or assumptions needed to correct for
measurement error (Buonaccorsi, 2010, p. 4). In this thesis, we take the three
ingredients as our basis. We substantiate the three ingredients by rather precise
descriptions.

(i) As a first step, we focus on binary classification problems. With this focus,
the true values (categories) are independent and identically distributed (iid) ran-
dom variables with a Bernoulli(�)-distribution. The objective is to estimate
�, which is called the base rate.

(ii) The measurement error model we use is the classical measurement error model
(as opposed to the Berkson error model, see Berkson, 1950), which entails
that we make assumptions on the distribution of observed values given the
true values (and not vice versa) (Buonaccorsi, 2010, p. 6). Here, we follow
the convention in official statistics (see Van Delden, Scholtus and Burger,
2016) and not that in remote sensing (cf. Czaplewski, 1992). Our motivation
is that an observation (i.e., prediction) is causally determined, with error, by
the underlying true category. For example, consider epidemiology, where
a disease causally determines the symptoms and hence the test result, not
vice versa.

(iii) Out of the five typical examples of extra data presented by Buonaccorsi
(2010), we will take our validation data. In the context of statistical learning,
such data are called test data. In supervised learning problems, test data
are already available to estimate the model’s out-of-sample performance.
Therefore, choosing test data as extra data to correct for measurement error
is a natural choice.

Finally, the open problem in the statistical literature on misclassification bias
is that for finite populations no theoretical comparison between correction methods
is available. The focus seems to have been on asymptotic results only (Kuha &
Skinner, 1997). Although the populations typically considered in official statistics
are quite large, the samples used as test data are often small. When correcting
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misclassification bias, the size of the test data (and not that of the population)
determines the accuracy of the estimate of the base rate �. We will use the mean
squared (estimation) error (MSE) to measure estimation accuracy, following both
the convention in official statistics (Buelens et al., 2016) and the recommendation
in quantification learning (Sebastiani, 2020). We are now able to formulate the
problem statement and research questions of this thesis.

1.5 Problem statement and three research questions
As we have argued so far, NSIs increasingly embrace statistical learning methods
to produce official statistics, but the output quality is hampered by misclassifi-
cation bias. This observation gives us the opportunity to formulate the following
problem statement.

Problem statement (PS): In what way can we reduce misclassification
bias in statistical learning so that we obtain more accurate classifier-based
statistics?

By using the MSE to measure the accuracy of classifier-based statistics, we take the
bias-variance trade-off into account that arises when reducing misclassification
bias. We will derive two theoretical research questions and one applied research
question from the PS.

First research question. In Section 1.4, we remarked that for finite populations no
theoretical comparison between the correction methods for misclassification bias
is available. Therefore, the first research question reads as follows.

Research question 1 (RQ1): Which estimator of the base rate, in particular
when dealing with concept drift, has the smallest MSE in finite populations?

Second research question. The book by Buonaccorsi (2010) explicitly excludes
Bayesian methods for categorical data analysis. Still, there are at least two rea-
sons to consider Bayesian methods. The first reason is that Bayesian methods can
solve the identification problem that occurs if the misclassification probabilities
are not known exactly (Gaba & Winkler, 1992). The second reason is that Bayesian
methods allow the use of prior information in a natural way. More specifically, the
prior information can be used “to derive identification regions for any real functional
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of the distribution of interest” (Molinari, 2008). In many applications in statistics
(e.g., in epidemiology, see Goldstein et al., 2016 and Gustafson, 2004) these iden-
tification regions are not yet leveraged to improve the accuracy of classifier-based
statistics. Thus, our second research question reads as follows.

Research question 2 (RQ2): How can we leverage identification regions of
misclassification probabilities in order to reduce the MSE of classifier-based
statistics even further?

Third research question. The answers to the first two research questions provide
a theoretical answer to the problem statement. To complement it, we will con-
sider a specific application in official statistics, namely the problem of estimating
cross-border Internet purchases within the European Union (EU). That estimation
problem has been a challenge in official statistics for many years and still is due
to a lack of sufficiently accurate data. We will investigate how statistical learning
can be used to improve the accuracy of existing estimates of cross-border Internet
purchases by answering the following research question.

Research question 3 (RQ3): To what extent can statistical learning be used
to improve the accuracy of estimates of cross-border Internet purchases within
the EU?

1.6 Research methodology
The research methodology that we will follow to answer each of the three research
questions is given below. We also provide an overview in Table 1.1.

First, we will answer RQ1 by means of literature review, theoretical derivations,
and numerical analyses. We will do so in two steps, namely under two different
assumptions. The first assumption (A1) is that the test data are a random sample
from the population. The assumption corresponds to the double sampling scheme
introduced by Tenenbein (1970). The second assumption (A2) is that the class
distribution might differ between the test data and the unlabelled data, but that
the misclassification probabilities are the same. Assumption A2 corresponds to
a specific type of concept drift referred to as prior probability shift (Moreno-Torres,
Raeder, Alaiz-Rodríguez, Chawla & Herrera, 2012). Assumption A1 can be viewed
as assumption A2 with the additional restriction that the prior probability shift
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T���� 1.1: Overview of the research methodolo-
gies used to answers each of the three research
questions.

Research methodology RQ1 RQ2 RQ3

Literature review X X X
Theoretical derivations X X
Numerical analyses X
Simulation study X
Experimental study X

is zero. We will first answer RQ1 under assumption A1 by means of literature
review and theoretical derivations. Then, we will answer RQ1 under assumption A2
by reviewing the literature, adapting the theoretical derivations that resulted
from answering RQ1 under assumption A1, and examining the adapted formulas
numerically.

Subsequently, we will answer RQ2 by a review of the literature, theoretical
derivations, and a simulation study. Our starting point will be the overview of
Bayesian methods for categorical data analysis provided by Agresti and Hitchcock
(2005). We will then extend the analytical expressions for the posterior distribu-
tion (of misclassification probabilities) under conjugate priors to our setting of
misclassification bias. Based on these expressions, we will provide a simulation
study to examine the MSE of classifier-based statistics when leveraging identifi-
cation regions as prior restrictions.

Finally, we will answer RQ3 by a literature review and an extensive experi-
mental study. We will discover that existing methods to estimate cross-border
Internet purchases within the EU are based on demand-side data and that the
use of these data results in an underestimation. Hence, we will propose a new
methodology to estimate cross-border Internet purchases based on (1) supply-side
data and (2) state-of-the-art methods from both computer science and statistical
learning. We will then implement the proposed methodology for the case of the
Netherlands and compare the resulting estimates with existing estimates. The
comparison will provide the empirical evidence to answer RQ3.
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1.7 Four contributions
Below, we list the four main contributions of this thesis.

• Contribution 1. We prove which estimation method minimises the MSE
of classifier-based statistics when correcting misclassification bias in finite
populations.

We provide new theoretical derivations for the MSE of two popular correc-
tions methods (the misclassification estimator and the calibration estimator,
see Kuha and Skinner, 1997). We do so under the two assumptions A1
and A2 (see Section 1.6). Under assumption A1, we provide a conclusive
theoretical result showing that the MSE of the calibration estimator is always
below that of the misclassification estimator. The result will be referred to
as Contribution 1(a). Under assumption A2, we show that the estimator
that minimises the MSE might be either the misclassification estimator or
the calibration estimator, depending on the data and the model used. This
result will be referred to as Contribution 1(b).

• Contribution 2. We reduce the MSE of the misclassification estimator even
further by leveraging identification regions as prior restrictions.

A Bayesian framework for reducing misclassification bias is considered.
Within that framework we propose prior restrictions on misclassification
probabilities based on identification regions (Molinari, 2008). A simula-
tion study shows that the prior restrictions reduce the MSE even further,
in particular when dealing with small test data sets. Moreover, our con-
struction guarantees that impermissible estimates (e.g., negative counts) are
prevented.

• Contribution 3. We propose an internationally consistent and comparable
method to estimate cross-border Internet purchases within the EU, which is
more accurate than existing methods.

We identified three supply-side data sources that capture information on
cross-border Internet purchases within the EU. We applied probabilistic
record linkage (Fellegi & Sunter, 1969) through approximate string matching
(Cohen, Ravikumar & Fienberg, 2003) and locality-sensitive hashing (Bawa,
Condie & Ganesan, 2005; Broder, 1997) to combine the three data sources in
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an accurate and timely manner. Moreover, we employed statistical learning
methods to identify webshops from the combined data and implemented
methods to correct for the resulting misclassification bias. Our method
is consistent and comparable across EU member states. We applied our
method to the Netherlands for the year 2016 and found an estimate (with
a standard deviation of only 8 percent) that is 6 times as high as estimates
produced by existing methods.

• Contribution 4. We show theoretically that smoothing the model-performance
metric AUC might reduce its MSE, contradicting empirical evidence.

The area under the receiver operating characteristic curve (AUC) is a per-
formance metric used to evaluate algorithms that rank instead of classify
objects according to a dichotomous variable. We consider a smoothed vari-
ant of the AUC proposed by Yan, Dodier, Mozer and Wolniewicz (2003). This
variant of the AUC is claimed to be outperformed by the standard AUC as a
model selector for algorithms that rank objects (Vanderlooy & Hüllermeier,
2008). The claim is supported by empirical evidence only. We therefore
investigated the theoretical properties of the standard AUC and those of
the smoothed variant of the AUC. Based on our investigations, we present
preliminary theoretical derivations that seem to contradict the claim.

1.8 Outline of the thesis
In Chapter 1, we connected official statistics, quantification learning and classical
categorical data analysis. We introduced the problem of misclassification bias
in statistical learning and we formulated the problem statement and three re-
search questions of the thesis. We then highlighted our four contributions. The
remainder of this thesis is organised as follows.

• Chapter 2 will answer RQ1 under assumption A1. The main result of the
chapter is Contribution 1(a). The content is based on the paper titled “Com-
paring correction methods to reduce misclassification bias” by K. Kloos,
Q.A. Meertens, S. Scholtus and J.D. Karch (2020), published in the proceed-
ings (peer-reviewed) of the 32nd Benelux Conference on Artificial Intelli-
gence and Machine Learning (BNAIC), edited by L. Cao, W.A. Kosters and
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J. Lĳffijt, pages 103–129. Moreover, the paper was selected for the postpro-
ceedings to be published as part of Springer’s Communications in Computer
and Information Science (CCIS) series. (The paper was also nominated for
the Best Paper Award of the conference.)

• Chapter 3 will answer RQ1 under assumption A2. The result corresponds
to Contribution 1(b). The chapter’s content is identical to the manuscript
titled “Improving the output quality of official statistics based on machine
learning algorithms” by Q.A. Meertens, C.G.H. Diks, H.J. van den Herik
and F.W. Takes, submitted to the Journal of Official Statistics in December
2020.

• Chapter 4 will answer RQ2 and hence result in Contribution 2. The con-
tent is the same as the paper titled “A Bayesian approach for accurate
classification-based aggregates” by Q.A. Meertens, C.G.H. Diks, H.J. van den
Herik and F.W. Takes (2019), published in the proceedings (peer-reviewed)
of the 19th SIAM International Conference on Data Mining (SDM), edited
by T.Y. Berger-Wolf and N.V. Chawla, pages 306–314.

• Chapter 5 will provide an answer to RQ3. The answer corresponds to
Contribution 3. The content of the chapter is identical to the paper titled
“A data-driven supply-side approach for estimating cross-border Internet
purchases within the European Union” by Q.A. Meertens, C.G.H. Diks, H.J.
van den Herik and F.W. Takes (2020), published in the Journal of the Royal
Statistical Society, Series A (Statistics in Society), 183(1), pages 61–90.

• Chapter 6 will touch upon an alternative to classification, namely ranking.
The chapter positions a theoretical open problem on model selection of
rankers, as opposed to classifiers. It has Contribution 4 as the main result.
The content of the chapter is ongoing work that is not yet submitted, but it
is included in this thesis as a discussion paper.

• Chapter 7 will provide the conclusions of this thesis in three parts. We will
(1) answer the three research questions, (2) answer the problem statement,
and (3) discuss directions for future research.
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2.1 Introduction
Currently, many researchers in the field of official statistics are examining the
potential of machine learning algorithms. A typical example is estimating the
proportion of houses in the Netherlands having solar panels, by employing a
machine learning algorithm trained to classify satellite images (Curier et al., 2018).
However, as long as the algorithm’s predictions are not error-free, the estimate
of the relative occurrence of a class, also known as the base rate, can be biased
(Scholtus & Van Delden, 2020; Schwartz, 1985). This fact is also intuitively clear:
if the number of false positives does not equal the number of false negatives, then
the estimate of the base rate is biased, even if the false positive rate and false
negative rate are both small. The statistical bias that occurs when aggregating the
predictions of a machine learning algorithm is referred to as misclassification bias
(Czaplewski, 1992).

Misclassification bias occurs in a broad range of applications, including official
statistics (Meertens, Diks, Van den Herik & Takes, 2020), land cover mapping (Löw,
Knöfel & Conrad, 2015), political science (Hopkins & King, 2010; Wiedemann,
2019), and epidemiology (Greenland, 2014). The objective in each of these ap-
plications is to minimise a loss function at the level of aggregated predictions,
in contrast to minimising a loss function at the level of individual predictions.
Within the field of machine learning, learning with that objective is referred to as
quantification learning, see González et al. (2017) for a recent overview. In quan-
tification learning, the idea is not to train a classifier at all, but to directly estimate
the base rate from the feature distribution. A drawback of that approach is that
relatively large training and test data sets are needed to optimise hyperparameters
and to obtain accurate estimates of the accuracy of the prediction, respectively.
In the applications referred to before, labelled data are often expensive to obtain
and therefore scarce. Hence, in this paper, we focus on what is referred to as
quantifiers based on corrected classifiers (González et al., 2017). In short, it entails
that we first aggregate predictions of classification algorithms and then correct
the aggregates in order to reduce misclassification bias.

In the literature on measurement error, several methods have been proposed
to reduce misclassification bias when aggregating categorical data that is prone
to measurement error, see Kuha and Skinner (1997) for a technical discussion
and Buonaccorsi (2010) for a more recent overview. Based on that literature, we
propose a total of five estimators for the base rate that can be derived from the
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confusion matrix of a classification algorithm. As reducing bias might increase
variance, the estimators are evaluated by their MSE. To the best of our knowledge,
for three of the five estimators, only asymptotic expressions for the MSE are ever
presented in the literature. In this paper, we derive the expressions for the MSE
for finite data sets. As a first step, we restrict ourselves to binary classification
problems. Nonetheless, we believe that the same proof strategies may be used for
multi-class classification problems. The expressions for the MSE enable a theoret-
ical comparison of the five estimators for finite data sets. It allows us, for the first
time, to make solid recommendations on how to employ classification algorithms
in official statistics and other disciplines interested in aggregate statistics.

The remainder of the paper is organised as follows. First, in Section 2.2,
the five estimators are formally introduced and the mathematical expressions
for their MSEs are presented. The derivations are provided in Appendix 2.A.
Then, in Section 2.3, the decision boundaries are numerically derived. We can
indicate under which condition, like the sensitivity and specificity of the learning
algorithm and the size of the test set, each of the estimators has the smallest MSE.
Finally, in Section 2.4, we draw our main conclusion and discuss directions for
future research.

2.2 Methods
Consider a target population of # objects and assume that the objects can be sep-
arated into two classes. One of the two classes is the class of interest. We refer to
the relative occurrence of the class of interest in the target population as the base
rate and we denote that parameter by �. In the example mentioned in Section 2.1,
the objects are houses in the Netherlands and the two classes are whether or not
the house has solar panels on the roof (Curier et al., 2018). The class of interest is
having solar panels and hence � indicates the relative frequency of houses in the
country having solar panels.

We assume that the true classifications are only known for objects in a small
simple random sample of the target population. In the applications that we
consider, these classifications are obtained by manual inspection of the objects
in that sample. Objects that belong to the class of interest receive class label 1,
the other objects receive class label 0. Then, the sample is split randomly into a
training set and a test set. As usual, the training set is used for model selection
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through cross-validation and is then used to train the selected model. We will
consider the result of that part of the process as given. The test set is used to
estimate the classification performance of the trained algorithm, which we will
discuss in more detail below. Finally, the classification algorithm is applied on
the entire target population (minus the small random sample, but we will neglect
that small difference) resulting in a predicted label for each object.

As we will encounter in Subsection 2.2.2, simply computing the relative occur-
rence of objects predicted to belong to the class of interest will result in a biased
estimate of �. That bias is referred to as misclassification bias (Czaplewski, 1992). In
this section, five estimators for the base rate parameter � are formally introduced,
many of which have been proposed decades ago, see Kuha and Skinner (1997) for
an extensive discussion. We summarise the formulas for bias and variance that
can be found in the literature and complement them with our own derivations.

In order to correct for misclassification bias, we need estimates of the al-
gorithm’s (mis)classification probabilities. Following Van Delden et al. (2016),
we assume that misclassifications are independent across objects and that the
(mis)classification probabilities are the same for each object, conditional on their
true class label. With this classification-error model in mind, we denote the prob-
ability that the algorithm predicts an object of class 0 correctly by ?00 and we
define ?11 analogously. Observe that ?11 and ?00 correspond to the algorithm’s
sensitivity and specificity, respectively. The confusion matrix % is then defined as
follows:

% =
✓
?00 1 � ?00

1 � ?11 ?11

◆
. (2.1)

The classification probabilities ?00 and ?11 are not known, but will be estimated
using the test set. We write = for the size of the test set and introduce the
notation =89 and #89 as depicted in Table 2.1. The classification probabilities are
then estimated without bias by ?̂00 = =00/=0+ and ?̂11 = =11/=1+. (Here, the
assumption is needed that the test set is a simple random sample from the target
population.) Furthermore, the base rate � for the target population is defined
formally as � = #1+/# .

Finally, we make the following technical assumptions. We assume that the
algorithm is not perfect in predicting either of the classes, but that it is better than
guessing for both of the classes, i.e., we assume that 0.5 < ?88 < 1. Because the
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T���� 2.1: Contingency tables for test set (left) and target population (right).

Estimated class

0 1 Total

True class
0 =00 =01 =0+
1 =10 =11 =1+
Total =+0 =+1 =

Estimated class

0 1 Total

True class
0 #00 #01 #0+
1 #10 #11 #1+
Total #+0 #+1 #

test set is a small (i.e., = ⌧ #) simple random sample from the population, =0+
may be assumed to follow a ⌫8=(= , �)-distribution, since � is considered fixed.
Moreover, the classification-error model that we assume implies that the elements
in the rows in Table 2.1, conditional on the corresponding row total, follow a
binomial distribution as well, with the corresponding classification probability
as success probability. For example, to name just two out of the eight entries,
=00 | =0+ ⇠ ⌫8=(=0+ , ?00) and #10 | #1+ ⇠ ⌫8=(#1+ , 1 � ?11). Last, the assumption
= ⌧ # justifies our ultimate technical assumption, which is that the estimators for
the entries in P based on the test set on the one hand and estimators for � based
only on the predicted class labels for the target population on the other hand, are
independent random variables.

2.2.1 Baseline estimator - random sample
The baseline estimator of � is the proportion of data points in the test data set
for which the observed class label is equal to 1. The baseline estimator will be
denoted by �̂0 . Under the assumptions discussed above, it is immediate that �̂0
is an unbiased estimator of �, i.e.:

⌫ [�̂0] = 0. (2.2)

Since we have assumed that the size = of the test data set is much smaller than
the size # of the population data, we may approximate the distribution of =�̂0 by
a binomial distribution with success probability �. The variance, and hence the
MSE, of �̂0 is then given by

"(⇢ [�̂0] = + [�̂0] =
�(1 � �)

=

. (2.3)



2

�.�. Methods 23

This MSE will serve as the baseline value for the other estimators we discuss.

2.2.2 Classify and count
When applying a trained machine learning algorithm on new data, we may simply
count the number of data points for which the predicted class equals 1. The
resulting estimator of �, which we will denote by �̂⇤, is referred to as the ‘classify-
and-count’ estimator, see González et al. (2017). In general, the classify-and-count
estimator is (strongly) biased, and has almost zero variance. More specifically,

E [�̂⇤] = �?11 + (1 � �)(1 � ?00), (2.4)

and hence
⌫ [�̂⇤] = �(?11 � 1) + (1 � �)(1 � ?00), (2.5)

which is zero only if the point (?00 , ?11) lies on the line through (1��, �) and (1, 1)
in R2, as shown by Scholtus and Van Delden (2020). The variance of the classify-
and-count estimator is derived by Burger, Van Delden and Scholtus (2015) and
equals

+ [�̂⇤] = �?11(1 � ?11) + (1 � �)?00(1 � ?00)
#

. (2.6)

If the population size # is large, the variance of �̂⇤ is small. In some literature,
this small variance is misinterpreted as high accuracy, by claiming intuitively that
the large size of the data set implies that the noise cancels out (cf. O’Connor et al.,
2010). However, the nonzero bias is neglected in such arguments. Therefore, we
are interested in the MSE because it considers both bias and variance. It equals

"(⇢ [�̂⇤] =
h
�(?11 � 1) + (1 � �)(1 � ?00)

i2
+ $

✓
1
#

◆
. (2.7)

The notation $(1/G) indicates a remainder term that, for sufficiently large values
of G > 0, is always contained inside an interval (�⇠/G , ⇠/G) for some constant
⇠ > 0, see, e.g., Strichartz (2000, p. 147). Observe how, in general, the MSE does
not converge to 0 as # tends to 1.
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2.2.3 Subtracting estimated bias
Knowing that the classify-and-count estimator �̂⇤ is biased (see (2.5)), we may
attempt to estimate that bias and subtract it from �̂⇤. As briefly mentioned
by Scholtus and Van Delden (2020), we may estimate that bias by the plug-in
estimator, that is, we substitute the unknown quantities in expression (2.5) by
their estimates. More precisely, the bias is estimated as

b⌫ [�̂⇤] = �̂⇤(?̂00 + ?̂11 � 2) + (1 � ?̂00), (2.8)

in which the estimators ?̂00 and ?̂11 are based on the test data set. The resulting
estimator �̂1 for � equals

�̂1 = �̂⇤ � b⌫ [�̂⇤] = �̂⇤(3 � ?̂00 � ?̂11) � (1 � ?̂00). (2.9)

To the best of our knowledge, the bias and variance of the estimator �̂1 have not
been published in the scientific literature. Therefore, we have derived both, up to
terms of order 1/=2, yielding the following result.

Theorem 2.1. The bias of �̂1 as estimator of � is given by

⌫ [�̂1] = (1 � ?00)(2 � ?00 � ?11) � �(?00 + ?11 � 2)2. (2.10)

The variance of �̂1 equals

+ [�̂1] =
⇥
�(?00 + ?11 � 1) � ?00

⇤2
?00(1 � ?00)

=(1 � �)

✓
1 + �

=(1 � �)

◆

+
⇥
�(?00 + ?11 � 1) + (1 � ?00)

⇤2
?11(1 � ?11)

=�

✓
1 + 1 � �

=�

◆

+ $
✓
max


1
=

3 ,
1
#

� ◆
. (2.11)

Proof. See Appendix 2.A. ⇤

In particular, Theorem 2.1 implies that ⌫ [�̂1] = (2 � ?00 � ?11)⌫ [�̂⇤], compare
Equations (2.10) and (2.5). Hence, |⌫ [�̂1] |  |⌫ [�̂⇤] |, because 1 < ?00 + ?11 < 2.
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2.2.4 Misclassification probabilities
Let % be the row-normalised confusion matrix of the machine learning algorithm
that we have trained, as defined in (2.1). That is, entry ?89 is the probability
that the algorithm predicts class 9 for a data point that belongs to class 8. The
probabilities ?89 are referred to as misclassification probabilities. In the binary
setting, we write ↵ for the column vector (1 � �, �)) (similarly for ↵⇤). Under the
assumption that the probabilities ?89 are identical for each data point, we obtain
the expression E[↵⇤] = %

)↵. If the true values of all entries ?89 of % were known
and if ?00 + ?11 < 1, then ↵? = (%))�1↵⇤ would be an unbiased estimator of
�. Using the plug-in estimator %̂ for %, estimated on the test set, the following
estimator of � is obtained:

�̂? =
�̂⇤ + ?̂00 � 1
?̂00 + ?̂11 � 1

. (2.12)

It is known that the estimator �̂? is consistent (asymptotically unbiased) for �, see
Buonaccorsi (2010). Grassia and Sundberg (1982) analysed the variance of this
estimator of an arbitrary number of classes. For the binary case, a simple analytic
expression for the bias and variance of �̂? for finite data sets has not been given,
as far as we know. Therefore, we have derived the bias and variance for finite data
sets, yielding the following result.

Theorem 2.2. The bias of �̂? as estimator of � is given by

⌫

⇥
�̂?

⇤
=

?00 � ?11

=(?00 + ?11 � 1) + $
✓

1
=

2

◆
. (2.13)

The variance of �̂? is given by

+[�̂?] =
(1 � �)?00(1 � ?00)

h
1 + �

=(1��)

i
+ �?11(1 � ?11)

⇥
1 + 1��

=�

⇤
=(?00 + ?11 � 1)2

+ $
✓
max


1
=

2 ,
1
#

� ◆
. (2.14)

Proof. See Appendix 2.A. ⇤
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2.2.5 Calibration probabilities
Let ⇠ be the column-normalised confusion matrix of the machine learning al-
gorithm that we have trained. That is, entry 289 is the probability that the true
class of a data point is 9 given that the algorithm has predicted class 8. The prob-
abilities 289 are referred to as calibration probabilities (Kuha & Skinner, 1997). The
first element of the vector ⇠↵⇤ is an unbiased estimator of ↵, if ⇠ is known.

Using the plug-in estimator ⇠̂ for ⇠, which is estimated on the test data set
analogously to %̂, the following estimator �̂2 for � is obtained:

�̂2 = �̂⇤ =11
=+1

+ (1 � �̂⇤) =10
=+0

, (2.15)

in which each =89 and =+9 should be considered as random variables. It has
been shown that �̂2 is a consistent estimator of � (Buonaccorsi, 2010). Under the
assumptions we have made in this paper, it can be shown that �̂2 is in fact an
unbiased estimator of �. To the best of our knowledge, we are also the first to give
an approximation (up to terms of order 1/=2) of the variance of �̂2 . Both results
are summarised in the following theorem.

Theorem 2.3. The calibration estimator �̂2 is an unbiased estimator of �:

⌫ [�̂2] = 0. (2.16)

The variance of �̂2 is equal to the following expression:

+(�̂2) =
 (1 � �)(1 � ?00) + �?11

=

+ (1 � �)?00 + �(1 � ?11)
=

2

�

⇥


�?11

(1 � �)(1 � ?00) + �?11

✓
1 � �?11

(1 � �)(1 � ?00) + �?11

◆�

+
 (1 � �)?00 + �(1 � ?11)

=

+ (1 � �)(1 � ?00) + �?11

=
2

�

⇥
 (1 � �)?00

(1 � �)?00 + �(1 � ?11)

✓
1 � (1 � �)?00

(1 � �)?00 + �(1 � ?11)

◆�

+ $
✓
max


1
=

3 ,
1
#=

� ◆
. (2.17)

Proof. See Appendix 2.A. ⇤
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Hereby, the overview of the five estimators for � is complete. The expressions
that we have derived for the bias and variance of these five estimators will now
be used to compare the MSE of the five estimators, both theoretically as well as
by means of simulation studies.

2.3 Results
The aim of this section is to derive empirically which of the five estimators of � that
we presented in Section 2.2 has the smallest MSE, and under which conditions. For
a given population size# , the MSE of each estimator depends on four parameters
(i.e, �, ?00 , ?11 , =), so visualisations would have to be 5-dimensional. To reduce
dimensions, we will first present a simulation study in which all four parameters
are fixed. For the fixed parameter setting, the sampling distributions of the
estimators are compared using box plots. Second, we will fix several values of �
and = and use plots to compare the MSE of the estimators for varying ?00 and ?11.
The latter analysis will already be sufficient in order to reach a final conclusion on
which estimator has the smallest MSE.

2.3.1 Sampling distributions of the estimators
Here, we present two simple simulation studies to gain some intuition for the dif-
ference in the sampling distributions of the five estimators. In the first simulation
study, we consider a class-balanced data set, that is, � = 0.5, with a small test data
set of size = = 1000, a large population data set # = 3 ⇥ 105 and a rather poor
classifier having classification probabilities ?00 = 0.6 and ?11 = 0.7. We choose
?00 < ?11 deliberately, as otherwise the classify-and-count estimator �̂⇤ would be
unbiased, i.e., (?00 , ?11) would be on the line between (1� �, �) and (1, 1), see also
expression (2.5).

Table 2.2 summarises the bias, variance and MSE, computed using the analytic
approximations presented in Section 2.2. The classify-and-count estimator is
highly biased and therefore it has a large MSE, despite having the smallest variance
of all estimators. The MSE of the classify-and-count estimator can indeed be
improved by subtracting an estimate of the bias (�̂1). The subtraction reduces the
absolute bias and only slightly increases the variance. A further bias reduction
is obtained by the misclassification estimator �̂? . However, inverting the row-
normalised confusion matrix % (that is, the misclassification probabilities) for
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T���� 2.2: Comparison of the bias, variance and MSE of each of the five estimators of
the base rate � when encountering no class imbalance.†

Estimator Symbol Bias
�⇥ 10�2� Variance

�⇥ 10�4� MSE
�⇥ 10�4�

Baseline �̂0 0.000 2.500 2.500

Classify-and-count �̂⇤ 5.000 0.000 25.000
Subtracted-bias �̂

1
3.500 2.244 14.494

Misclassification �̂? -0.033 25.025 25.026
Calibration �̂2 0.000 2.275 2.275

† Simulation results for � = 0.5, ?00 = 0.6, ?11 = 0.7, = = 1000 and # = 3 ⇥ 105.

values of ?00 and ?11 close to ?00 + ?11 = 1 significantly increases the variance
of the estimator, leading to the largest MSE of all estimators considered. Finally,
the calibration estimator �̂2 is unbiased and has the smallest variance among the
estimators that make use of the test data set. In particular, note that the variance
is also smaller than that of the baseline estimator. In this example, the estimator
based on the calibration probabilities has the smallest MSE, and it is the only
estimator with a smaller MSE than the baseline estimator �̂0 .

To gain insight in the sampling distribution of the estimators, in addition
to the metrics presented in Table 2.2, we simulated a large number ' = 10,000
of confusion matrices for data sets of size = = 1000 and # = 3 ⇥ 105. Each
confusion matrix was created as follows. First, take a random draw from a
⌫8=(# , �)-distribution, resulting in a number #1+. Then, take a random draw
from a ⌫8=(#1+ , ?11)-distribution and a random draw from a ⌫8=(# � #+1 , ?00)-
distribution to obtain #11 and #00 (respectively). This computes the theoretical
confusion matrix for the target population. Use this confusion matrix to draw
a sample from a multivariate hypergeometric distribution, with its parameters
from the drawn theoretical confusion matrix. These draws precisely give the
number of true and false positives and negatives needed to fill a confusion matrix.
Each confusion matrix can be used to compute the five estimators. Repeating
this procedure ' = 10,000 times gave rise to the sampling distributions of the
five estimators as presented in Fig. 2.1. It nicely visualises the bias and variance
of the five estimators, supporting the results in Table 2.2. In addition, it shows
that, due to the bias, the variances of the classify-and-count estimator �̂⇤ and the
subtracted-bias estimator �̂1 cannot be used to obtain reliable confidence intervals
for �.
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F��. 2.1: The box plots show the sampling distribution of the estimators for �, where
� = 0.5, ?00 = 0.6, ?11 = 0.7, = = 1000 and # = 3 ⇥ 105. The true value of � is highlighted
by a vertical line.

In the second simulation study, we consider a highly imbalanced data set,
namely � = 0.98. We again assume that the available test data set has size
= = 1000, but we assume a classifier having classification probabilities ?00 = 0.94
and ?11 = 0.97. Table 2.3 summarises the bias, variance and MSE of each of the
estimators and Fig. 2.2 shows the sampling distributions of each of the estimators.
It can be noticed that subtracted-bias estimator and the misclassification estimator
both have estimates of � that exceed 1. It is obvious that such values cannot occur
in the population. For the method with the misclassification probabilities, this
effect gets stronger when ?00 + ?11 gets closer to 1. Furthermore, the baseline
estimator performs well compared to the other estimators when the data set is
highly imbalanced. Its MSE is slightly larger than the MSE of the method with
calibration probabilities and much smaller than the method with the misclassi-
fication probabilities. Finally, it is shown that the classify-and-count estimator is
highly biased, even though ?00 and ?11 are both fairly close to 1.

2.3.2 Finding the optimal estimator
The aim of this subsection is to find the optimal estimator, i.e., the estimator with
the smallest MSE, for every combination of values of the parameters �, ?00, ?11
and =. First, suppose that (?00 , ?11) is close to the line in the plane through the
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T���� 2.3: Comparison of the bias, variance and MSE of each of the five estimators of
the base rate � when encountering class-imbalanced data.†

Estimator Symbol Bias
�⇥ 10�2� Variance

�⇥ 10�5� MSE
�⇥ 10�5�

Baseline �̂0 0.000 1.960 1.960

Classify-and-count �̂⇤ �2.820 0.000 79,524
Subtracted-bias �̂

1
�0.254 3.377 4.022

Misclassification �̂? �0.003 3.587 3,587
Calibration �̂2 0.000 1.289 1.289

† Simulation results for � = 0.98, ?00 = 0.94, ?11 = 0.97, = = 1000 and # = 3 ⇥ 105.

F��. 2.2: The box plots show the sampling distribution of the estimators for �, where
� = 0.98, ?00 = 0.94, ?11 = 0.97, = = 1000 and # = 3 ⇥ 105. The true value of � is
highlighted by a vertical line.

points (1 � �, �) and (1, 1). As noted before, it implies that the classify-and-count
estimator �̂⇤ has small bias. Consequently, the subtracted-bias estimator �̂1 has
small bias as well. Thus, these two estimators will have the smallest MSE in
the described region, whose size decreases as = increases. Fig. 2.3 visualises the
described region for � = 0.2 and two different values of =. We remark that the
biased estimators �̂⇤ and �̂1 perform worse (relative to the other estimators) when
the sample size = of the test data set increases. The biased methods, such as
the classify-and-count estimator and the subtracted-bias estimator, perform well
when the classification probabilities are large for the largest group.

As we have seen in both Table 2.2 and Table 2.3, the calibration estimator
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(�) = = 300 (�) = = 3,000

F��. 2.3: For each coordinate (?00 , ?11), the depicted colour indicates which estimator
has the smallest MSE, considering only the classify-and-count estimator (orange), the
subtracted-bias estimator (blue) and the calibration estimator (grey). In panel (A), we have
set � = 0.2 and = = 300, whereas � = 0.2 and = = 3,000 in the panel (B). The blue and
orange regions are smaller in panel (B) compared with panel (A), as the variance of the
calibration estimator is decreasing in =, while the bias of the classify-and-count estimator
and of the subtracted-bias estimator do not depend on =.

�̂2 competes with the baseline estimator in having the smallest MSE. In general,
the calibration estimator will have smaller MSE if the classification probabilities
?00 and ?11 are larger, while the baseline estimator does not depend on these
classification probabilities. In a neighbourhood of ?00 = ?11 = 0.5, the baseline
estimator will always have smaller MSE than the calibration estimator. However,
for every � and =, there must exist a curve in the (?00 , ?11)-plane beyond which the
calibration estimator will have smaller MSE than the baseline estimator. Panels
(A) and (B) in Fig. 2.4 show this curve for � = 0.2 and two different values of =.
For larger values of =, the curve where the calibration estimator performs better
than the baseline estimator gets closer to ?00 = ?11 = 0.5 and therefore covers a
larger area in the (?00 , ?11)-plane.

Table 2.2 and Table 2.3 have shown that the misclassification estimator only
performs well if ?00 and ?11 are high, which is confirmed by the expression of the
bias and variance, both have a singularity at ?00 + ?11 = 1, see Equations (2.13)
and (2.14). Panels (B) and (D) in Fig. 2.4 show, for � = 0.2 and two different
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(�) = = 300 (�) = = 3,000

(�) = = 300 (�) = = 3,000

F��. 2.4: For each coordinate (?00 , ?11) the colour indicates which estimate has the smallest
MSE, considering only the baseline estimator (blue), the calibration estimator (grey) and
the misclassification estimator (orange). Panels (A) and (C) consider � = 0.2 and = = 300,
while panels (B) and (D) consider � = 0.2 and = = 3000.

values of =, the curve in the (?00 , ?11)-plane beyond which the misclassification
estimator has smaller MSE than the baseline estimator. Observe that an increase
in the size = of the test data set does not have much impact on the position of
the curve. The reason is that the misclassification estimator has a singularity
at ?00 = ?11 = 0.5. The shape of the curve also depends on the value of �.
If � = 0.8 instead of 0.2, the curves are line-symmetric in the line ?00 = ?11.
The curve is also line symmetric in ?00 = ?11 for � = 0.5. The area where the
misclassification estimator performs better than the baseline estimator decreases
when � gets closer towards 0 or 1. The main reason why this happens is that the
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variance of the baseline estimator decreases fast when � gets closer towards 0 or 1.
Thus, the baseline estimator performs better than the misclassification estimator
either if the classifier performs badly in general or performs badly in classifying
the largest group.

The final analysis of this paper is to compare the calibration estimator and
the misclassification estimator of large values of ?00 and ?11. In Theorem 2.4 it is
proven that, for all possible combinations of � and sufficiently large =, the MSE of
the calibration estimator is consistently smaller than that of the misclassification
estimator.

Theorem 2.4. Let ù"(⇢[�̂?] and ù"(⇢[�̂2] denote the approximate MSEs, up to terms
of order 1/=, of the misclassification estimator and the calibration estimator, respectively.
It holds that:

ù"(⇢[�̂?] � ù"(⇢[�̂2] =

h
(1 � �)?00(1 � ?00) + �?11(1 � ?11)

i2

(?00 + ?11 � 1)2�(1 � �) , (2.18)

in which � B (1 � �)(1 � ?00) + �?11.

Proof. See Appendix 2.A. ⇤

Thus, neglecting terms of order 1/=2 and higher, the result implies that the
calibration estimator has a smaller MSE than the misclassification estimator, except
that both are equal if and only if ?00 = ?11 = 1. (Note that 0 < � < 1.)

We do remark that the difference in MSE is large in particular for values of
?00 and ?11 close to 1

2 . More specifically, it diverges when ?00 + ?11 ! 1. It is
the result of the misclassification estimator having a singularity at ?00 + ?11 = 1
(see expression (2.14)), while the variance of the calibration estimator is bounded.
An unpleasant consequence of the singularity at ?00 + ?11 = 1 is that, for fixed =

and �, the probability that �̂? takes values outside the interval [0, 1] increases as
?00+?11 ! 1, see Meertens, Diks, Van den Herik and Takes (2019) for a discussion
and a possible solution.

2.4 Chapter conclusions
In this paper, we have studied the effect of classification errors on five estimators
of the base rate parameter � that are obtained from machine learning algorithms.
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In general, a straightforward classify-and-count estimator will lead to biased es-
timates and some form of bias correction should be considered. As reducing
bias might increase variance, we evaluated the MSE of the five estimators, both
theoretically as well as numerically.

From our results we may draw the following main (three-part) conclusion
regarding which estimator of � has smallest MSE. First, when dealing with small
test data sets and rather poor algorithms, that is ?00 and ?11 both close to 0.5, the
baseline estimator �̂0 has the smallest MSE. Second, when dealing with algorithms
for which the classification probabilities ?00 and ?11 are in a small neighbourhood
around the line (?11 � 1)� + (1� ?00)(1� �) = 0 in the (?00 , ?11)-plane, the classify-
and-count estimator and the subtracted-bias estimator will have the smallest MSE.
As the size of the test data set increases, the size of that neighbourhood decreases.
Third, in any other situation, the calibration estimator will have the smallest
MSE. In practice, the test data set will have to be used to determine which of the
three scenarios applies to the data and the algorithm at hand. It is an additional
estimation problem that we have not discussed in this paper.

We would like to close the paper by pointing out three interesting directions
for future research. First, the results could be generalised to multi-class classi-
fication problems. The theoretical derivations of the bias and variance are more
complicated and involve matrix-vector notation, but the proof strategy is similar.
However, it is more challenging to compare the MSE of the five estimators visually
in the multi-class case.

Second, the assumptions that we have made could be relaxed. In particular, a
trained and implemented machine learning model is, in practice, often used over
a longer period of time. A shift in the base rate parameter �, also known as prior
probability shift (Moreno-Torres et al., 2012), is then inevitable. Consequently, we
may no longer assume that the conditional distribution of the class label given the
features in the test data set is similar to that in the population. It implies that the
calibration estimator is no longer unbiased, which might have a significant effect
on our main conclusion.

Third and finally, a combination of estimators might have a substantially smal-
ler MSE than that of the individual estimators separately. Therefore, it might be
interesting to study different methods of model averaging applied to the problem
of misclassification bias. It could be fruitful especially when the assumptions that
we have made are relaxed.
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APPENDIX

2.A Theoretical derivations under assumption A1
This appendix contains the proofs of the theorems presented in Chapter 2. Recall
that we have assumed a population of size # in which a fraction � B #1+/#
belongs to the class of interest, referred to as the class labelled as 1. We assume
that a binary classification algorithm has been trained which correctly classifies a
data point that belongs to class 8 2 {0, 1} with probability ?88 > 0.5, independently
across all data points. In addition, we assume that a test set of size = ⌧ #

is available and that it can be considered a simple random sample from the
population. The classification probabilities ?00 and ?11 are estimated on that test
set as described in Section 2.2. Finally, we assume that the classify-and-count
estimator �̂⇤ is distributed independently of ?̂00 and ?̂11, which is reasonable (at
least as an approximation) when = ⌧ # .

It may be noted that the estimated probabilities ?̂11 and ?̂00 defined in Sec-
tion 2.2 cannot be computed if =1+ = 0 or =0+ = 0. Similarly, the calibration
probabilities 211 and 200 cannot be estimated if =+1 = 0 or =+0 = 0. We assume
here that these events occur with negligible probability. This will be true when =
is sufficiently large so that =� � 1 and =(1 � �) � 1.

Preliminaries
Many of the proofs presented in this appendix rely on the following two math-
ematical results. First, we will use univariate and bivariate Taylor series to ap-
proximate the expectation of non-linear functions of random variables. That is,
to estimate E[ 5 (-)] and E[6(- ,.)] for sufficiently differentiable functions 5 and
6, we will insert the Taylor series for 5 and 6 at G0 = E[-] and H0 = E[.] up to
terms of order 2 and utilise the linearity of the expectation. Second, we will use
the following conditional variance decomposition for the variance of a random
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variable -:
+(-) = E[+(- | .)] ++(E[- | .]). (2.19)

The conditional variance decomposition follows from the tower property of con-
ditional expectations Knottnerus (2003). Before we prove the theorems presented
in the paper, we begin by proving the following lemma.

Lemma 2.1. The variance of the estimator ?̂11 for ?11 estimated on the test set is given by

+(?̂11) =
?11(1 � ?11)

=�
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=�

�
+ $
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=

3

◆
. (2.20)

Similarly, the variance of ?̂00 is given by
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. (2.21)

Moreover, ?̂11 and ?̂00 are uncorrelated, i.e., ⇠(?̂11 , ?̂00) = 0.

Proof of Lemma 2.1. We approximate the variance of ?̂00 using the conditional vari-
ance decomposition and a second-order Taylor series. It follows that
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The second term of expression (2.22) is equal to 0. Hence, we find that
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The variance of ?̂11 is approximated in the exact same way.
Finally, we use the analogue of (2.19) for covariances and we obtain that
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= ⇢=1+ ,=0+


1

=1+=0+
⇠(=11 , =00 | =1+ , =0+)

�

+ ⇠=1+ ,=0+


1
=1+
E(=11 | =1+),

1
=0+
E(=00 | =0+)

�
. (2.24)

The second term is zero as before. The first term also vanishes because, conditional
on the row totals =1+ and =0+, the counts =11 and =00 follow independent binomial
distributions, so ⇠(=11 , =00 | =1+ , =0+) = 0. ⇤

In the remainder of this appendix, we will not add explicit subscripts to ex-
pectations and variances when their meaning is unambiguous.
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Subtracted-bias estimator
We will now prove the bias and variance approximations for the subtracted-bias
estimator �̂1 that was defined by Equation (2.9).

Proof of Theorem 2.1. The bias of �̂1 is given by

⌫(�̂1) = E
h
�̂8 � ⌫̂[�̂8]

i
� �

= E[�̂8 � �] � E
h
⌫̂[�̂8]

i

= ⌫[�̂8] � E
h
⌫̂[�̂8]

i
=

⇥
�(?00 + ?11 � 2) + (1 � ?00)

⇤
� E

⇥
�̂8(?̂00 + ?̂11 � 2) + (1 � ?̂00)

⇤
. (2.25)

Because �̂⇤ and (?̂00 + ?̂11 � 2) are assumed to be independent, the expectation of
their product equals the product of their expectations. Subsequently, we obtain
that

⌫(�̂1) = �(?00 + ?11 � 2) + (1 � ?00) � E[�̂8](?00 + ?11 � 2) � (1 � ?00)
= (� � E[�̂8])(?00 + ?11 � 2)
= ⌫[�̂8](2 � ?00 � ?11)
= (1 � ?00)(2 � ?00 � ?11) � �(?00 + ?11 � 2)2. (2.26)

This proves the formula for the bias of �̂1 as estimator of �. To approximate the
variance of �̂1 , we apply the conditional variance decomposition (2.19) conditional
on �̂⇤ and look at the two resulting terms separately. First, consider the expectation
of the conditional variance

E [+(�̂1 | �̂⇤)] = E
⇥
+(�̂⇤(3 � ?̂00 � ?̂11) � (1 � ?̂00) | �̂⇤)

⇤
= E

⇥
+(�̂⇤(3 � ?̂00 � ?̂11) | �̂⇤) ++(1 � ?̂00 | �̂⇤)
� 2⇠(�̂⇤(3 � ?̂00 � ?̂11), 1 � ?̂00 | �̂⇤)

⇤
= E

⇥
(�̂⇤)2+(3 � ?̂00 � ?̂11 | �̂⇤) ++(1 � ?̂00 | �̂⇤)
� 2�̂⇤

⇠(3 � ?̂00 � ?̂11 , 1 � ?̂00 | �̂⇤)
⇤

= E
⇥
(�̂⇤)2

⇥
+(?̂00) ++(?̂11)

⇤
++(?̂00) � 2�̂⇤

+(?̂00)
⇤

= E
⇥
(�̂⇤)2

⇤ ⇥
+(?̂00) ++(?̂11)

⇤
++(?̂00) � 2E [�̂⇤]+(?̂00). (2.27)
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In the penultimate line, we used that⇠(?̂11 , ?̂00) = 0. The second momentE
⇥
(�̂⇤)2

⇤
can be written asE [�̂⇤]2++(�̂⇤). Because+(�̂⇤) is of order 1/# , it can be neglected
compared to E [�̂⇤]2, which is of order 1. In particular, the expectation of the
conditional variance can be expressed as

E [+(�̂1 | �̂⇤)] = E [(�̂⇤)]2
⇥
+(?̂00) ++(?̂11)

⇤
++(?̂00) � 2E [�̂⇤]+(?̂00) + $

✓
1
#

◆

= +(?̂00) [E [�̂⇤] � 1]2 ++(?̂11)E [�̂⇤]2 + $
✓

1
#

◆
. (2.28)

Next, the variance of the conditional expectation can be rewritten as

+ [E(�̂1 | �̂⇤)] = +
⇥
E(�̂⇤(3 � ?̂00 � ?̂11) � (1 � ?̂00) | �̂⇤)

⇤
= +

⇥
�̂⇤ E(3 � ?̂00 � ?̂11 | �̂⇤) � E(1 � ?̂00 | �̂⇤)

⇤
= +(�̂⇤)(3 � ?00 � ?11)2. (2.29)

Because +(�̂⇤) is of order 1/# , it can be neglected in the final formula. Fur-
thermore, the variances of ?̂00 and ?̂11 can be computed using the result from
Lemma 2.1, giving

+(�̂1) =
⇥
�(?00 + ?11 � 1) � ?00

⇤2
?00(1 � ?00)

=(1 � �)


1 + �

=(1 � �)

�

+
⇥
�(?00 + ?11 � 1) + (1 � ?00)

⇤2
?11(1 � ?11)

=�


1 + 1 � �

=�

�

+ $
✓
max


1
=

3 ,
1
#

� ◆
. (2.30)

This concludes the proof of Theorem 2.1. ⇤
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Misclassification estimator
We will now prove the bias and variance approximations for the misclassification
estimator �̂? as defined by Equation (2.12).

Proof of Theorem 2.2. Under the assumption that �̂⇤ is distributed independently
of (?̂00 , ?̂11), it holds that

E(�̂?) = E
✓

?̂00 � 1
?̂00 + ?̂11 � 1

◆
+ E


E

✓
�̂⇤

?̂00 + ?̂11 � 1

���� �̂⇤
◆�

= E
✓

?̂00 � 1
?̂00 + ?̂11 � 1

◆
+ E(�̂⇤)E

✓
1

?̂00 + ?̂11 � 1

◆
. (2.31)

E(�̂⇤) is known from (2.4). To evaluate the other two expectations, we use a
second-order Taylor series approximation. The first- and second-order partial
derivatives of 5 (G , H) = 1/(G + H � 1) are given by

% 5

%G
=

% 5

%H
=

�1
(G + H � 1)2 , (2.32)

%2
5

%G2 =
%2
5

%H2 =
2

(G + H � 1)3 . (2.33)

The partial derivatives of 6(G , H) = (G � 1)/(G + H � 1) = 1 � [H/(G + H � 1)] are
equal to the expressions

%6

%G
=

H

(G + H � 1)2 ,
%6

%H
=

�(G � 1)
(G + H � 1)2 , (2.34)

%2
6

%G2 =
�2H

(G + H � 1)3 ,
%2
6

%H2 =
2(G � 1)

(G + H � 1)3 . (2.35)

Now also using that ⇠(?̂11 , ?̂00) = 0, we obtain for the first expectation that

E

✓
1

?̂00 + ?̂11 � 1

◆
=

1
?00 + ?11 � 1 + +(?̂00) ++(?̂11)

(?00 + ?11 � 1)3 + $(=�2)

=
1

?00 + ?11 � 1

266664
1 +

?00(1�?00)
=(1��) + ?11(1�?11)

=�

(?00 + ?11 � 1)2
377775
+ $(=�2). (2.36)
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Here, we have included only the first term of the approximations to +(?̂00) and
+(?̂11) from Lemma 2.1, since this suffices to approximate the bias up to terms of
order $(1/=). Similarly, for the second expectation we obtain that

E

✓
?̂00 � 1

?̂00 + ?̂11 � 1

◆
=

?00 � 1
?00 + ?11 � 1 + (?00 � 1)+(?̂11) � ?11+(?̂00)

(?00 + ?11 � 1)3 + $(=�2)

=
?00 � 1

?00 + ?11 � 1

266664
1 + ?11

1�?11
=� + ?00

=(1��)
(?00 + ?11 � 1)2

377775
+ $(=�2). (2.37)

Using (2.31), (2.4), (2.36), and (2.37), we conclude that

E(�̂?) =
�(?00 + ?11 � 1) � (?00 � 1)

?00 + ?11 � 1

266664
1 +

?00(1�?00)
=(1��) + ?11(1�?11)

=�

(?00 + ?11 � 1)2
377775

+ ?00 � 1
?00 + ?11 � 1

266664
1 + ?11

1�?11
=� + ?00

=(1��)
(?00 + ?11 � 1)2

377775
+ $

✓
1
=

2

◆
. (2.38)

From this, it follows that an approximation to the bias of �̂? that is correct up to
terms of order $(1/=) is given by

⌫(�̂?) =
�(?00 + ?11 � 1) � (?00 � 1)

=(?00 + ?11 � 1)3

?00(1 � ?00)

1 � �
+ ?11(1 � ?11)

�

�

+ (?00 � 1)?11

=(?00 + ?11 � 1)3

1 � ?11

�
+ ?00

1 � �

�
+ $

✓
1
=

2

◆
. (2.39)

By expanding the products in this expression and combining similar terms, the
expression can be simplified to

⌫(�̂?) =
?11(1 � ?11) � ?00(1 � ?00)

=(?00 + ?11 � 1)2 + $
✓

1
=

2

◆
. (2.40)

Finally, using the identity ?11(1� ?11)� ?00(1� ?00) = (?00 + ?11 � 1)(?00 � ?11), we
obtain the required result for ⌫(�̂?).

To approximate the variance of �̂? , we apply the conditional variance decom-
position conditional on �̂⇤ and look at the two resulting terms separately. First,
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consider the variance of the conditional expectation

+

⇥
E(�̂? | �̂⇤)

⇤
= +


E

✓
�̂⇤ 1
?̂00 + ?̂11 � 1

+ ?̂00 � 1
?̂00 + ?̂11 � 1

| �̂⇤
◆�

= +

�̂⇤ 1
?00 + ?11 � 1

�

=
1

(?00 + ?11 � 1)2+ [�̂⇤] = $

✓
1
#

◆
, (2.41)

where in the last line we used expression (2.6). The factor 1/(?00 + ?11 � 1)2 can
become arbitrarily large in the limit ?00 + ?11 ! 1. We will show below that this
same factor also occurs in the lower-order terms of +(�̂?). Hence, the relative
contribution of (2.41) remains negligible even in the limit ?00 + ?11 ! 1.

Next, we compute the expectation of the conditional variance

E
⇥
+(�̂? | �̂⇤)

⇤
= E


+

✓
�̂⇤ 1
?̂00 + ?̂11 � 1

+ ?̂00 � 1
?̂00 + ?̂11 � 1

| �̂8

◆�

= E

+

✓
�̂⇤ 1
?̂00 + ?̂11 � 1

| �8

◆
++

✓
?̂00 � 1

?̂00 + ?̂11 � 1
| �̂8

◆

+ 2⇠
✓
�̂⇤ 1
?̂00 + ?̂11 � 1

,

?̂00 � 1
?̂00 + ?̂11 � 1

| �̂8

◆ �

= E
⇥
(�̂⇤)2

⇤
+


1

?̂00 + ?̂11 � 1

�
++


?̂00 � 1

?̂00 + ?̂11 � 1

�

+ 2E
⇥
�̂8

⇤
⇠


1

?̂00 + ?̂11 � 1
,

?̂00 � 1
?̂00 + ?̂11 � 1

�

= E
⇥
�̂8

⇤2

1 + $

✓
1
#

◆�
+


1

?̂00 + ?̂11 � 1

�
++


?̂00 � 1

?̂00 + ?̂11 � 1

�

+ 2E
⇥
�̂8

⇤
⇠


1

?̂00 + ?̂11 � 1
,

?̂00 � 1
?̂00 + ?̂11 � 1

�
. (2.42)
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To approximate the variance and covariance terms, we use a first-order Taylor
series. Using the partial derivatives in (2.32) and (2.34), we obtain that

+


1

?̂00 + ?̂11 � 1

�
=
+(?̂00) ++(?̂11)
(?00 + ?11 � 1)4 + $(=�2) (2.43)

+


?̂00 � 1

?̂00 + ?̂11 � 1

�
=

+(?̂00)(?11)2
(?00 + ?11 � 1)4 + +(?̂11)(1 � ?00)2

(?00 + ?11 � 1)4 + $(=�2)

(2.44)

⇠


1

?̂00 + ?̂11 � 1
,

?̂00 � 1
?̂00 + ?̂11 � 1

�
=

+(?̂00)(�?11)
(?00 + ?11 � 1)4 + +(?̂11)(?00 � 1)

(?00 + ?11 � 1)4 + $(=�2).

(2.45)

Substituting these terms into expression (2.42) and accounting for expression
(2.41) yields the following

+(�̂?) =
+(?̂00)

h
E [�̂8]2 � 2?11 E [�̂8] + ?2

11

i
(?00 + ?11 � 1)4

+
+(?̂11)

h
E [�̂8]2 � 2(1 � ?00)E [�̂8] + (1 � ?00)2

i
(?00 + ?11 � 1)4 + $

✓
max


1
=

2 ,
1
#

� ◆

=
+(?̂00)

⇥
E [�̂8] � ?11

⇤2

(?00 + ?11 � 1)4 +
+(?̂11)

⇥
E [�̂8] � (1 � ?00)

⇤2

(?00 + ?11 � 1)4 + $
✓
max


1
=

2 ,
1
#

� ◆

=
+(?̂00)(1 � �)2
(?00 + ?11 � 1)2 + +(?̂11)�2

(?00 + ?11 � 1)2 + $
✓
max


1
=

2 ,
1
#

� ◆
. (2.46)

Finally, inserting the expressions for +(?̂00) and +(?̂11) from Lemma 2.1 yields

+(�̂?) =
?00(1�?00)
=(1��)

h
1 + �

=(1��)

i
(1 � �)2

(?00 + ?11 � 1)2 +
?11(1�?11)

=�

⇥
1 + 1��

=�

⇤
�2

(?00 + ?11 � 1)2

+ $
✓
max


1
=

2 ,
1
#

� ◆
, (2.47)

from which expression (2.14) follows. This concludes the proof of Theorem 2.2. ⇤
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Calibration estimator
We will now prove the bias and variance approximations for the calibration es-
timator �̂2 that was defined by Equation (2.15).

Proof of Theorem 2.3. To compute the expected value of �̂2 , we first compute its
expectation conditional on the 4-vector N = (#00 ,#01 ,#10 ,#11) and find that

E(�̂2 | T ) = E

�̂⇤ =11
=+1

+ (1 � �̂⇤) =10
=+0

| T
�

= �̂⇤ E


=11
=+1

| T
�
+ (1 � �̂⇤)E


=10
=+0

| T
�

= �̂⇤ E


E

✓
=11
=+1

| T , =+1

◆
| T

�

+ (1 � �̂⇤)E

E

✓
=10
=+0

| T , =+0

◆
| T

�

=
#+1
#

E


1
=+1

=+1
#11
#+1

| T
�
+ #+0

#

E


1
=+0

=+0
#10
#+0

| T
�

=
#11
#

+ #10
#

=
#1+
#

= �. (2.48)

The tower property of conditional expectations implies E[�̂2] = E [E(�̂2 | T )] = �.
This proves that �̂2 is an unbiased estimator of �.

To compute the variance of �̂2 , we use the conditional variance decomposi-
tion, again conditioning on the 4-vector N . We remark that #0+ and #1+ are
deterministic values, but that #+0 and #+1 are random variables. As shown
above in Equation (2.48), the conditional expectation is deterministic, hence it has
no variance, i.e., +(E[�̂2 | N ]) = 0. The conditional variance decomposition then
simplifies to

+(�̂2) = E [+(�̂2 | T )] . (2.49)
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The conditional variance +(�̂2 | T ) can be written as

+[�̂2 | T ] = +

�̂⇤ =11
=+1

+ (1 � �̂⇤) =10
=+0

| T
�

= (�̂⇤)2+

=11
=+1

| T
�
+ (1 � �̂⇤)2+


=10
=+0

| T
�

+ 2�̂⇤(1 � �̂⇤)⇠

=11
=+1

,

=10
=+0

| T
�
. (2.50)

We will consider these terms separately. First, the variance of =11/=+1 can be
computed by applying an additional conditional variance decomposition as

+


=11
=+1

| T
�
= +


E

✓
=11
=+1

| T , =+1

◆
| T

�
+ E


+

✓
=11
=+1

| T , =+1

◆
| T

�
. (2.51)

The first term is zero, which follows from

+


E

✓
=11
=+1

| T , =+1

◆�
= +


1
=+1
E(=11 | T , =+1) | T

�

= +


1
=+1

=+1
#11
#+1

| T
�

= +

#11
#+1

| T
�
= 0. (2.52)

For the second term, under the assumption that = ⌧ # , we find that

E


+

✓
=11
=+1

| T , =+1

◆
| T

�
= E

"
1
=

2
+1
+(=11 | T , =+1) | T

#

= E

"
1
=

2
+1
=+1

#11
#+1

(1 � #11
#+1

) | T
#

= E


1
=+1

| T
�
#11#01

#
2
+1

. (2.53)
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The expectation of 1
=+1

can be approximated with a second-order Taylor series

+


=11
=+1

| T
�
=


1

E[=+1 | T ] +
1
2

2
E[=+1 | T ]3+ [=+1 | T ]

�
#11#01

#
2
+1

+ $(=�3)

=
1

E[=+1 | T ]


1 + + [=+1 | T ]
E[=+1 | T ]2

�
#11#01

#
2
+1

+ $(=�3)

=
1
=�̂⇤


1 + 1 � �̂⇤

=�̂⇤

�
#11#01

#
2
+1

+ $(=�3). (2.54)

The variance of =10/=+0 can be approximated in the same way, which yields

+


=10
=+0

| T
�
=

1
=(1 � �̂⇤)


1 + �̂⇤

=(1 � �̂⇤)

�
#00#10

#
2
+0

+ $(=�3). (2.55)

Finally, it can be shown that the covariance in the final term is equal to zero by

⇠


=11
=+1

,

=10
=+0

| N
�
= E


⇠

✓
=11
=+1

,

=10
=+0

| N , =+0 , =+1

◆
| N

�

+ ⇠

E

✓
=11
=+1

| N , =+0 , =+1

◆
,E

✓
=10
=+0

| N , =+0 , =+1

◆
| N

�

= E


1
=+0=+1

⇠ (=11 , =10 | N , =+0 , =+1) | N
�

+ ⇠


1
=+1
E (=11 | N , =+0 , =+1) ,

1
=+0
E (=10 | N , =+0 , =+1) | N

�

= 0 + ⇠


1
=+1

=+1
#11
#+1

,

1
=+0

=+0
#10
#+0

| N
�
= 0. (2.56)
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Combining expressions (2.54), (2.55) and (2.56) with (2.50) gives

+[�̂2 | T ] =
#

2
+1
#

2
1
=�̂⇤


1 + 1 � �̂⇤

=�̂⇤

�
#11#01

#
2
+1

+
#

2
+0
#

2
1

=(1 � �̂⇤)


1 + �̂⇤

=(1 � �̂⇤)

�
#00#10

#
2
+0

+ $(=�3)

=
1
=�̂⇤


1 + 1 � �̂⇤

=�̂⇤

�
#11#01
#

2

+ 1
=(1 � �̂⇤)


1 + �̂⇤

=(1 � �̂⇤)

�
#00#10
#

2 + $(=�3). (2.57)

Recall from Formula (2.49) that + [�̂2] = E [+[�̂2 | T ]] = E [E [+[�̂2 | T ] | #+1]].
Hence,

+[�̂2] = E


1
=�̂⇤

✓
1 + 1 � �̂⇤

=�̂⇤

◆
E

✓
#11#01
#

2 | #+1

◆
(2.58)

+ 1
=(1 � �̂⇤)

✓
1 + �̂⇤

=(1 � �̂⇤)

◆
E

✓
#00#10
#

2 | #+1

◆�
+ $(=�3).

To evaluate the expectations in this expression, we observe that, conditional on
the column total #+1, #11 is distributed as ⌫8=(#+1 , 211), where 211 is a calibration
probability as defined in Section 2.2.5. Hence,

E [#11 | #+1] = #+1211 =
#+1�?11

(1 � �)(1 � ?00) + �?11
(2.59)

+ [#11 | #+1] = #+1211(1 � 211). (2.60)

Similarly, since # = #+1 + #+0 is fixed,

E [#00 | #+1] = #+0200 =
#+0(1 � �)?00

(1 � �)?00 + �(1 � ?11)
(2.61)

+ [#00 | #+1] = #+0200(1 � 200). (2.62)
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Using these results, we obtain that

E
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, (2.63)

and similarly
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�
=
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2
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#
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✓

1
#

◆
. (2.64)

Substituting expressions (2.63) and (2.64) into expression (2.58) and noting that
#

2
+1/#2 = (�̂⇤)2 and #2

+0/#2 = (1 � �̂⇤)2, we find that
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1
=

3 ,
1
#=

� ◆
. (2.65)

Finally, substituting the expressions for E(�̂⇤) from (2.4) and the expressions for
211 and 200 from (2.59) and (2.61), the desired expression (2.17) is obtained. This
concludes the proof of Theorem 2.3. ⇤
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Comparing mean squared errors
To conclude, we present the proof of Theorem 2.4, which essentially shows that
the MSE (up to and including terms of order 1/=) of the calibration estimator is
smaller than that of the misclassification estimator.

Proof of Theorem 2.4. Recall that the bias of �̂? as an estimator of � is given by

⌫

⇥
�̂?

⇤
=

?00 � ?11

=(?00 + ?11 � 1) + $
✓

1
=

2

◆
. (2.66)

Hence, (⌫
⇥
�̂?

⇤
)2 = $(1/=2) is not relevant for ù"(⇢[�̂?]. It follows that ù"(⇢[�̂?]

is equal to the variance of �̂? up to order 1/=. From (2.14) we obtain that

ù"(⇢[�̂?] =
1
=

 (1 � �)?00(1 � ?00) + �?11(1 � ?11)
(?00 + ?11 � 1)2

�
. (2.67)

Recall that �̂2 is an unbiased estimator of �, i.e., ⌫[�̂2] = 0. Also recall the notation
� = (1 � �)(1 � ?00) + �?11. It follows from (2.17) that the variance, and hence the
MSE, of �̂2 up to terms of order 1/= can be written as

ù"(⇢[�̂2] =
1
=


�
�?11

�

✓
1 � �?11

�

◆
+ (1 � �) (1 � �)?00

1 � �

✓
1 � (1 � �)?00

1 � �

◆�

=
�(1 � �)

=

 (1 � ?00)?11

�
+ ?00(1 � ?11)

1 � �

�
. (2.68)

To prove Expression (2.18), first note that

(1 � ?00)?11

�
+ ?00(1 � ?11)

1 � �
=

(1 � ?00)?11 + �(?00 � ?11)
�(1 � �) . (2.69)

The numerator of this equation can be rewritten as

(1 � ?00)?11 + �(?00 � ?11)
= (1 � ?00)?11 + (1 � �)?00(1 � ?00) + �?00?11 � (1 � �)(1 � ?00)?11 � �?2

11

= (1 � �)?00(1 � ?00) + �?00?11 + �(1 � ?00)?11 � �?2
11

= (1 � �)?00(1 � ?00) + �?11(1 � ?11). (2.70)
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Note that the obtained expression is equal to the numerator of Expression (2.67).
Write ) = (1 � �)?00(1 � ?00) + �?11(1 � ?11) for that expression. It follows that

ù"(⇢[�̂?] � ù"(⇢[�̂2]

=
)

=(?00 + ?11 � 1)2 � )�(1 � �)
=�(1 � �)

=
)

=(?00 + ?11 � 1)2�(1 � �)
h
�(1 � �) � �(1 � �)(?00 + ?11 � 1)2

i
. (2.71)

Rewriting the second factor in the last expression gives

�(1 � �) � �(1 � �)(?00 + ?11 � 1)2

= (1 � �)2?00(1 � ?00) + �(1 � �)
⇣
(1 � ?00)(1 � ?11) + ?00?11

⌘
+ �2

?11(1 � ?11)

� �(1 � �)(?00 + ?11 � 1)2

= (1 � �)2?00(1 � ?00) + �(1 � �)
⇣
?00(1 � ?00) + ?11(1 � ?11)

⌘
+ �2

?11(1 � ?11)

= (1 � �)?00(1 � ?00) + �?11(1 � ?11)
= ) . (2.72)

This concludes the proof of Theorem 2.4. ⇤
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3.1 Introduction
In recent years, many national statistical institutes (NSIs) have experimented with
supervised machine learning algorithms with the purpose of producing new or
improved official statistics. Beck et al. (2018) provide a list of 136 machine learning
projects at NSIs in 25 countries. In many projects, machine learning was used for
classification (78) or for imputation (22). The results of these machine learning
projects are promising and therefore currently seen as a paradigm shift in official
statistics, in which model-based statistics are widely embraced (De Broe et al.,
2020).

The quality of the statistical output is a key challenge when employing clas-
sification algorithms for producing official statistics. Output quality is a funda-
mental component in any quality framework for official statistics, see, e.g., the
OECD quality framework (OECD, 2011) and the Regulation on European Statis-
tics (European Commission, 2009) translated into the European Statistics Code
of Practice (Eurostat, 2017). When using classification algorithms for official sta-
tistics, the output quality ought to be measured using the MSE of the statistical
output (Buelens et al., 2016).

In the machine learning literature, the accuracy of classification algorithms
is measured at the level of individual data points. Interestingly, the algorithmic
accuracy at the level of individual data points differs fundamentally from the accu-
racy (at the population level) of the (aggregated) statistical output of classification
algorithms (Forman, 2005). In fact, classification algorithms that have high al-
gorithmic accuracy might still produce highly biased statistical output. This is
referred to as misclassification bias. It is a type of bias that is commonly overlooked
or neglected by statisticians of all time (González et al., 2017; Schwartz, 1985).

After many years of persistent research, a rich body of statistical literature on
misclassification bias is readily available. Misclassification bias occurs in general
when dealing with measurement errors in categorical data. The work by Bross
(1954) is usually referred to as the first publication to discuss the problem of
misclassification bias. Other significant contributions to the literature on misclas-
sification bias include the work by Tenenbein (1970) and the work by Kuha and
Skinner (1997). A relatively recent overview is provided by Buonaccorsi (2010).

The literature on misclassification bias shows that the bias can be reduced
significantly, if some form of extra information is available. In the general context
of categorical data analysis, this extra information can be, for instance, replicate
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values, validation data, or instrumental variables (Buonaccorsi, 2010). Although
such extra information in general might not always be available, it is available in
the context of supervised machine learning that we are considering here. The extra
information are validation data, which are traditionally used for model selection,
training and testing. We will use the test set as validation data to estimate error
rates, and thus to correct misclassification bias.

In experimental projects at NSIs, the test set often is a random sample from the
target population (e.g., all households in the country). The setup corresponds to
the double sampling scheme introduced by Tenenbein (1970). Among the correc-
tion methods discussed by Buonaccorsi (2010), the so-called calibration estimator
then outperforms all the others in terms of the MSE, as proved theoretically by
Kloos, Meertens, Scholtus and Karch (2020).

However, a new problem arises when incorporating machine learning al-
gorithms in the production process of official statistics. There, a statistical model
is often estimated once and then applied for a longer period of time without
updating the model parameters. In the context of supervised machine learning
this is common, because otherwise new data have to be annotated manually in
each time period leading to high production costs. However, the problem there
is that the data distribution as well as the relation between the dependent and
independent variables might change over time, causing the outcome of the model
to be biased. In the machine learning literature, this problem is known as concept
drift. It has been investigated in stream learning and online learning for several
decades (see Widmer & Kubat, 1996), dating back at least to the work on incre-
mental learning (cf. Schlimmer & Granger, 1986) in the 1980s. Originally, the
term concept was used for a set of Boolean-valued functions (Helmbold & Long,
1994). Currently, it has a statistical interpretation that is more closely related to
our setting. Nowadays, Webb et al. (2016) state that the term concept refers to the
joint distribution P(. ,-), with class labels (dependent variable) . and features
(independent variables) -, as proposed by Gama et al. (2014). Allowing such a
joint distribution to depend on a time parameter C, concept drift in the setting of
supervised learning means that PC1(. ,-) < PC2(. ,-), for C1 < C2. The effect of
concept drift is that misclassification bias might increase even further.

In this paper, we aim to prove which of the two popular correction methods
discussed by Buonaccorsi (2010) reduces the MSE of statistical output most, under
a specific type of concept drift known as prior probability shift (Moreno-Torres et
al., 2012). Our paper deliberately focuses on the production process (where
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concept drift arises), building on the results obtained by Kloos et al. (2020) for the
preceding experimental phase. Our numerical analyses will show, for the first
time, that a decision boundary arises. The optimal choice for a correction method
depends on three parameters, viz. the class distribution (or class imbalance),
the size of the test set, and the model accuracy. With that knowledge we aim
to contribute to the literature on concept drift understanding as defined by Lu
et al. (2019). It complements concept drift quantification (Goldenberg & Webb,
2019) and concept drift adaptation (Gama et al., 2014). Analysing the decision
boundary as a function of the three parameters yields practical recommendations
for the implementation of classification algorithms in the production process of
official statistics. Finally, analysing the impact of the size of the (manually created)
test set allows us to comment on the cost efficiency of official statistics based on
classification algorithms.

The remainder of the paper is organised as follows. In Section 3.2, we provide
expressions for the bias and variance of the misclassification and calibration estim-
ator, when applied to machine learning algorithms that have been implemented
in the production process of official statistics. We show (1) that the optimal correc-
tion method in the experimental phase is no longer unbiased when implemented
in a production process and we provide (2) a sharp lower bound for the absolute
value of its bias. Hence, instead of arriving at a conclusive optimal solution in the
experimental phase, a decision boundary arises in the context of the production
process. Subsequently, in Section 3.3, we investigate the location and shape of that
decision boundary. In Section 3.4 we present our conclusions and suggest three
promising directions for future research.

3.2 Methods
In the context of official statistics, the convention is to use the MSE to evaluate
output quality, also when using statistical models (Buelens et al., 2016). The key
question when correcting misclassification bias then becomes: which correction
method reduces the MSE of the output most? The outcome depends on the
assumptions made. The situation that fits the experimental phase of machine
learning projects at NSIs is discussed briefly in Subsection 3.2.1. The assumptions
made in the experimental phase are considered to be the most restrictive ones. The
answer to the key question under those restrictive assumptions has been provided
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by Kloos et al. (2020) and it is rather conclusive. A drawback of their result is
that data are assumed to be annotated manually in each time period. In practice,
manual data annotation is time consuming and hence expensive. Therefore, in
Subsection 3.2.2, we describe the situation that corresponds to the production
process of official statistics. In Subsection 3.2.3, the theoretical results known
for the experimental phase are adapted to suit the conditions of the production
process of official statistics. The answer to the key question in that setting is
presented in Section 3.3.

3.2.1 The experimental phase
Consider a population � of # objects (households, enterprises, aerial images,
company websites or other text documents) and some target classification, or
stratum, B8 for each object 8 2 �. For now, we restrict ourselves to dichotomous
categorical variables, i.e., B8 2 {0, 1}, where category 1 indicates the category of
interest. A compelling example is the use of aerial images of rooftops to identify
houses (the objects indexed by 8) with solar panels (B8 = 1) (Curier et al., 2018).
From now on, we make three essential assumptions. Our first assumption is that
there is some (possibly time consuming or otherwise expensive) way to retrieve
the true category B8 for each 8 2 �, for example by manually inspecting the aerial
images and annotating them with a label indicating whether the image contains a
solar panel. Our second assumption is that background variables or other features
in the data contain sufficient information to estimate B8 accurately. We draw a small
random sample from the population and determine the true category B8 for the
objects in the sample. Then, the obtained data are, as usual, split at random into
two sets. The first set is used to estimate model parameters (model selection and
training). The second set, referred to as the test set �test ⇢ �, is used to estimate the
out-of-sample prediction error of the model. The number of observations in the
test set is denoted by = and we assume that = ⌧ # .

Consequently, the model can be used to produce an estimate bB8 of the true
category to which object 8 belongs. Here, our third assumption is that the success
and misclassification probabilities of the model depend on 8, but only through the
true value of B8 . More precisely, we let ?01 be the probability thatbB8 = 1 given that
B8 = 0, for 0 , 1 2 {0, 1}. This specifies the classification error model as introduced by
Bross (1954), following the notation in Van Delden et al. (2016). In addition, we
adopt the notation a8 , which is a 2-vector equal to (1, 0) if B8 = 1 and (0, 1) if B8 = 0.
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The estimate ba8 is defined similarly. The sum of all a8 is the 2-vector of counts v.
The first component of the 2-vector ↵ = v/# is called the base rate and is denoted
by �. It is immediate that E[b↵] = %

)↵, where % is the confusion matrix with
entries ?01 (with ?11 as the top left entry). In general, %)↵ < ↵, which indicates
that b� is a biased estimator of the base rate �. The statistical bias of b� as estimator
of the base rate � is referred to as misclassification bias.

A wide range of correction methods to reduce misclassification bias is avail-
able, see Buonaccorsi (2010). As briefly indicated in Section 3.1, Kloos et al. (2020)
compared several correction methods aimed at improving the accuracy of esti-
mators for �. Two correction methods were most promising. The first correction
method is the misclassification estimator b�? . It is defined as the first component of
the following 2-vector:

b↵? =
⇣b%) ⌘�1 b↵, (3.1)

in which b% is the row-normalised confusion matrix obtained from the test set, i.e.,
with entries b?01 = =01/=0+, where =01 denotes the number of objects 8 in the test
set for which B8 = 0 andbB8 = 1 and where =0+ denotes =00 + =01 . Moreover, the
second correction method is the calibration estimator b�2 . It is defined as the first
component of the following 2-vector:

b↵2 = b⇠b↵, (3.2)

in which b⇠ is the column-normalised confusion matrix obtained from the test
set, i.e., with entries b201 = =01/=+1 , where =+1 denotes =01 + =11 . Kloos et al.
(2020) have shown that if the test set is indeed a random sample from the target
population, then the MSE of b�2 is always smaller than that of b�? .
3.2.2 The production process of official statistics
Official statistics on a particular social or economic indicator are often produced
for a certain period of time, at least annually, but often more frequently (quarterly
or monthly). For as long as NSIs produce the official statistics on such an indi-
cator, the output quality is required to be high. A challenging element in using
classification algorithms in the production process of official statistics is that the
target population � changes over time, including the background variables x8 and
the base rate �. Therefore, the test set drawn at random from the population at
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one time period cannot be viewed as a random sample from the population at
the next time period. A first solution would be to draw a new test set from the
population (and then manually annotate the data) at each time period for as long
as the statistical indicator is produced. However, due to cost constraints, such
frequent data annotation is infeasible in practice. Thus, we will have to make an
additional assumption to further investigate the results achieved by Kloos et al.
(2020) in the context of a production process.

The additional assumption that we make is that the out-of-sample prediction
accuracy of the model, i.e., the matrix %, is stable during a short period of time.
More specifically, we assume (1) that B8 causally determines the background vari-
ables x8 that are used in the model for bB8 and (2) that the causal relation does
not change between (at least) two consecutive months or quarters. These two as-
sumptions are identical to prior probability shift as defined by Moreno-Torres et al.
(2012). The first assumption, i.e., the causal relation between B8 and x8 , seems rea-
sonable in many applications. In epidemiology, a disease causally determines the
symptoms. In sentiment analysis, the writer’s sentiment causally determines the
words that the writer chooses. In land cover mapping, the mapped object causally
determines the pixel values in the image. The second assumption (in terms of the
classification error model) reads that P(bB8 |B8) does not change between consecutive
months or quarters, but that � is allowed to change.

In the setting of prior probability shift, we consider two populations, namely
the target population at two different moments in time, indicated by � and �

0,
with sizes # and #

0. We assume that the test set �test ⇢ � of size = has been
obtained as a random sample from the target population � in the first month or
quarter, with true base rate �. The aim is to estimate the base rate �0 in the second
month or quarter, i.e., within population �0, using predictionbB8 for 8 2 �0 and the
estimates of ?01 based on �test ⇢ �. The type of concept drift that we investigate,
prior probability shift, can be quantified by the difference ⇣ B �0 � �, which we
will briefly refer to as the drift. In the experimental phase we only consider a
single population, which corresponds to putting ⇣ = 0. In Subsection 3.2.3, we
investigate the MSE of the calibration and misclassification estimator when ⇣ < 0.

3.2.3 Theoretical results
Expressions for the bias and variance of the misclassification estimator �? under
drift ⇣ can be derived easily from the expressions presented by Kloos et al. (2020).
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It follows that
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1
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◆
, (3.3)

which is increasing in ⇣ (but might first decrease in ⇣ in absolute value). The
variance of the misclassification estimator equals

+(�̂?) =
(1 � �0)2+(?̂00) + �02

+(?̂11)
(?00 + ?11 � 1)2 + $

✓
1
=

2

◆
, (3.4)

We neglect the terms of order 1/=2 and use Equations (3.8) and (3.9) from Ap-
pendix 3.A to obtain

+(�̂?) =
1

=(?00 + ?11 � 1)2 ·

) + 2⇣(?00 � ?11)(?00 + ?11 � 1)

+ ⇣2 ·
✓
?11(1 � ?11)
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◆ �
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✓
1
=

2

◆
, (3.5)

in which ) B (1 � �)?00(1 � ?00) + �?11(1 � ?11). If ?00 � ?11, then the variance
increases as the drift ⇣ increases. If ?00 < ?11, then the effect of the drift is not
immediately clear: increasing ⇣ might decrease the variance, depending on the
values of � and ⇣. In Section 3.3, we will analyse the behaviour of +(�̂?) as
function of � and ⇣ numerically.

The expressions for the bias and variance of the calibration estimator presented
by Kloos et al. (2020) were derived by conditioning on the base rate in the target
population. If the drift ⇣ is nonzero, that proof strategy breaks down. Therefore,
we have adapted the proof to hold for nonzero ⇣, resulting in the following
expressions (see (3.6) and (3.7)).

Theorem 3.1. The bias of �̂2 as estimator of � under drift ⇣ is given by

⌫[�̂2] = �⇣ )

�(1 � �) + $
✓

1
=

2

◆
, (3.6)
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in which � B (1� �)(1� ?00)+ �?11 and ) = (1� �)?00(1� ?00)+ �?11(1� ?11). With
that notation, the variance of �̂2 , under drift ⇣, is given by

+(�̂2) =
�(1 � �)

=
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�(1 � �) + 2⇣(?00 + ?11 � 1)
✓
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1
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◆
. (3.7)

Proof. See Appendix 3.A. ⇤

We make the following two observations: (1) the bias and the drift ⇣ have
opposite signs. and (2) the absolute bias is linearly increasing as a function of the
absolute drift |⇣ |. From these observations, the following sharp upper bound and
lower bound for the absolute bias in terms of the absolute drift can be derived.

Theorem 3.2. The absolute bias of �̂2 as estimator of �0 = � + ⇣ is bounded from above
by |⇣ |. If ?00  ? and ?11  ? for some 1/2  ?  1, then the absolute bias is at least
4?(1 � ?)|⇣ |.

Proof. See Appendix 3.A. ⇤

The third observation is that, under prior probability shift, the bias of the mis-
classification estimator is still of order 1/= while that of the calibration estimator
is nonzero if ⇣ < 0 and does not decrease for increasing =. This third observation
is the key observation. The implication is that the conclusions drawn by Kloos
et al. (2020) for the experimental phase of a machine learning project in official
statistics do not hold when the algorithms are implemented in the production
process. There, the drift ⇣ is nonzero and a decision boundary arises. The aim of
Section 3.3 is to investigate the properties of the decision boundary.

3.3 Results
The theoretical results from Section 3.2 indicate that in case ⇣ is nonzero a decision
boundary arises (between preferring (a) the misclassification estimator and (b)
the calibration to reduce misclassification bias). The aim of this section is to
understand that decision boundary. It is the main focus of Subsection 3.3.3. In
advance, we investigate the bias under prior probability shift of the calibration



3

�.�. Results 65

F��. 3.1: The slope of the bias of the calibration estimator �̂2 as a function of the drift ⇣ is
equal to �)/(�(1��)), which is strictly negative. The absolute value of that slope is plotted
against the classification probability ?, assuming that ?00 = ?11 = ?, for four different
values of �. The solid black line depicts the theoretical lower bound (see Theorem 3.2) for
the slope of the bias.

estimator more closely in Subsection 3.3.1 and the difference in MSE between the
two estimators in Subsection 3.3.2.

3.3.1 Bias of the calibration estimator
We start plotting )/(�(1 � �)), the absolute value of the slope of the bias of the
calibration estimator, as a function of the classification probabilities for different
values of �, i.e., the base rate in the test set. For visualisation purposes, we restrict
the function to ?00 = ?11, parameterised by ?. The results are depicted in Fig. 3.1,
including the theoretical lower bound stated in Theorem 3.2. The slope of the bias
as a function of ? is decreasing from 1 at ? = 0.5 to 0 at ? = 1. The smaller the
value of �, the later the function drops to 0. The reason is that the drift ⇣ is defined
as an absolute number and therefore it is relatively larger for smaller values of �.
From this observation we may conclude that the impact of (an absolute) drift ⇣
on the bias of �̂2 increases if � is further away from 0.5, i.e., if the so-called class
imbalance increases.

3.3.2 Difference in mean squared error
Subsequently, we investigate the difference ⇡(�̂? , �̂2) B "(⇢(�̂?) � "(⇢(�̂2)
between the MSE of the misclassification estimator and that of the calibration
estimator. The value of ⇡(�̂? , �̂2) as a function of ⇣ is depicted in Fig. 3.2 for each
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F��. 3.2: The difference⇡(�̂? , �̂2) between the MSE of the misclassification estimator �̂? and
that of the calibration estimator �̂2 , plotted as a function of ⇣ for each possible combination
of � 2 {0.05, 0.3}, = 2 {50, 1000} and ?00 , ?11 2 {0.6, 0.7}. Note that the drift ⇣ ranges from
�� to 1 � �, because �0 = � + ⇣ must lie between 0 and 1.
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possible combination of � 2 {0.05, 0.3}, = 2 {50, 1000} and ?00 , ?11 2 {0.6, 0.7}.
Note that the drift ⇣ ranges from �� to 1��, because �0 = �+⇣ must lie between 0
and 1. We report the following four observations. First, the difference is positive if
⇣ = 0 in any of the line plots, which corresponds to the main conclusion drawn by
Kloos et al. (2020). Second, when = is sufficiently large (thin lines), the difference
between the line plots are small. The reason is that the contribution of the variance
terms is negligible compared to that of the squared bias of �̂2 , which does not
depend on = (see Theorem 3.1). Third, for highly imbalanced data sets combined
with small test sets, i.e., � close to 0 and = small (thick dash-dotted lines), the
variance of �̂? dominates if either ?00 is close to 0.5 or ?11 is close to 0.5. As a result,
the calibration estimator has the smallest MSE, independent of the magnitude of
the drift ⇣. Fourth, if the class distribution is relatively balanced (dotted lines),
the difference ⇡(�̂? , �̂2) will become negative if ⇣ increases, but the intersection
moves farther away from ⇣ = 0 as = decreases.

3.3.3 The preferred estimator
Finally, we compute, numerically, the unique positive value of ⇣ (if it exists) at
which the MSE of the misclassification and calibration estimator are identical.
That is, we collect and reorganise the points of intersection ⇡(�̂? , �̂2) = 0 as
discussed in Subsection 3.3.2. We view ⇡(�̂? , �̂2) as a map from R3 to R by fixing
� and = and using ⇣, ?00 and ?11 as variables. Then, we plot the line within
the two-dimensional surface ⇡(�̂? , �̂2) = 0 where ?00 = ?11, resulting in Fig. 3.3.
Interestingly, the result is a decreasing function of ?. At first, the result might
seem to contradict the result obtained in the first analysis, cf. Fig. 3.1. There, the
absolute slope of the bias as function of ⇣ decreases with increasing ?. Hence, the
MSE of �̂2 increases more slowly as a function of ⇣ with increasing ?. However,
the result in Fig. 3.3 follows from the fact that the difference in variance between
�̂2 and �̂? rapidly decreases as ? increases.

We stress that the lines in Fig. 3.3 can be interpreted as decision boundaries.
Each statistical indicator that is based on a classification algorithm plots some-
where in the (? , ⇣)-plane depicted in Fig. 3.3. Our experimental result then reads
as follows. If the plot of the indicator in the (? , ⇣)-plane ends up above the de-
cision boundary (which depends on � and =), then the misclassification estimator
should be preferred over the calibration estimator to reduce misclassification bias.
Otherwise, the calibration estimator should be preferred over the misclassification
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F��. 3.3: The unique positive value ⇣ (if it exists) for which ⇡(�̂? , �̂2) = 0, as a function of
the classification probability ?, assuming ?00 = ?11 = ?. The lines should be interpreted as
decision boundaries: below each of these lines the calibration estimator is preferred, while
above each of the lines the misclassification estimator is preferred.

estimator. Moreover, in practice one should always compute the (estimated) bias
and variance of the applied estimator, for they might still be large, e.g., when =

and ? are small and ⇣ is large.
As a final remark, we indicate that these results hold if only the misclassific-

ation estimator and calibration estimator are considered. Admittedly, there may
exist other estimators that might reduce misclassification bias even further.

3.4 Chapter conclusions
In this research, we investigated the output quality of official statistics based on
classification algorithms. The main problem examined was how to reduce the bias
caused by prior probability shift. We focused on two bias correction methods,
namely (1) the misclassification estimator and (2) the calibration estimator. The
results known for these two estimators failed to hold under prior probability shift.
To obtain a further insight into the output quality of official statistics based on
classification algorithms under prior probability shift, we adapted and extended
the results achieved by Kloos et al. (2020) to hold for any value of the drift ⇣. As
theoretical results, we were able to show that (1) the calibration estimator is no
longer unbiased and that (2) the absolute bias as a first-order approximation is a
linearly increasing function of the absolute drift |⇣ | and does not depend on the
test set size =.
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Building on the theoretical results, we performed a simulation study consisting
of three subsequent numerical analyses. The main conclusion drawn from the
simulation results, is that the MSE of the calibration estimator is smaller than
that of the misclassification estimator only when the performance of the classifier
(in terms of ?00 and ?11) is low or when the drift ⇣ is close to 0. The main
conclusion has at least two significant implications. The first implication is that the
conclusion gives a better understanding of the output quality of official statistics
based on machine learning algorithms. More specifically, recommendations on
which correction methods should be implemented in which situation are given.
They allow for a more reliable implementation of machine learning algorithms
in official statistics. The second implication is that the impact of the size and
frequency of the training and test data sets is better understood. Essentially, our
results show that the calibration estimator should not be applied to data streams
or time series data, unless training and test data in each time period are available
to (a) retrain the classifier and hence (b) adapt to concept drift.

In case concept drift adaptation is considered too expensive due to cost con-
straints, the main conclusion (see above) implies that some minimal classification
accuracy is required in order to use the misclassification estimator. To guaran-
tee higher classification accuracy, more labelled training data have to be created,
in general. In other words, NSIs should be careful when evaluating the cost effi-
ciency of implementing machine learning algorithms for the production of official
statistics. In the end, a substantial amount of high quality annotated data have to
be created manually and consistently over a long period of time, which requires
long-term investments in data analysts and domain experts.

Finally, we suggest three directions for future research. First, the robustness of
classifier-based estimators should also be investigated for other types of concept
drift, starting with the less restrictive type of prior probability shift as defined by
Webb et al. (2016). Second, it might be worthwhile to examine methods for concept
drift adaptation that are based on unlabelled data only, by carefully incorporating
changes in the distribution of %(-). Third, combinations or ensembles of different
estimators require further research. We believe that a well-chosen combination of
estimators will increase the overall robustness of classifier-based estimators under
concept drift.
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APPENDIX

3.A Theoretical derivations under assumption A2
This appendix contains the proofs of the theorems presented in Chapter 3.6. For
clarity, we will write b�⇤ for the estimator based on the algorithms predictions bB8 ,
see also Chapter 2. In addition to the assumptions described in Section 3.2, we
make two more technical assumptions, namely that b�⇤ is independent of both the
2̂8 9 and the ?̂8 9 . It follows that ?̂00 and ?̂11 are uncorrelated and that

+(?̂11) =
?11(1 � ?11)

=�


1 + 1 � �

=�

�
+ $

✓
1
=

3

◆
. (3.8)

Similarly, the variance of ?̂00 is given by

+(?̂00) =
?00(1 � ?00)
=(1 � �)


1 + �

=(1 � �)

�
+ $

✓
1
=

3

◆
. (3.9)

For the proofs of these statements, consult Lemma 1 in Appendix 2.A. We will
now provide the proof of Theorem 3.1 below.

Proof of Theorem 3.1. Recall that the calibration estimator �̂2 was given by

�̂2 = �̂⇤
2̂11 + (1 � �̂⇤)2̂10. (3.10)

The derivations of the bias ⌫[�̂2] and +[�̂2] are included below.

Bias. It is assumed that �̂⇤ and 2̂8 9 are independent. Hence,

E[�̂2] = E[�̂⇤]E[2̂11] + E[1 � �̂⇤]E[2̂10]. (3.11)
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Recall the notation � = (1��)(1�?00)+�?11 and set �0 B (1��0)(1�?00)+�0
?11 =

E[�̂⇤]. To compute E[2̂8 9], condition on =1+, and note that =0+ = = � =1+ is =1+-
measurable. It holds that 2̂11 | =1+

3= -/(- + .), with - ⇠ ⌫8=(=1+ , ?11) and
. ⇠ ⌫8=(=0+ , 1�?00). Introducing the stochastic variable �+ B =1+?11+=0+(1�?00),
a second-order Taylor approximation yields

E[2̂11 | =1+] =
=1+?11

�+
� =0+(1 � ?00)

�3
+

=1+?11(1 � ?11)

+ =1+?11

�3
+

=0+?00(1 � ?00) + $
✓

1
=

2

◆

=
=1+?11

�+
+ ?11(1 � ?00)(?00 + ?11 � 1)=0+=1+

�3
+

+ $
✓

1
=

2

◆
. (3.12)

We then introduce the random variable / ⇠ ⌫8=(= , �) (i.e., / 3= =1+). Applying a
Taylor approximation to the first term of expression (3.12) yields

E


=1+?11

�+

�
= E


?11/

=(1 � ?00) + (?00 + ?11 � 1)/

�

=
�?11

�
� 1

2
2=?11(1 � ?00)(?00 + ?11 � 1)

=
3�3 =�(1 � �) + $

✓
1
=

2

◆

= 211 �
�(1 � �)

=

?11(1 � ?00)(?00 + ?11 � 1)
�3 + $

✓
1
=

2

◆
. (3.13)

Next, apply a Taylor approximation to (the stochastic part of) the second term in
expression (3.12):

E


/(= � /)

�3
+

�
=

�(1 � �)
=�3 + $

✓
1
=

2

◆
. (3.14)

Combining equations (3.13) and (3.14) results in

E[2̂11] = 211 + $
✓

1
=

2

◆
=

�?11

�
+ $

✓
1
=

2

◆
, (3.15)
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where the second equality is included to stress that the result depends on �, and
not on �0. Similarly, it follows that

E[2̂10] = 210 + $
✓

1
=

2

◆
=

�(1 � ?11)
1 � �

+ $
✓

1
=

2

◆
. (3.16)

Substituting �0 = � + ⇣ and neglecting terms of order 1/=2 yields

E[�̂2] = �0
�?11

�
+ (1 � �0)�(1 � ?11)

1 � �

= �?11 + ⇣(?00 + ?11 � 1)�?11

�
+ �(1 � ?11) + ⇣(1 � ?00 � ?11)

�(1 � ?11)
1 � �

= � + ⇣�
�(1 � �)

⇣
(1 � �)?11 � �(1 � ?11)

⌘
(?00 + ?11 � 1)

= � + ⇣�(1 � �)(?00 + ?11 � 1)2
�(1 � �) . (3.17)

It is straightforward to check that

�(1� �)� �(1� �)(?00 + ?11 � 1)2 = �?11(1� ?11) + (1� �)?00(1� ?00) C ) . (3.18)

Hence,

E[�̂2] = � + ⇣

✓
�(1 � �) � )
�(1 � �)

◆
+ $

✓
1
=

2

◆
= �0 � ⇣

)

�(1 � �) + $
✓

1
=

2

◆
. (3.19)

Thus, we may conclude that the bias of �̂2 as estimator of �0 is equal to

⌫[�̂2] = �⇣ )

�(1 � �) + $
✓

1
=

2

◆
. (3.20)

Variance. To compute the variance of �̂2 , we first note that

E[(�̂⇤)2] = E[�̂⇤]2 ++(�̂⇤) = E[�̂⇤]2 + $
✓

1
#

◆
. (3.21)
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A similar expression holds for the expectation of (1 � �̂⇤)2 and that of (1 � �̂⇤)�̂⇤.
Neglecting the terms of order 1/# , the above implies that

+(�̂2) = +(�̂⇤
2̂11) ++((1 � �̂⇤)2̂10) + ⇠(�̂⇤

2̂11 , (1 � �̂⇤)2̂10)
= E[�̂⇤]2+(2̂11) + E[1 � �̂⇤]2+(2̂10) + E[�̂⇤]E[(1 � �̂⇤)]⇠(2̂11 , 2̂10). (3.22)

We may already substituteE[�̂⇤] = �0 in the above. It remains to derive expressions
for +(2̂11), +(2̂10) and ⇠(2̂11 , 2̂10). We compute +(2̂11) as E[2̂2

11] � E[2̂11]2, because
we have already derived an expression for the latter term. The random variable
2̂

2
11 | =1+ is distributed as -2/(- + .)2. Setting 5 (G , H) = G

2/(G + H)2 yields

5GG(G , H) =
2H2 � 4GH
(G + H)4 , and 5HH(G , H) =

6G2

(G + H)4 . (3.23)

It follows, neglecting terms of higher order, that

E[2̂2
11 | =1+]

=
=

2
1+?

2
11
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+

+
=

2
0+(1 � ?00)2 � 2=1+=0+?11(1 � ?00)
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2
11

�4
+

=0+?00(1 � ?00)

=
=
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1+?

2
11

�2
+

+ ?11(1 � ?00)
=1+=0+

⇣
=(1 � ?00)(1 � ?11) + =1+(?00 + ?11 � 1)(2?11 + 1)

⌘
�4
+

.

(3.24)

Again, let / ⇠ ⌫8=(= , �) and consider the function 5 (I) = I
2/(� + ⌫I)2, with

� = =(1 � ?00) and ⌫ = (?00 + ?11 � 1). Then

5II(I) =
2�2 � 4�⌫I
(� + ⌫I)4 . (3.25)
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The conditional expectation then equals (up to terms of order 1/=2):

E
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=
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. (3.26)

Apply a Taylor approximation to (the stochastic part of) the second term of ex-
pression (3.24) to obtain:

�(1 � �)
=

?11(1 � ?00)
⇣
(1 � ?00)(1 � ?11) + �(?00 + ?11 � 1)(2?11 + 1)

⌘
�4 + $

✓
1
=

2

◆
.

(3.27)

At last, combining expressions (3.26) and (3.27), and subtracting expression (3.15)
squared, the variance of 2̂11 can be expressed as

+(2̂11) =
�(1 � �)

=

?11(1 � ?00)
�3 + $

✓
1
=

2

◆
. (3.28)

Similarly, it can be shown that

+(2̂10) =
�(1 � �)

=

?00(1 � ?11)
(1 � �)3 + $

✓
1
=

2

◆
. (3.29)
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Moreover, it can be shown that 2̂11 and 2̂10 are uncorrelated. We use the same
strategy that was used to prove that ?̂00 and ?̂11 are uncorrelated and we find that

E[2̂11 2̂10] = E

E


=11=10
=+1=+0

���� =+1

� �

= E


1
=1+=0+

E [=11=10 | =+1]
�

= E


1
=1+=0+

· =+1211=+0210

�
= 211210 = E[2̂11]E[2̂10]. (3.30)

It implies that ⇠(2̂11 , 2̂10) = E[2̂11 2̂10]�E[2̂11]E[2̂10] = 0. Finally, we may conclude
that

+(�̂2) =
�(1 � �)

=

✓
�02

?11(1 � ?00)
�3 + (1 � �0)2 ?00(1 � ?11)

(1 � �)3
◆
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✓
1
=

2

◆
. (3.31)

Substituting �0 = � + ⇣ yields

+(�̂2) =
�(1 � �)

=


)

�(1 � �) + 2⇣(?00 + ?11 � 1)
✓
?11(1 � ?00)

�2 � ?00(1 � ?11)
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�3 + ?00(1 � ?11)
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◆ �
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1
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2

◆
. (3.32)

The expression above completes the derivation of the variance of the calibration
estimator under prior probability shift. ⇤

To prove the Theorem 3.2, we need the following lemma.

Lemma 3.1. The slope of the absolute value of the first-order approximation of the bias
of the calibration estimator as a function of the absolute value |⇣ | of the prior probability
shift is decreasing in ?00 and ?11 for all 1/2  ?00  1 and 1/2  ?11  1.

Proof. We introduce the notation G = ?00, H = ?11 and define � = �(G , H , �) =
(1 � �)(1 � G) + �H. We then define the functions

5 (G , H , �) = (1 � G)H
�

and 6(G , H , �) = G(1 � H)
1 � �

. (3.33)

The function ⌘ = 5 + 6 then satisfies |⇣ | · ⌘(?00 , ?11 , �) =
��
⌫[�̂2]

�� up to terms of
order 1/=2. We will examine the sign of the partial derivatives of ⌘ with respect
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to G and H, which we denote by ⌘G and ⌘H , respectively. To that end, we first
compute the partial derivatives of 5 and 6, giving

5G(G , H , �) =
��H2

�2 and 6G(G , H , �) =
�(1 � H)2
(1 � �)2 . (3.34)

Hence,
⌘G(G , H , �) =

�
�2(1 � �)2 ·

⇣
((1 � H)�)2 � (H(1 � �))2

⌘
. (3.35)

Setting this to zero yields (1�H)� = H(1��)or (1�H)� = �H(1��). As 1/2  G , H  1
and 0 < � < 1 it follows that 1 � G  �  H with equality if and only if 1 � G = H,
i.e. G = H = 1/2. It implies that (1 � H)� is nonnegative and that H(1 � �) is strictly
positive, hence the equation (1 � H)� = �H(1 � �) has no solution. Moreover, it
implies that (1 � H)�  H(1 � �) with equality only at G = H = 1/2. From this we
may conclude that ⌘ is decreasing in G for all 1/2 < G  1 and that ⌘G( 1

2 , · , · ) = 0.
The partial derivatives ⌘G and ⌘H can be related through a simple symmetry

argument: it holds that �(H , G , �) = 1��(G , H , 1��), which implies that ⌘(H , G , �) =
⌘(G , H , 1� �). Consequently, it holds that ⌘H( · , · , �) = ⌘G( · , · , 1� �). It follows
that ⌘ is also decreasing in H for all 1/2 < H  1 and that ⌘H( · , 1

2 , · ) = 0.
We conclude that the slope ⌘ of the first-order approximation of the bias of the

calibration estimator under prior probability shift is decreasing in ?00 and ?11 for
1/2  ?00 , ?11  1, attaining its global maximum at ?00 = ?11 = 1/2, where ⌘ = 1
and

��
⌫[�̂2]

�� = |⇣ |. ⇤

Theorem 3.2 is an immediate consequence of the lemma above.

Proof of Theorem 3.2. Lemma 3.1 implies the two inequalities |⌫[�̂2]|  |⇣ | and
|⌫[�̂2]| � |⇣ | · ⌘(? , ? , �). To simplify the latter, observe that )(? , ? , �) = ?(1 � ?)
and that 0  1 � ? < �(? , ? , �) < ?  1, using that 1/2  ?  1 and 0 < � < 1. It
follows that �(1 � �)  1/4, which completes the proof. ⇤
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4.1 Introduction
Aggregation after automated classification naturally occurs in a wide range of
data mining applications. Classifier-based aggregation even is the most common
data operation in some research fields. Therefore, comprehending the effect of
classification errors on the accuracy of the resulting aggregates is essential. The
aim of this paper is to improve the accuracy of such aggregates by reducing
their statistical bias. Before discussing technical details, we briefly describe two
applications, demonstrating the relevance of the problem.

The first application is sentiment analysis in social media (Daas et al., 2015;
Ravi & Ravi, 2015). For the sake of simplicity, assume that messages are either
positive or negative and that the overall sentiment is defined as the difference
between the number of positive and negative messages. The sentiment of one
message is predicted using natural language processing. The estimator of the
sentiment on social media obtained in this manner is statistically biased, unless
precision equals recall, as we show below.

The second application is land cover mapping based on satellite imagery
(Costa, Almeida, Vala, Marcelino & Caetano, 2018; L. Ma et al., 2017). Here, the
aim is to estimate the area of different types of land cover (e.g., cropland, wetland)
of a large, delimited surface (e.g, a country, a continent). In the paper by Costa et
al. (2018), the per-pixel land cover class (one of 15) is predicted by an SVM image
classifier. Again, the estimated surface per land cover class is biased.

The two applications above are examples of the following general setting.
Consider a set of # data points. Each data point is equipped with a categorical
variable B (for stratum) and a numerical variable H. We are interested in the
aggregates obtained by summing H after grouping by B. We denote the resulting
aggregates by the  -vector u, where  > 1 is the number of categories that B may
attain. Now, if B is not observed, but the result of a classification algorithm is
used instead, classification errors emerge. We therefore distinguish between the
true class B and the predicted class bB. Similarly, we write bu for the  -vector of
classifier-based statistics obtained by summing H after grouping bybB.

The problem studied in this paper is that the vector of classifier-based statistics
bu will be a statistically biased estimator of the true aggregate vector u. The bias
can be nonzero even if the accuracy of the classification algorithm is high and #

is large. In fact, the example below (see the box titled “The Base Rate Example”)
shows that the bias does not depend on # at all.
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The Base Rate Example

We consider a set of # = 100,000 companies, in which we would like
to identify webshops based on the text found on the company’s website.
Assume a trained classification algorithm with false negative rate ? = ?10 =
FN/(TP+FN) = 0.01 and false positive rate @ = ?01 = FP/(TN+FP) = 0.005.
Assume that the set contains E1 = 10,000 webshops, which would in
practice be unknown. The fraction E1/# = 0.1 is referred to as the base
rate. The expected number of companies classified as webshops is

0.99 · 10,000 + 0.005 · 90,000 = 10,350, (4.1)

showing that the estimator has a relative bias of +3.5%.

Essentially, The Base Rate Example shows that if B is binary and H ⌘ 1,

E[bu] = %)u with % =
✓
?11 ?10
?01 ?11

◆
=

✓
1 � ? ?

@ 1 � @

◆
. (4.2)

In fact, it can be shown that Equation (4.2) holds for a multi-class variable B and
any numerical variable H, with % being the  ⇥  (row-normalised) confusion
matrix (Van Delden et al., 2016). We now make two crucial observations. First,
the relative bias E[(bu � D)/#] does not depend on # . It implies that the bias does
not vanish for large data sets. Second, the bias is only equal to 0 if ? = @ = 0, or if
(for constant H) the base rate is precisely equal to @/(? + @). In the case of binary
classification and constant H, the latter is equivalent to precision being equal to
recall. In the case of multi-class classification and constant H, it is equivalent to the
base rate vector (and hence u) being an eigenvector (of the transposed confusion
matrix %)) corresponding to the eigenvalue 1.

Now, if the inverse & = (%))�1 of %) is well-defined (in the binary case: if
? + @ < 1), then &bu is an unbiased estimator of u. The problem is that the
classification error rates are not known exactly and merely estimated. If the
estimates of the classification error rates are based on a (very) small test set, the
proposed unbiased estimator &bu might attain impermissible values. To illustrate
this problem, we include a second example below.
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The Peculiar Example

Consider a set of # = 100 companies in which the predicted number of
webshops is equal to 10. To estimate the classification errors, a (very)
small test set of size = = 10 is used. Assume that it resulted in TP = 4,
FN = 1, FP = 2 and TN = 3, hence ? = 0.2 and @ = 0.4. Correcting the bias
as suggested above yields

�
%
)
��1 bu =

✓
1.5 �1
�0.5 2

◆ ✓
10
90

◆
=

✓�75
175

◆
. (4.3)

Thus, the unbiased estimate of the number of webshops in the data set is
�75.

The issue in The Peculiar Example is caused by the fact that (1) ? and @ are
not known but merely estimated and (2) the base rate is relatively low. Observe
that the outcome does not dependent on the size # of the full data set. The
problem arises because the test set is small (because it implies inaccurate esti-
mates for ? and @), as we will show in Section 4.3.2. Having only a small test
set available, even if # is large, is quite common. The reason is that labelled
data are unavailable in many applications (e.g., the sentiment analysis and land
cover mapping examples), while manually creating labelled data requires expert
knowledge, making it expensive.

We propose a novel bias correction method that reduces the statistical bias
of classifier-based statistics. In contrast to existing methods, it is suitable for
applications where the test set is small. If the test set is sufficiently large, our bias
correction method will give as accurate results as existing methods.

This paper is structured as follows. In Section 4.2, the formal problem state-
ment is introduced and related work is discussed. In Section 4.3, we formulate
our bias correction method in the general setting of multi-class classification prob-
lems. In Section 4.4, we illustrate the effectiveness of the proposed methods using
experiments on real-world data. Finally, Section 4.5 concludes.
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4.2 Problem statement and related work
In this section, we introduce the notation and formal problem statement, and
discuss related work.

4.2.1 Problem statement
We partly adopt the notation from Van Delden et al. (2016) to formulate our
problem statement. Consider a set � of objects 8 = 1, 2, . . . ,# . Each object 8 2 �
belongs to a class B8 . The finite, ordered set of classes is denoted by � and is of
size  B |� | � 2. In addition, each object is attributed with a continuous variable
H8 of interest. We introduce the class matrix � = (08⌘) of dimension # ⇥  given
by 08⌘ = I(B8 = ⌘), where I(·) denotes the indicator function. The counts vector
v B �

)1, where 1 is an #-vector of ones, counts the number of occurrences of
the classes ⌘ 2 � in the population. That is, E⌘ equals the number of 8 2 � for
which B8 = ⌘. The base rate vector ↵ of length  is given by �⌘ = E⌘/# for ⌘ 2 �.

Assume that the classes B8 are not known, but instead predicted to bebB8 . The
predicted class matrix based on the predictions bB8 is denoted by b�. Similarly, bv
denotes the predicted counts vector. Assume that H8 is known for all 8 2 �. The
goal is to estimate the sum of H8 over each of the classes ⌘ 2 �. In other words,
the main problem statement is how to find, using the predictedbB8 and the known
H8 , an accurate estimator of the aggregate vector

u = �
)
H. (4.4)

In the sentiment analysis application from before, the set � is the set of messages
and B8 is binary (a positive or negative message). Each H8 equals 1 and hence u is a
2-vector with D1 the number of positive messages and D2 the number of negative
messages. In the land cover mapping application obtained from the paper by
Costa et al. (2018), each 8 2 � is a pixel and B8 may attain  = 15 different values.
The value H8 is the real land area corresponding to pixel 8. Hence, the 15-vector u
contains the total land area of each of the 15 land cover classes.

Now, a first estimator of u might be the  -vector

bu = b�)H. (4.5)
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However, we know that bu is a biased estimator of u, recall Equation (4.2). To
estimate (and then correct) this statistical bias, we assume a classification error
model, following the methodology of Van Delden et al. (2016): the value of bB8 ,
given the value of B8 , is assumed to be a stochastic variable following a categorical
distribution. The stochastic variable depends on 8, but draws for different 8 are
assumed to be independent. The unknown event probabilities are denoted by
?6⌘8 = P(bB8 = ⌘ | B8 = 6) and stored in confusion matrices %8 = (?6⌘8)6⌘ of dimension
 ⇥ . The suggested estimator bu is shown to have expectationE[bu] = Õ

82� %
)

8
baiH8 ,

where bai is the 8-th column of b�) . If %)
8

is invertible, we denote its inverse by
&8 . An unbiased estimator of u is then given by

Õ
82� &8baiH8 . We refer to this bias

correction method as the baseline method.
What remains is to estimate the classification error rates ?6⌘8 using a test set.

In Section 4.3, we propose a novel estimation method that properly deals with
small test sets (recall The Peculiar Example).

4.2.2 Related work
Below, we discuss related work on biased aggregates, bias in machine learning
and Bayesian inference.

Biased Aggregates. To the best of our knowledge, the paper by Van Delden et
al. (2016) is the first work generally describing the classification error model and
studying classifier-based statistics.1 We mention front runners from two fields
using similar bias correction methods.

The first field is epidemiology, which studies the distribution of health and
disease. There, it is well-known how a low base rate can lead to large bias even if
sensitivity (1� ?) and specificity (1� @) are high (Lash, Fox and Fink, 2009, cf. The
Base Rate Example). As mostly binary classifiers are considered (sick or not), bias
correction is straightforward (Lash et al., 2009, pp. 87-89). In addition, a standard
Bayesian method of bias correction, predominantly using a uniform or Jeffreys
prior without parameter constraints, is applied in epidemiology (Goldstein et
al., 2016; Gustafson, 2004). We will generalise these Bayesian methods to the
entire family of conjugate prior distributions and to the setting of multi-class

1After publication of this chapter, we discovered that the first work is by Bross (1954). Section 1.4
contains more details.
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classification. Moreover, we will improve empirical performance by imposing
well-chosen parameter constraints.

The second field is land cover mapping, which analyses land use based on large
volumes of remote sensing data, for example using SVM (Löw et al., 2015). As
can be expected, multi-class classification is not uncommon in this subject area
(see Costa et al., 2018, for a case study with  = 15 classes). Since accurately
estimating the total area of types of vegetation is highly relevant in monitoring
ecological systems (Veran, Kleiner, Choquet, Collazo & Nichols, 2012), there have
been many efforts in the field to make better use of accuracy data (Olofsson, Foody,
Stehman & Woodcock, 2013). To the best of our knowledge, our bias correction
method is a novel contribution to these efforts.

Bias in Machine Learning. In machine learning, the accuracy of classifier-based
statistics is relatively understudied.2 The literature on machine learning is mainly
concerned with minimising loss for individual future predictions and therefore
focuses on a different kind of bias. Much work deals with model selection bias and
overfitting (Cawley & Talbot, 2010) and sample selection bias (Zadrozny, 2004).
However, reducing these types of bias (by, e.g., using :-fold cross-validation)
does not necessarily reduce the statistical bias of classifier-based statistics. This is
a pitfall especially if the base rate is low, i.e., when dealing with class-imbalanced
data. Of course, correctly dealing with class-imbalanced data is well-studied
(Haixiang et al., 2017). However, as long as the classifier is not error-free, it will
still result in biased aggregate predictions.

An alternative is an aggregate loss function that measures the bias on the ag-
gregate level instead of on the individual level (Sodomka, Lahaie & Hillard, 2013).
Other alternatives include averaging multiple (biased) estimators into a single,
more accurate estimator (Taniguchi & Tresp, 1997). Such alternatives will reduce
the bias of classifier-based statistics, but our proposed method will completely
remove it for sufficiently large test sets.

Bayesian Inference. An extensive review on Bayesian inference for categorical
data analysis is provided by Agresti and Hitchcock (2005). It specifically com-
ments on the use of prior distributions and “the lack of consensus about what
noninformative means” (Agresti & Hitchcock, 2005, p. 303). We will avert this

2We were alerted to the literature on quantification learning (see González et al., 2017) only after
publication of this chapter. Nonetheless, a similar claim is made by them, see also Section 1.4.
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discussion by analytically deriving the posterior distribution for the family of con-
jugate priors. We empirically evaluate two common prior choices: the uniform
(flat) prior and the Jeffreys prior. In real-world applications, our bias correction
method can be implemented for non-conjugate prior as well, by utilising Markov
chain Monte Carlo (MCMC) methods.

4.3 Methods
In this section, we introduce our bias correction method in the general setting of
multi-class classification problems. The section contains three parts. First, the
likelihood and posterior (for conjugate priors) as well as the Jeffreys prior are
shown. Second, we formulate novel constraints on the classification error rates,
being our main scientific contribution. Third, we show how to obtain the proposed
Bayesian estimator of the aggregate vector using these parameter constraints.

4.3.1 Bayesian parameter estimation
We begin by translating existing theorems from Bayesian statistics to our setting
of multi-class classification. It mostly contains elementary probability manipula-
tions. We make one simplifying assumption compared to Van Delden et al. (2016):
the probabilities ?6⌘8 do not depend on 8. We write ?6⌘ instead and only a single
confusion matrix % remains. We refer to this assumption as that of the homogeneity
of the confusion matrices. The reason for this simplifying assumption is that the
notation, derivations and formulas are more pleasant to read. In practice, it might
be more reasonable to assume that ?6⌘8 depends on 8, but only through H8 and
possibly other features. Our proposed methodology can be applied separately to
each group of objects having similar features, which can then be aggregated to
obtain a single, final estimate.

Two parts now follow: (1) formulating the likelihood function and posterior
distribution (for conjugate priors), and (2) deriving the Jeffreys prior.

Likelihood and Posterior. The parameters of the classification error model are
the  2 classification error rates (or event probabilities) {?6⌘ : 6 , ⌘ 2 �} and the  
base rate parameters {�6 : 6 2 �}. To estimate these parameters, consider a test
set � = {81 , . . . , 8=} ⇢ � of = randomly selected 8 9 2 � for which we observe B89 .
The corresponding data set D of = independent observations x1 , . . . ,x= is given
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by x9 = (B89 ,bB89 ), for 8 9 2 �. We simply write x9 = (B9 ,bB9) for 9 = 1, . . . , =. The
following theorem shows the likelihood function and the posterior distribution for
a suitable family of prior distributions, namely Dirichlet distributions. Recall that
a Dirichlet distribution of order : � 2 has the standard (: � 1)-simplex �:�1 ⇢ R:
as support, where

�:�1 =

(
x 2 R: : G8 � 0,

’
8

G8 = 1

)
. (4.6)

The density of a Dirichlet distribution of order : � 2 with concentration paramet-
ers � = (�1 , . . . , �:) equals

5 (x | �) = �(�1 + · · · + �:)
�(�1) · · · �(�:)

:÷
<=1

G
�<�1
<

, (4.7)

where �(·) is the gamma function. A Dirichlet distribution will be referred to as
Dir(: ,�).
Theorem 4.1. The likelihood function of observing the data set D = {x1 , . . . ,x=}, given
the model parameters p and ↵, is given by

?(D | p,↵) =
÷
6 ,⌘2�

�
?6⌘�6

�
=6⌘

, (4.8)

where =6⌘ = |{ 9 2 � : G9 = (6 , ⌘)}|. The family consisting of products of  + 1
independent Dirichlet distributions of order  forms the collection of conjugate priors
for the above likelihood function. Next, choose the prior

Œ
 +1
:=1 ⇡: on (p,↵), where

⇡6 ⇠ Dir( ,�6) for 6 2 � and ⇡ +1 ⇠ Dir( , �). Write �6 = (�6⌘)⌘2� for 6 2 �
and � = (✏6)6 . The posterior density is then given by

?(p,↵ | D ,�, �) / ©≠
´

÷
6 ,⌘2�

?

�6⌘+=6⌘�1
6⌘

™Æ
¨
©≠
´
÷
62�

�
✏6+=6�1
6

™Æ
¨
, (4.9)

where =6 =
Õ
⌘2� =6⌘ . Thus, the posterior distribution is the product of +1 independent

Dirichlet distributions, the first  being Dir( , (�6⌘ + =6⌘)⌘2�), for 6 2 �, and the last
one being Dir( , (✏6 + =6)62�).
Proof. The probability that B8 = 6 for a randomly selected 8 2 � equals �6 . The
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probability of observing x8 = (6 , ⌘), given the classification error model, is equal
to

P(B8 = 6 ,bB8 = ⌘) = P(bB8 = ⌘ | B8 = 6)P(B8 = 6) = ?6⌘�6 . (4.10)

The pairsx8 again follow a categorical distribution, now mapping into the product
space {1, . . . ,  }⇥{1, . . . ,  } having event probabilities ?6⌘�6 . Equation (4.8) now
follows (see Bishop, 2006, pp. 74-75).

Next, we observe that the likelihood function in expression (4.8) is equal to

?(D | p,↵) = ©≠
´

÷
6 ,⌘2�

?

=6⌘

6⌘

™Æ
¨
©≠
´
÷
62�

�
=6

6

™Æ
¨
, (4.11)

where =6 =
Õ
⌘
=6⌘ = |{ 9 2 � : B9 = 6}|. The likelihood function can be viewed

as a product of  + 1 independent categorical distributions, as
Õ
⌘
?6⌘ = 1 for

every 6 2 �. It is well-known that the family of Dirichlet distributions forms the
collection of conjugate priors to the categorical (and multinomial) distribution.
For a derivation, see Bishop (2006, pp. 76-78). This proves the claim regarding the
family of conjugate priors for the likelihood function (4.8).

Finally, to derive the posterior distribution, we apply the result from Bishop
(2006, pp. 76-78) to each of the parameter vectors p6 (with 6 2 �) and ↵ sepa-
rately. The posterior distribution for a prior distribution

Œ
 +1
:=1 ⇡: on (p,↵), where

⇡6 ⇠ Dir( ,�6) for 6 2 � and ⇡ +1 ⇠ Dir( , �), is then seen to be equal to

?(p,↵ | D ,�, �) / ©≠
´

÷
6 ,⌘2�

?

�6⌘+=6⌘�1
6⌘

™Æ
¨
©≠
´
÷
62�

�
✏6+=6�1
6

™Æ
¨
.

This concludes the proof. ⇤

The Jeffreys Prior. If the model is correctly specified, the effect of prior choices
will diminish as = attains larger values. For small test set sizes =, the choice of a
prior distribution does affect the posterior distribution. With the breakthrough of
MCMC methods, there is no need to impose any restrictions (other than those re-
sulting from numerical limitations) on the family of prior distributions. For now,
we have considered conjugate prior distributions in order to analytically formu-
late the posterior distribution. Specifically, we will compare two common prior
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choices: (1) the uniform prior and (2) the Jeffreys prior (cf. Agresti & Hitchcock,
2005). The uniform prior corresponds to setting the components of the hyper-
parameters � and �6 , 6 2 �, equal to 1 in Theorem 4.1. The Jeffreys prior, defined
as proportional to the square root of the determinant of the Fisher Information
Matrix (FIM), corresponds (in the case of a single categorical stochastic variable)
to setting all components of � equal to 1/2 (Agresti & Hitchcock, 2005, p. 303).
However, due to the repeated occurrence of �6 in the likelihood function (4.8), we
find a slightly different outcome which we did not find in recent text books.

Proposition 4.1. The Jeffreys prior for the likelihood function (4.8) is given by a product
of  + 1 independent Dirichlet distributions of order  with hyperparameters �6⌘ = 1/2
for all 6 , ⌘ 2 � and ✏6 =  /2 for all 6 2 �.

Proof. The proof consists of computing the determinant of the Fisher informa-
tion matrix (FIM). To compute the FIM, a linearly independent set of parameters
specifying the model is required. Note that the parameter vectors {p6 : 6 2 �}
and ↵ are elements of the  -simplex � , as ?66 = 1 � Õ

⌘<6 ?6⌘ for each 6 2 �

and � = 1 � Õ
6< �6 , where we identify � with the set {1, 2, . . . ,  }. It follows

that the classification error model has ( + 1)( � 1) =  
2 � 1 free parameters,

which we will denote by ep = (ep6)62� , with ep6 = (?6⌘)⌘<6 , and e↵ = (�6)6< . It is
straightforward to show that the FIM is a block-diagonal matrix of the form

I(ep, e↵) =
©≠≠≠≠≠
´

�1 0 · · · 0

0
.
.
.

.

.

.

.

.

. � 0

0 · · · 0 � +1

™ÆÆÆÆÆ
¨
, (4.12)

where �6 = �6
h
?
�1
66

· 1 · 1) + diag(ep6)�1
i

for 6 2 � and � +1 = ��1
 

· 1 · 1) +
diag(e↵)�1, see Hogg, McKean and Craig (2018, p. 391). We will now use the fact
that the determinant of an < ⇥ < matrix ⇠ = �ab) + diag(d), with � 2 R and
a, b, d 2 R< is given by

det(⇠) = ©≠
´
1 + �

<’
9=1

0919

39

™Æ
¨

<÷
9=1

39 . (4.13)
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For a proof, consult Graybill (1983, pp. 293-294). Applied to (4.12), we find
det(�6) = � �1

6

Œ
⌘2� ?

�1
6⌘

, for 6 2 � and det(� +1) =
Œ

62� ��1
6

. It follows that

det(I(p,↵)) = ©≠
´

÷
6 ,⌘2�

?
�1
6⌘

™Æ
¨
©≠
´
÷
62�

� �2
6

™Æ
¨
. (4.14)

Taking the square root concludes the proof. ⇤

The Jeffreys prior density for the binary classification problem ( = 2) reduces
to

?(p,↵ | �, �) = 1
�2

p
?(1 � ?)@(1 � @)

, (4.15)

where ? = ?10 and @ = ?01. Panel (A) of Fig. 4.1 shows the marginal Jeffreys prior
density for the parameter ? = ?10 (1 minus recall) for  = 2. Panels (B) – (D)
show the marginal posterior density for = = 50, = = 500 and = = 2,000, using
simulated data with base rate �1 = 0.1 and true classification error rates ? = 0.3
and @ = 0.1. The posterior density indeed converges to the true parameter value
? = 0.3 (dashed line).

4.3.2 Imposing parameter constraints
Motivated by The Peculiar Example, we deduce useful constraints for the model
parameter p. The example showed that in (very) small test sets, the unbiased
estimator &bv of the counts vector v might give impermissible estimates (negative
counts). In particular, we estimated the true webshop count to be �75.

In our setting, there are two possible explanations for finding a negative es-
timate of a positive quantity: (I) the predicted base rate vector, being only a single
realisation of a stochastic variable, lies far away from its mean in this particular
case, or (II) we have estimated the confusion matrix not sufficiently accurately and
therefore the bias correction is inaccurate. The following theorem demonstrates
why, in many practical cases, (II) plays a larger role than (I).

Theorem 4.2. The variance-covariance matrix of the base rate vector b↵, conditional on
the true B8 , equals

+(b↵ | {B8 , 8 2 �}) =
1
#

�
diag(%)↵) � %) diag(↵)%�

. (4.16)
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(�) = = 0 (�) = = 50

(�) = = 500 (�) = = 2,000

F��. 4.1: The Jeffreys prior (without parameter constraints) and the resulting posterior
densities for ?, converging to the true parameter ?0 = 0.3 as = increases.

Proof. Recall the # ⇥  class matrix � = (08⌘) given by 08⌘ = �(B8 = ⌘) for objects
8 2 � and classes ⌘ 2 �. The vector ai denoted the 8-th column of �) . Note
that the equality aia)i = diag(ai) holds, as each ai is a standard basis vector of
R . A similar equality holds for bai. The variance-covariance matrix of bai (for
readability, we leave out the conditionality on the right-hand side) is equal to

+(bai | {B8 , 8 2 �}) = E(baiba)i ) � E(bai)E(bai))

= E(diag(bai)) � %)aia
)

i %

= diag(%)ai) � %) diag(ai)%.

In the last equality, we used the fact that the operation diag(·) commutes with
taking the expectation. Recall that bai and baj (8 < 9) are independent, conditional
on {B8 , 8 2 �}. Thus, summing both sides of the above equation over 8 2 � and
dividing the results by #2 concludes the proof. ⇤

Theorem 4.2 shows that the variance of b↵ is proportional to the inverse of
the population size # , while the variance of the parameter p is proportional to the
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F��. 4.2: The geometric relations between the confusion matrix %, the estimated counts
vector bv and the size # of the unseen data are shown in panel (A), for  = 2. Panel (B)
shows the constraints on the model parameters ? and @ that we impose.

inverse test set size =. In practice, we often find # � =, hence (II) plays a larger
role than (I).

Therefore, we wish to impose constraints on the model parameter p such that
&bv � 0 with probability 1, conditional on bv. Given bv, we write

⇥ = ⇥ (bv) B �
p 2 (� �1) : &(p)bv � 0

 
, (4.17)

where � �1 is the standard ( � 1)-simplex in R . In other words, to determine
whether a point p is in ⇥ , one has to check whether or not bv is contained in the
convex hull of the rows of the confusion matrix %(p) corresponding to the point
p.

The Binary Case. In the binary case of  = 2, the proposed parameter constraints
take on the elegant form

⇥2(bv) � ([0,bE2] ⇥ [0,bE1]) [ ([bE2 , 1] ⇥ [bE1 , 1]). (4.18)

To prove Equation (4.18) algebraically, solve the two linear equations&(p)bv � 0 for
? = ?10 and @ = ?01.3 Instead of doing so, we prefer a more insightful geometrical

3After publication of this chapter, we discovered the work by Molinari (2008). She derives Equa-
tion (4.18) as identification region as well. Moreover, she proves for arbitrary dimensions that the
identification regions are star convex and provides a figure similar to Fig. 4.2, panel (B).
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proof, see Fig. 4.2, in which 41 and 42 correspond to the standard basis vectors
of R2. Note that the predicted base rate vector b↵ = bv/# (orange dot) lies on
the 1-simplex �1 ⇢ R2. The blue line segment in Fig. 4.2, panel (A), shows the
image of �1 under %) and the corresponding locations of ? and @ on the axes. It
shows precisely what we found in The Peculiar Example: the predicted counts
vector does not lie in the image of �1 under the estimated transposed confusion
matrix %) . Now, Theorem 4.2 shows that it is unlikely that the predicted base rate
vector b↵ is not contained in the image of the true transposed confusion matrix. In
Fig. 4.2, panel (A), we thus impose that we need a blue endpoint of im(%)) on each
side of the orange dot bv/# . It follows that the orange area in Fig. 4.2, panel (B),
contains the permitted (@ , ?)-pairs and thus corresponds to ⇥2(bv). This concludes
the geometrical proof of Equation (4.18).

4.3.3 Bayesian aggregates
Van Delden et al. (2016) showed that E[bu] = %

)u. Hence, an unbiased estimator
of u would be &bu with & = (%))�1. Recall that we refer to this method as
the baseline method. The baseline method does not yet take the uncertainty in
estimating the confusion matrix % into account. In The Peculiar Example, we
have seen that this might lead to impermissible outcomes for small test sets.
We propose the following three-step approach, assuming that a classification
algorithm has already been trained and used to predict the classifications on the
entire unseen data set. In step 1, choose a prior from the Dirichlet family, such as
the Jeffreys prior in Proposition 4.1, and find the posterior distribution of p using
Theorem 4.1 (integrating ↵ out of the equation). Alternatively, MCMC methods
can be used to obtain a numerical approximation of the posterior distribution, also
for non-conjugate (but proper) priors. In step 2, take draws from the posterior
distribution and only accept the draws that lie within ⇥ (bv). Choose a positive
integer ' (resolution parameter) and stop step 2 after ' draws have been obtained.
In step 3, compute the matrix & and the product &bu, for each of the ' draws.
These three steps give a numerical approximation (of resolution') to the posterior
distribution of the estimator of the aggregate vector u, conditional on bu.

We conclude by noting that the time complexity of the proposed Bayesian
method in = and # is equal to that of the baseline method if conjugate priors are
considered, as it allows direct sampling from the posterior distribution. In fact,
if wall-clock time is considered, the entire estimation can be easily implemented
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F��. 4.3: The results of our method (with Jeffreys prior and parameter constraints) for The
Peculiar Example.

to finish in tens of milliseconds on any regular machine. Using MCMC methods,
the time complexity depends on the prior choice and might increase with =, but
not with # . The wall-clock time for our bias correction method using MCMC
methods will increase to several minutes.

4.4 Empirical evaluation
We begin by briefly revisiting The Peculiar Example from Section 4.1. Then, we
introduce real-world data on company tax returns and use it to compare existing
methods to our bias correction method.

4.4.1 A solution for The Peculiar Example
Recall The Peculiar Example from Section 4.1. The baseline method resulted in an
estimate of �75 webshops. The result of our bias correction method, with Jeffreys
prior and parameter constraints, is shown in Fig. 4.3. The posterior mean of the
number of items in the webshop class is now equal to 5.0. The distribution is
skewed (to the right) and the estimator still has a large variance, indicating that
more labelled data are required to obtain a more accurate estimate. However, our
bias correction method is able to capture the little information available in the test
set of size = = 10, resulting in a permissible estimate.
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F��. 4.4: The distribution of the turnover variable in a data set of filed tax returns. Figure
adapted from Meertens et al. (2018), which was later published as Meertens et al. (2020)
and corresponds to Chapter 5 of this thesis, see Fig. 5.4, panel (C).

4.4.2 Data on company turnover
To show the strength of our bias correction method in a general setting, we will
now empirically evaluate our bias correction method using a real-world data set
of company tax returns. The goal is to estimate the total annual turnover of
webshops. The binary classification (webshop or not) is not available in the data,
but the annual turnover H8 for each company 8 is. This application is exhaustive,
because the numerical variable H (company turnover) is not constant (i.e., H8
depends on 8).

The data set contains tax returns filed in the Netherlands in 2016 indexed by
a set � of # = 18,939 companies established outside the Netherlands, but within
the European Union (Meertens et al., 2018). The total turnover reported by these
companies for 2016 equals EUR 12.2 billion. Fig. 4.4 shows how companies’ total
annual turnover is distributed in the data set.

Meertens et al. (2018) trained a classification algorithm (on a separate data set)
to predict whether a company was active as a webshop (class 1) or not (class 0).
Without discussing the details of training it, we run the classification algorithm
on the full data set of size # , obtaining the predicted classificationsbB8 2 {1, 0}.
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(�) = = 50

(�) = = 2,000

F��. 4.5: The distribution of the mean of the posterior distribution of total turnover for
different priors and different test set sizes.

4.4.3 Bias correction and effect of prior beliefs
We compare the accuracy of our bias correction method to that of the baseline
method and that of Bayesian methods without parameter constraints, when ap-
plied to estimate the total turnover of webshops in the given data set. To compute
the accuracy of the estimators, we have to know the true classification B8 (web-
shop or not) for each company. As the true classifications are unknown, the only
way to examine the accuracy is by means of simulation. For the purpose of this
simulation, we take the predicted classifications from Meertens et al. (2018) as the
true classifications B8 . The base rate of the webshop class then equals �1 = 0.075.

Next, we take the binary classification error model with the true classification
error rates ? = 0.05 and @ = 0.05 as the data-generating process. We make this
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T���� 4.1: Comparison of the bias, variance and MSE of each of the bias correction
methods (including no correction) when estimating webshop turnover.

= = 50 = = 2,000

Bias Var MSE Bias Var MSE
Correction method ⇥ 106 ⇥ 1015 ⇥ 1015 ⇥ 106 ⇥ 1015 ⇥ 1015

None 195,3 3,7 41,8 195,3 3,7 41,8
Baseline -1,3 46,3 46,3 1,3 5,4 5,4

Uniform 10,8 72,7 72,8 3,1 5,5 5,5
Jeffreys 22,0 81,7 82,2 2,3 5,5 5,5

Uniform with constraints 105,1 35,8 46,9 3,1 5,5 5,5
Jeffreys with constraints 88,5 39,0 46,9 2,3 5,5 5,5

choice of ? and @, because it leads to a sufficiently large bias of classifier-based
statistics (as @/(? + @) = 0.5 � 0.075 = �1) making Fig. 4.5 more pleasant to read.
We emphasise that other choices of ? and @ will lead to similar conclusions.

The results of our Monte Carlo simulation are shown in Fig. 4.5, including
the true value of webshop turnover D1 (black, solid) and the distribution of the
predicted value bD1 without performing any corrections (black, dashed). Besides
our bias correction method (orange, dashed and solid), the figure shows the
baseline method (red, dashed) and existing Bayesian bias correction methods
without parameter constraints (blue, dashed and solid). The distributions are
obtained by drawing 1,000 bootstrap replications from the classification error
model and following the approach proposed in Section 4.3.3 for each bootstrap
replication. Panel (A) shows the results for a test set of size = = 50 and panel (B)
shows the results for = = 2,000.

To facilitate a more rigorous comparison of the methods, the same results are
summarised in Table 4.1. We make four observations from the results. First,
for = = 50, our bias correction method achieves a considerable reduction of the
MSE compared to existing Bayesian methods without parameter constraints. The
effect of imposing parameter constraints diminishes for = = 2,000. Second, for
= = 2,000, our bias correction method performs equally well (in terms of the
MSE) as the baseline method and existing Bayesian methods. Third, also for
= = 2,000, all bias correction methods are a huge improvement (in terms of the
MSE) compared to performing no bias correction; the bias substantially decreases
without increasing the variance too much. Fourth, our bias correction method
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decreases the variance compared to the baseline method, essentially by cutting
off a large part of the support (see Fig. 4.5, panel (A)). Even though this slightly
increases the MSE, it guarantees that impermissible estimates are never found, as
we have illustrated in Section 4.4.1.

Finally, we note that a data set of size# = 18,939 is rather small for data mining
applications nowadays. However, The Base Rate Example and Equation (4.2)
showed that the relative bias does not depend on # . Therefore, the experimental
results that we have found for the data set of company tax returns will generalise
to (much) larger data sets in other applications.

4.5 Chapter conclusions
In this paper, we have studied the statistical bias of classifier-based statistics in the
general setting of multi-class classification. We proposed a Bayesian bias correc-
tion method, being the first to derive and impose constraints on the classification
error rates.

For small test sets, imposing these parameter constraints dismisses impermis-
sible estimates, leading to a similar MSE as the baseline method and a reduced
MSE compared to existing Bayesian methods. For larger test sets, all bias correc-
tion methods yield similar results, substantially reducing the MSE of classifier-
based statistics. The improvement of our method compared to existing methods
is particularly compelling if the number of labelled data points is small. We argue
this to be relevant in many data mining applications, including sentiment analysis
and land cover mapping.

As future work, we aim to reduce the MSE even further by studying the bias-
variance trade-off in classifier-based statistics in more detail, and by relaxing the
assumption of homogeneity of confusion matrices.
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5.1 Introduction
The accurate estimation of cross-border on-line consumption has recently become
more important for two reasons. First, consumption through on-line channels
of both goods and services is increasing within the European Union (EU), es-
pecially across borders. More consumers have access to the Internet, shipping
costs are decreasing and payment services are converging across countries (Car-
dona & Duch-Brown, 2016; Marcus & Petropoulos, 2016; Martikainen, Schmiedel
& Takalo, 2015). Accurate estimates of cross-border on-line consumption are of
increasing importance for adequately reporting on national accounts by national
statistical institutes. Second, cross-border on-line trade is nowadays a highly rel-
evant item on the EU Digital Single Market policy agenda (European Commission,
COM/2010/0245). Therefore, getting a grip on cross-border on-line consumption
through reliable estimates is essential to for quantifying the effect of new policies.
The need for accurate estimates of indicators of the digital economy within the
EU is also emphasised by the European Commission (2015).

5.1.1 Existing survey-based approaches
Existing approaches for estimating consumption are based on either consumer
surveys or business surveys. One EU-wide consumer survey on cross-border on-
line consumption is conducted by Ecommerce Europe (https://www.ecommerce
-europe.eu). In the Netherlands, this survey is conducted by market research
institute the Gesellschaft für Konsumforschung (GfK) (https://www.gfk.com). It
is commissioned by Thuiswinkel.org1 on behalf of Ecommerce Europe. The es-
timates of total cross-border on-line consumption are based on asking consumers
how much they spent at foreign webshops over a fixed time period in the past.

We argue that such an approach based on consumer surveys will lead to an
underestimation of cross-border on-line consumption. We start our argumenta-
tion with the observation as made by Gomez-Herrera, Martens and Turlea (2014).
They showed that one of the main impediments of on-line consumption by con-
sumers within the EU is foreign language, rather than security reasons, shipping
costs, geographical distance or available payment services. Consequently, web-
shops that are selling goods or services in multiple countries typically operate in
a country by using a website in the regional language (Schu & Morschett, 2017).

1The national e-commerce association in the Netherlands, see https://www.thuiswinkel.org.

https://www.ecommerce-europe.eu
https://www.ecommerce-europe.eu
https://www.gfk.com
https://www.thuiswinkel.org
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NL

EU

World

I1

I2

E1

E2

F��. 5.1: The four types of cross-border flows of goods crossing an EU member state, e.g.,
the Netherlands (NL). The paper focuses on flow �1 (solid arrow), the import of goods from
other EU member states.

Therefore, a consumer cannot distinguish between domestic and foreign web-
shops, as both will be presented in their regional language.

Hence, we may conclude that a consumer survey approach leads to a down-
ward bias in measuring cross-border on-line consumption. We shall refer to the
downward bias of consumer survey approaches as language bias. To the best of our
knowledge, language bias has only been pointed out before by Minges (2016), who
was mainly concerned by the implications for official statistics. Here, we stress the
scientific implication: current studies on cross-border on-line consumption and
trade within the EU, mostly based on consumer survey data, might draw biased
conclusions. We suggest that future studies on cross-border on-line consumption
and trade should not be based on data obtained (solely) from consumer surveys.
To support that suggestion, the goal of this paper is to construct a new and reliable
methodology to obtain more accurate estimates of cross-border on-line consump-
tion within the EU. Here, we initially focus on the consumption of goods (see
Fig. 5.1).

The first reaction to addressing language bias is to use business surveys instead
of consumer surveys (Minges, 2016). However, we believe that this would be un-
satisfactory, for two reasons. First, measuring cross-border on-line consumption
of consumers in a single country by business surveys requires large companies
within the EU to report their sales to consumers per EU member state. This
places a large administrative burden on companies. Second, the approach poses
significant challenges to any correction for sampling probabilities and biases if, for
example, the population of the existing EU-wide information and communication
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technologies (ICT) survey for enterprises (https://ec.europa.eu/eurostat/
cache/metadata/en/isoc_e_esms.htm) would be used. The referenced popu-
lation is the result of sampling and stratification with respect to (a) economic
activity and (b) either relative turnover or number of employees. The stratified
sampling probabilities with respect to size in one country must be transformed
into that of the total on-line sales in another country. Given large differences
between countries in this regard, it seems infeasible to arrive at accurate estimates
of cross-border on-line consumption for each EU member state by using business
surveys. In summary, both existing official statistical approaches are inadequate
in estimating cross-border on-line consumption.

5.1.2 Our novel approach
The shortcomings of existing approaches that were discussed above are mostly
due to the use of inadequate sources of data. Therefore, on the basis of our findings
so far, we believe that data used for estimating cross-border on-line consumption
should at least meet the following three requirements. First, the data must be
based on supply-side information, preventing the aforementioned language bias.
Second, the data must be collected for accurately measuring the sales of companies
across borders. A reliable administrative or other integral data source would be
preferable, since such data prevent having to deal with sampling issues. Third,
the data must be available to national statistical institutes across the EU, allowing
harmonised estimation methods across member states.

Motivated by these three requirements, we propose using tax returns filed
by foreign companies (subsequently referred to as tax data). The EU system of
value added tax (VAT) states that any company that is both established in the EU
and involved with cross-border intra-community supplies to consumers must pay
VAT in the country of destination and file a tax return (European Commission,
Council Directive 2006/112/EC). The threshold value on total turnover from sales
to consumers, above which filing a tax return is mandatory, is either e35,000
or e100,000, depending on the country of destination. For foreign companies
selling to consumers in the Netherlands, the threshold value on total sales in
the Netherlands equals e100,000. The Dutch Tax and Customs Administration
collects such tax returns, which are then made available to Statistics Netherlands.
Other EU member states will have similar, but not the same, data collection
procedures, which we shall not discuss. We emphasise that using tax data restricts

https://ec.europa.eu/eurostat/cache/metadata/en/isoc_e_esms.htm
https://ec.europa.eu/eurostat/cache/metadata/en/isoc_e_esms.htm
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business register: yes (1) websites: yes (1)webshops

retail, but no online activity sells non-consumer products online

F��. 5.2: Combining the predictions by the business register with those by websites.

us to measuring cross-border on-line consumption of goods (henceforth referred to
as cross-border Internet purchases).

The main challenge in using tax data is to identify webshops. For this iden-
tification, we propose an approach consisting of three steps. In the first step,
the aim is to select the companies that are economically active in retail trade,
according to the nomenclature statistique des activités économiques dans la Commun-
auté Européenne (NACE), revision 2. (NACE, Rev. 2, is the statistical classifica-
tion of economic activities in the EU, see also http://ec.europa.eu/eurostat/
documents/3859598/5902521/KS-RA-07-015-EN.PDF.) This is achieved by prob-
abilistic record linkage (at firm level) of the tax data with a business register of
retail companies that are active in the EU. In the second step, we use website data
(obtained by web scraping) to confirm or complement the result from the first
step. We apply machine learning in both of the first two steps to maximise the
accuracy of the predictions. The results from the first two steps are combined by
taking the intersection of the results (see Fig. 5.2). In the third step, we implement
recently developed bias correction techniques (see Fig. 5.3) that have hitherto been
overlooked by the machine learning community.2 Below, we discuss our method-
ological contributions to the extant literature in each of the three steps, leading to
our main contribution.

5.1.3 Related work and methodological contributions
Here, our methodological contributions to the scientific literature on (1) probabi-
listic record linkage, (2) web scraping and (3) machine learning are discussed.

2We were alerted to the literature on quantification learning only after publication of this chapter.
Nonetheless, González et al. (2017) do mention that “quantification learning is still relatively unknown
even to several machine-learning experts”.

http://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
http://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
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The main scientific contribution is the contribution of the three methods and their
incorporation in official statistics, which we point out subsequently.

Probabilistic Record Linkage. Firm-level record linkage in the absence of unique
identifiers occurs often in economic research. One of the first well-known ex-
amples is the National Bureau of Economic Research’s Patents Data Project (Hall,
Jaffe & Trajtenberg, 2001). There, the matching was done mostly manually, which
was “one of the most difficult and time-consuming tasks of the entire data con-
struction project”. Since that study, many automated alternatives, using approx-
imate string matching algorithms, have been suggested. Recent examples include
Bena, Ferreira, Matos and Pires (2017) and Tarasconi and Menon (2017). The
general term for these approximate methods is probabilistic record linkage, first pro-
posed in the seminal work by Fellegi and Sunter (1969). Now, two issues arise
in applications of approximate string matching algorithms: (a) how to choose a
similarity measure and (b) how to choose an optimal similarity threshold.

Issue (b) is an optimisation problem, that can be solved by using machine
learning. Balsmeier et al. (2018) proposed to use :-means clustering for this.
We shall improve on this work by comparing a wider range of machine learning
algorithms and selecting the one that best fits the data. To overcome issue (a) we
suggest combining the results of multiple similarity measures. These results can
be used as features in the machine learning algorithm that optimises the similarity
threshold to choose.

An interesting alternative is to use data from the Internet, as suggested by
Autor, Dorn, Hanson, Pisano and Shu (2017). In brief, their approach entails
finding the Uniform Resource Locator (URL) of a company’s website by entering
the company name into the Internet search engine Bing.com and then using the
URL as a unique identifier in the matching process. The advantage of such an
approach is that it does not use string matching algorithms at all but instead as-
sumes that the variations in spelling of company names are stored in the database
of the Internet search engine. Therefore, it solves the two issues of using string
matching algorithms at once. However, there are at least two disadvantages of
the approach. First, entering a legal company name in an Internet search engine
might not always imply that the company’s website is included in the top results,
in particular for smaller companies. A second disadvantage is that the results
are more difficult to reproduce, as the Internet is a dynamic source of data. We
therefore propose a combination of Internet search (in our second step) and string
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webshops (predicted) other companies (predicted)

FNbias = FP–FN

TP FN FP TN

webshops (truth) other companies (truth)

F��. 5.3: Initial distribution (top row) of true labels (webshop or other company) and the
final distribution (second and bottom row) of predicted labels. The bias in the predicted
number of webshops (grey square) results from a difference in the number of false positive,
FP, and false negative, FN, predictions, showing that the bias is 0 if and only if precision
equals recall.

matching techniques (in the first step), so that we can benefit from the advantages
of both approaches.

Web Scraping. In contrast with our fully data-driven work on firm-level record
linkage, our work on web-based e-commerce detection uses manually selected
features based on expert knowledge, because it is easier to understand and im-
plement. Moreover, we show that the accuracy of our approach is high, ruling
out the need to implement highly advanced, data-driven web-based e-commerce
detection algorithms that are currently cutting edge (Blazquez, Domenech, Gil &
Pont, 2018). We do use a (pretrained) machine learning model to find the website
of a company based on the legal company name. In this respect, we improve on
Autor et al. (2017). In addition, similarly to the first step, we compare the goodness
of fit of a wide range of machine learning algorithms that use (knowledge-based)
features obtained by web scraping from company websites to predict whether a
company is a webshop or not.

Machine Learning. The first two steps provide an accurate (binary) prediction
of whether the company is a webshop or not for each company in the set of
tax returns (see Fig. 5.2). What remains is to aggregate the sales of goods of
the identified webshops to obtain an estimate of cross-border Internet purchases
by Dutch consumers within the EU. However, this estimate will be biased in
general, as Fig. 5.3 illustrates. The fact that classifier-based aggregates are biased
is relatively understudied in machine learning. To put it more strongly, we believe
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that we are the first to voice this observation.3 A related (and mathematically
equivalent) problem has been studied before. For example, in epidemiology (Lash
et al., 2009) and land cover mapping (Löw et al., 2015), the effect of classification
errors on aggregate estimates has been studied extensively for over at least three
decades. To the best of our knowledge, the only work that generally discusses
this effect is Van Delden et al. (2016), admittedly in the field of official statistics
(and not in the field of machine learning). In all fields, the same equation for the
bias of classifier-based aggregates has been derived. Our contribution to machine
learning is that we show that the fundamental work by Van Delden et al. (2016)
can be applied to automated classification algorithms in machine learning as well,
leading to far more accurate estimates in general.

Official Statistics. The main contribution of our paper is to propose a novel method-
ology to estimate cross-border Internet purchases within the EU, exploiting data
and methods hitherto not used for this. We demonstrate that there is convincing
evidence from the Netherlands to show that our methodology results in more
accurate estimates than approaches based on consumer surveys. The implemen-
tation of our methodology in the entire EU could lead to harmonised and accurate
estimates of cross-border Internet purchases, ultimately providing policy makers
with more reliable information regarding the EU Digital Single Market policy
agenda.

The remainder of this paper is organised as follows. In Section 5.2, we describe
the data that were used. We also describe how we obtained the data sets that were
used to train the machine learning algorithms. In Section 5.3, the data-driven
methods to identify foreign webshops are discussed. In Section 5.4, we present
the results of applying the approach to the Netherlands and we compare them with
results from an existing consumer-based approach, demonstrating the severity of
the language bias. Section 5.5 concludes by discussing implementations for other
EU member states and possible future research directions.

3We were alerted to the literature on quantification learning only after publication of this chapter.
The observation was first voiced by Forman (2005).
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(�)

(�)

(�)

F��. 5.4: Distributions of annual turnover of foreign companies that filed a tax return
in the Netherlands for the years (A) 2014, (B) 2015 and (C) 2016. The horizontal axis
has a logarithmic scale. Companies that reported negative or zero turnover are not shown.
Because of privacy legislation, bins containing fewer than 20 companies have been removed.
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5.2 Data
In this section we first describe the supply-side data sets (tax data, websites,
and the business register) that we used. Then, we show how the training and
validation data set were obtained. Finally, we discuss the test data set.

5.2.1 Supply-side data
Below we discuss three types of supply-side data, i.e., tax data, data from websites
and data from the business register.

Tax data. The data that were used to measure cross-border Internet purchases
are tax returns filed in the Netherlands by foreign companies that are established
in the EU. These tax data contain legal company names and the annual turnover
from sales in the Netherlands of goods taxed at low or high tariff (i.e., sales to con-
sumers). The data are extracted from tax returns filed for 2014, 2015 and 2016. The
data set contains 197,424 filed tax returns from 22,440 unique companies. These
tax data from the Netherlands are not openly available, because of strict privacy
legislation. Under severe restrictions (among others, anonymising) and obeying
serious impositions (such as suppressing extreme values), we are permitted to
present aggregated figures on the data. When relevant, we reveal the criterion
for which we suppressed information. In Fig. 5.4 we show the distribution of the
annual turnover for each of the years 2014, 2015 and 2016. Furthermore, Table 5.1
displays summary statistics of the tax data from the Netherlands. As the global
(cross-border) e-commerce market is rather complicated, we start by making three
observations to clarify which flows can and cannot be measured by using the data
set of tax returns.

First, smaller sellers might remain unobserved because of the threshold on
annual cross-border on-line sales to Dutch consumers of e100,000. This is partic-
ularly problematic as many such small sellers exist: a fact referred to as the long
tail of electronic commerce (Bailey et al., 2008; Oestreicher-Singer & Sundararajan,
2012). Many such small sellers use marketplaces (e.g., Amazon) as intermediaries.
Now, the distance sales of such marketplaces typically exceed the annual turnover
threshold (of e100,000). Therefore, they must file tax returns and they show up
in the data. Fig. 5.5 shows in more detail which sales can and cannot be observed
by using tax data as primary source of data to estimate cross-border Internet
purchases.
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T���� 5.1: Summary statistics (mean, median and 10th and 90th percentile of annual
turnover) of the tax returns filed in the Netherlands by foreign companies in 2014, 2015
or 2016.†

Year |� | |�0 | |�<0 | |�>0 | Mean Median 10th 90th
percentile percentile

2014 16,023 8,969 86 6,968 1,904,860 25,987 1,755 1,365,217
2015 17,313 9,771 80 7,462 1,603,908 25,166 1,783 1,218,926
2016 18,939 10,626 104 8,209 1,488,351 24,790 1,879 1,143,156

† The set of companies filing a tax return in a certain year in denoted by �. The subscript denotes
whether the annual turnover in the given period is equal to 0, negative or positive. The number of
elements in a set - is denoted by |- |.

B

M

C

C⇤

F��. 5.5: Possible sales flows if a consumer buys goods on line, showing which flows can
(solid) and cannot (dashed) be observed by using tax data (C, consumer (seller); B, business
(seller); M, marketplace (seller); C*, consumer (buyer)). When the sales are facilitated by an
on-line marketplace (e.g., Amazon), the distinction between sales by businesses and sales
by consumers cannot be made. Therefore, the estimate of cross-border Internet purchases
based on tax data might contain transactions from consumers to consumers.

Second, one might wonder to what extent Internet purchases at foreign com-
panies that also have brick-and-mortar stores in the Netherlands show up in the
data. Many such multinational companies exist, but most of them have organised
their Internet sales from the Netherlands, as a result of which the monetary trans-
action from consumer to company does not cross borders. In some cases, the
Internet sales are organised from outside the Netherlands. The consumer pays a
foreign business entity and therefore the sales show up in the data, provided that
the restrictions of threshold (e100,000 annual turnover) and location (established
within the EU) are met. Hence, the trade flows that we observe coincide with the
definition of import in the national accounts.
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Third, it should be mentioned that our approach can only measure cross-
border Internet purchases at companies established within the EU (see Fig. 5.1).
Therefore, purchases at webshops located in, for example, China are not included
in our estimates. This limitation is noteworthy, as the global e-commerce exports
from China are growing vastly nowadays (S. Ma, Chai & Zhang, 2018).

Websites. The website of a company should be a clear indication of whether the
company is a webshop or not. We shall use machine learning to distinguish
websites of webshops from other websites. The hyper-text mark-up language
(HTML) code of the home pages of the websites of companies are the data that
we use as input. To obtain these data, we first select the legal company names of
the 22,400 foreign companies that filed at least one tax return in the Netherlands
for 2014, 2015 or 2016. Then, we use URL retrieval (Ten Bosch & Windmeĳer, 2018)
to find the home page of the websites belonging to these companies. Finally, we
download the HTML code of the home pages from the Internet. The data were
downloaded from the Internet on April 19th, 2017.

Business register. We used ORBIS as the business register, which is a global corpo-
rate database maintained by Bureau van Dĳk (http://bvdinfo.com/orbis) and
contains detailed corporate information on over 200 million private companies
world wide. The database has been claimed to “suffer from some structural bi-
ases” (Ribeiro, Menghinello & De Backer, 2010). However, regarding European
companies with an annual turnover of more than e100,000, the data set is prac-
tically complete (Garcia-Bernardo & Takes, 2018). Data from business registers
regarding smaller foreign companies are not needed in our analysis, as these com-
panies do not have to file tax returns in the Netherlands. The ORBIS database is
used, because it contains the principal and secondary NACE (Rev. 2) codes for
companies that are established in the EU. The NACE code can be used to select all
active (and inactive) companies established in the EU and that are principally or
secondarily economically active in retail trade. The result is a data set of 6,996,468
companies, from which companies established in the Netherlands have been ex-
cluded. This data set, including each company’s country of establishment, was
extracted from ORBIS on June 24th, 2017.

For our purposes, any business register containing the company names and
country of establishment of every retail company in the EU would suffice, as long
as the retail companies (according to NACE Rev. 2) can be identified as such.
Therefore, we shall henceforth refer to the ORBIS data as the business register.

http://bvdinfo.com/orbis


5

114 Chapter �. Cross-border Internet purchases

T���� 5.2: Number of companies per in-
dustry class (using the Dutch statistical clas-
sification of industries from 1974) included
in the training data set.†

Industry (1974) Threshold Count
Retail Trade e 1 million 100
Wholesale Trade e20 million 30
Other e50 million 50
Total – 180

† The threshold value of the annual turnover is
used as a selection criterion for a company to be
included in the training data set.

5.2.2 Training and validation data set
In order to train classification algorithms, a labelled data set is required. Since no
such data set existed, we manually constructed it as follows. The tax data contain
a classification of economic activity according to the (outdated) Dutch statistical
classification of industries from 1974. At first glance, most webshops seemed to
be classified as retail trade, many as wholesale trade and some as another type of
industry according to the outdated classification. We constructed a training data
set of 180 companies by manually categorising all companies of which the total
annual turnover exceeded an industry-dependent threshold value in at least one
year (see the second column of Table 5.2). The last column of Table 5.2 displays
the number of companies manually categorised per type of industry. In fact,
two manual categorisations (see Fig. 5.2) were made for each company that was
included in the training data set presented in Table 5.2. The first categorisation is
whether the company is economically active as a retail company according to the
business register. We remark that the economic activity reported in the business
register might be different from that found in the tax return data set. The second
categorisation is whether the company is actually a webshop or not, based on
manually searching the Internet.

Within the training data set, 76 webshops were identified. Their total turnover
in 2016 was equal to e724,542,550. The validation data set is obtained from the
training data set by applying stratified 5-fold cross-validation. This is described
in more detail in Section 5.3.1.
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T���� 5.3: Number of companies per industry class (using the
Dutch statistical classification of industries from 1974) included
in the test data set.†

Industry (1974) Total frequency Count Webshop count
Retail Trade 1,393 19 6
Wholesale Trade 3,329 20 1
Other 17,718 40 6
Total 22,440 79 13

† The frequency of each industry class in the tax data is included, as
well as the number of identified webshops per industry class in the test
data set.

5.2.3 Test data set
To assess the goodness of fit of a classification algorithm, we constructed a labelled
test data set as follows. For retail trade and wholesale trade, 20 companies that were not
in the training data set were randomly selected. (One duplicate retail company had
to be removed.) For other, 40 companies were selected. The companies selected
have been manually categorised, following the same approach as discussed for
the companies in the training set. The results of the manual categorisation are
shown in Table 5.3.

5.3 Methods
In this section we discuss the data-driven methods that were used to estimate
cross-border Internet purchases within the EU by Dutch consumers. The methods,
which can be applied to any other EU member state as well, are presented in three
parts. In Section 5.3.1, the methods that were used to estimate the industry
class for companies in the data set of tax returns are specified. Section 5.3.2
outlines how we accurately estimate webshop turnover. We do this by correcting
for biases introduced by inaccuracies in the methods that were used to identify
foreign webshops. In Section 5.3.3, we summarise our data-driven supply-side
approach for measuring cross-border Internet purchases within the EU.
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5.3.1 Estimating the industry class
The general set-up is as follows. Consider a population of = companies indexed
by a set �. For a company 8 2 �, the industry class is denoted by B8 2 �. The
set � consists of only two industry classes, namely webshops (B8 = 1) and other
companies (B8 = 0). The total turnover from sales of goods as reported in the tax
returns in year C by company 8 is denoted by H8 ,C . In the tax data, H8 ,C is given
for each 8 2 � and each C 2 {2014, 2015, 2016}. The goal is to estimate the annual
turnover from sales of goods of the foreign webshops in the data set for each year
C, given by ’

82�
B8 H8 ,C . (5.1)

We assume that the classification B8 does not depend on C, while a company’s eco-
nomic activity might in reality change over time, for example when two companies
merge. However, the specific case of merging companies is handled correctly, as
the merged company will show up as a new company 8 2 � in the data. Other
causes for changes in economic activity are not corrected for. This might be refined
in future work by determining the company’s classification periodically (e.g., once
a year).

The challenge of estimating expression (5.1) is that the industry classes B8 are
not observed but must be estimated instead. We propose to estimate B8 in two
different ways (in 5.3.1.1 by the business register and in 5.3.1.2 by websites) and
combine the two estimates into a final estimate of industry class B8 (see Fig. 5.2).
The combined estimate of B8 is used to evaluate expression (5.1).

5.3.1.1 Estimating the industry class by the business register

We assume that the sales of goods as reported in the tax returns filed by foreign
companies registered (in the business register we use) as a retail company accord-
ing to the NACE (Rev. 2) code are precisely the cross-border Internet purchases
within the EU by the consumers of the EU member state under consideration. In
other words, if a company 8 2 � is registered as a retail company in the business
register, we set the estimated industry class by the business register bB8BR to 1. If
not, we set bB8BR = 0.

The challenge is that we cannot simply look up a company 8 2 � in the busi-
ness register, as the tax data and the business register do not share a common
unique identifier. The two data sets must be merged by matching legal company
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names. The following four issues then arise. First, the type of business entity
might be registered differently in both data sets (e.g., LTD or LIMITED). Second,
the name of a company might be spelled differently in both data sets (e.g., Muller
or Mueller) and taking such differences into account (i.e., performing probabi-
listic record linkage) is computationally expensive. Third, we must choose which
string distance metric to use for quantifying such differences numerically. Fourth,
a threshold on the permitted number of spelling differences between names be-
longing to the same company must be determined. To overcome these four issues,
we propose the following four-step approach (I—IV), where each step addresses
the corresponding issue. Implementation details can be found in Appendix 5.A.
We emphasise that only step I applies solely to firm-level record linkage. For other
applications considering probabilistic record linkage, steps II-IV of our approach
may directly be used.

Step I: stemming company names. First, as a preprocessing step, (1) non-alphanumeric
characters are replaced by white spaces, (2) all leading, trailing and duplicate
white spaces are removed, and (3) all characters are converted to lower case.
Then, we remove the type of business entity (e.g., LTD) from the legal company
name. For this, we may apply suffix stripping (or stemming) techniques, because
the type of business entity comprises the end of a legal company name. Our
data-driven stemming approach is inspired by Lovins (1968) and Porter (1980),
where the latter is claimed to be “the most common algorithm for stemming
English” (Manning, Raghavan & Schütze, 2008, p. 32). Finally, three values are
stored for each company in the tax data and the business register. Taking the Ger-
man company Muller GmbH, for example, the following three values are stored:
stem = ‘muller’, suffix = ‘gmbh’, suffix_class = ‘LTD/DE’. The suffix class
indicates the type of company (using UK equivalents) and the company’s EU
member state of establishment.

Step II: locality-sensitive hashing. The variety of possible spelling differences in
names of companies from the entire EU is huge, so manually formulating rules
for matching tax data and the business register on company names is infeasible.
To automate name-based record linkage we use approximate string matching; see,
e.g., Cohen et al. (2003) for an overview. This entails measuring the distance
between names (from now on, strings) viewed as elements of a (typically high
dimensional) metric space. The approximate string match (according to a metric
3) in the business register of a string B from the tax data would be the string C
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in the business register that minimises 3(B , C) for C in the business register. The
problem is that the value 3(B , C) must be computed for each pair (B , C), which is
computationally expensive. In our case, 22,440 ⇥ 6,996,468 ⇡ 1.57⇥1011 values are
computed, which may take up to several days on a regular machine, depending
on which string distance metric is used.

An efficient and elegant approach is to use locality-sensitive hashing (LSH)
schemes, which can be thought of as randomised dimensionality reduction pre-
serving string distance. We shall use the famous LSH scheme MinHash (Broder,
1997), which is locality-sensitive for the Jaccard distance on character =-grams, or
=-shingles (Leskovec, Rajaraman & Ullman, 2014, Chapter 3).

Although MinHash enables a faster approximate evaluation of the string dis-
tance metric, it does not yet reduce the number of evaluations that are required
to match the two data sources. To achieve this, we apply the LSH Forest data
structure (Bawa et al., 2005) on the results of MinHash applied to the business
register. This data structure can then be queried to retrieve, for any string B (from
the tax data) and any natural number<, the< approximately most similar strings
in the input data set (the business register) according to any metric that induces a
locality-sensitive hashing family (including MinHash). Choosing< = 100, the ap-
proximate string matching and locality-sensitive hashing techniques have reduced
the number of evaluations from 1.57⇥ 1011 to 22,440⇥ 100 = 2.24⇥ 106 (spending
only about 80 min of wall-clock computation time on a regular machine).

Step III: combining string distance metrics. What remains, is to find the closest match
in the remaining < = 100 companies from the business register for each company
from the tax data, according to some string distance metric 3. As we are not
necessarily interested in the closest match itself, but simply in the binary outcome
‘match’–‘no match’, we store only the minimum distance. For other applications
where the match itself is of interest (e.g., in general record linkage problems), store
the <-vector of distances and apply the remainder of our approach accordingly.

Two choices must be made in advance. First, some string distance metric must
be selected. Second, some threshold value for 3(B , C) must be determined, above
which we consider the approximate match a real match. In existing work on
probabilistic record linkage of firm-level sources of data, these two choices are
made manually, and typically somewhat arbitrarily. Therefore, the accuracy of
the results will not be as high as possible, in general. To increase the accuracy, we
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T���� 5.4: Overview of the ten classification algorithms we consider, including whether
we refer to it as a linear, nonlinear or ensemble algorithm.

Type Algorithm
Linear Logistic regression (LR)

Linear discriminant analysis (LDA)
Linear support vector classification (LinSVC)

Nonlinear :-nearest neighbours (kNN)
Multinomial naive Bayes (MNB)
Quadratic discriminant analysis (QDA)
Support vector classification with radial basis function kernel (RBFSVC)

Ensemble Random forest (RF)
Gradient boosting (GB)
AdaBoost (AB)

propose the following general data-driven approach: consider multiple string dis-
tance metrics at once and let a machine learning algorithm determine the optimal
threshold values. Details on which string distance metrics we have combined can
be found in Appendix 5.A.

Step IV: machine learning. As mentioned in step III, we propose to use machine
learning to find the optimal threshold values for string distance metrics (above
which we consider an approximate match a real match). The aim is to find a
classification algorithmbBBR

8
that accurately predicts the industry class BBR

8
2 � (i.e.,

whether company 8 2 � is registered in the business register as a retail company).
The algorithm will use the eight-dimensional vectors of distances constructed in
step III as the features (see Appendix 5.A). Recall that, for each company in the
training set and the test set, the class BBR

8
was observed by manually searching the

business register.
We propose the following data-driven approach to select a classification al-

gorithm and corresponding algorithm parameter settings that are optimal in
predicting B

BR
8

. First, ten of the most commonly used classification algorithms
are selected to be examined. We note that this selection is not exhaustive and
it might be extended in future work. The ten classification algorithms that we
consider are depicted in Table 5.4. We consider the linear classification algorithms
logistic regression (LR), linear discriminant analysis (LDA) and linear support vec-
tor classification (LinSVC). The nonlinear algorithms implemented are :-nearest
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T���� 5.5: An overview of the parameter grids for the ten algorithms
that we examined.†

Algorithm Parameter grid
LR penalty : {l1, l2}; ⇠: {0.001, 0.01, 0.1, 1, 10}
LDA (no parameters)
LinSVC ⇠: {0.001, 0.01, 0.1, 1, 10}
kNN :: {1, 3, 5, . . . , 39}
MNB �:

�
10�10

, 0.01, 0.1, 1
 

QDA (no parameters)
RBFSVC ⇠: {0.01, 0.1, 1, 10, 100}; ✏: {0.001, 0.01, 0.1, 1}
RF =: {50, 100, 200, 500}; 3: {1, 2, 3, . . . , 8}
GB =: {50, 100, 200, 500}; 3: {1, 2, 3, . . . , 8}; ⌫: {0.01, 0.1, 1}
AB =: {50, 100, 200, 500}; 3: {1, 2, 3, . . . , 8}; ⌫: {0.01, 0.1, 1}

† In estimating the algorithms LR, LinSVC, RBFSVC, RF and AB, the two class-
weighting schemes, uniform and balanced, were also included in the para-
meter grid. Consult the scikit-learn documentation for parameter specifications
(http://scikit-learn.org/, version 0.19.1).

neighbours (kNN), multinomial naive Bayes (MNB), quadratic discriminant anal-
ysis (QDA) and support vector classification with radial basis function kernel
(RBFSVC). Furthermore, we examine three ensemble algorithms, namely random
forest (RF), gradient boosting (GB) and AdaBoost (AB). The details of the specifi-
cations of the classification algorithms can be found in, e.g., Witten, Frank, Hall
and Pal (2017), Han, Kamber and Pei (2011), or Hastie et al. (2009). We used
the Python library scikit-learn (http://scikit-learn.org/, version 0.19.1) to
implement the ten classification algorithms, see also Pedregosa et al. (2011).

For each of the ten algorithms, a grid of parameter combinations to be ex-
amined was specified. These grids are depicted in Table 5.5. For precise para-
meter specifications we refer to the scikit-learn documentation (http://scikit
-learn.org/, version 0.19.1).

For each algorithm and each parameter combination in the parameter grid,
stratified 5-fold cross-validation is performed on the training data set. Cross-
validation is used to prevent overfitting. The choice of using five folds is based on
Breiman and Spector (1992). It might introduce more variance than choosing 10
or 20 folds (Kohavi, 1995). However, because of the small size of the training data
set, choosing 10 or 20 folds might lead to unstable results. Therefore, we have
chosen to use stratified 5-fold cross-validation in order to reduce the variance, as
suggested by Kohavi (1995). Furthermore, we optimise parameter settings using

http://scikit-learn.org/
http://scikit-learn.org/
http://scikit-learn.org/
http://scikit-learn.org/
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mean F1-scores over the five folds. We prefer F1 over accuracy because of the
low base rate of webshops in the entire data set. We do not use the common
metric AUC to optimise parameter settings, as it is known to possibly mask poor
performance when facing imbalanced data (Jeni, Cohn & De La Torre, 2013). As
our data are in fact strongly imbalanced, because of the low base rate of webshops,
it does not seem wise to use AUC as optimising metric. Moreover, optimising AUC
does not, in general, imply optimising F1 (Davis & Goadrich, 2006). Thus, for each
algorithm the parameter setting that maximises the mean F1-score over the five
folds is selected. Subsequently, the mean and standard deviation of F1-scores over
the five folds between the ten optimal classification algorithms are compared.

Finally, both the mean F1-score and the standard deviation of F1-scores over
the five folds are considered in choosing the final classification algorithm and cor-
responding parameter settings. If necessary, the local behaviour on the parameter
grid is examined to reduce the standard deviation of F1-scores over the five folds.
This final classification algorithm is then trained on the entire training data set.
The trained classification algorithm is used to compute the estimate bB8BR for each
company 8 not included in the training data set. Recall that bB8BR is an estimate of
B

BR
8

, which indicates whether company 8 is registered as a retail company in the
business register. In practice, it might be different from the true industry class B8
that we aim to estimate. For this reason, we propose estimating the industry class
by websites as well, resulting in a second estimate bB8W.

5.3.1.2 Estimating the industry class by websites

We assume that a webshop can be identified by a shopping cart on the home
page, referred to as such in the underlying HTML code. If a shopping cart is
found on the website of company 8 2 �, we set the estimated industry class by
websites bB8W to 1. If not, we set bB8W = 0. For this classification, we propose the
following three-step approach. First, as the tax data do not contain the URL of the
website of a company, we implement a method for finding this URL based on the
legal company name. Second, web scraping is used to look for a shopping cart
on the website. Third, as the first two steps are not flawless, the machine learning
approach from Section 5.3.1.1 (step IV) is used to minimise errors. The following
three parts describe these three steps in more detail.

Step I: finding a company’s website. In tax data from the Netherlands, a URL of
the home page of the company is not available. Therefore, Statistics Netherlands
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has developed URL retrieval software to retrieve the URL of the home page of a
company based on the legal company name (Ten Bosch & Windmeĳer, 2018). The
legal company name is first processed by Google’s search application program-
ming interface, returning a list of several URLs, each equipped with a title and
a description. The URLs are then ranked according to a matching score between
0 (definitely not a match) and 1 (definitely a match), which is computed by a
random-forest algorithm. The algorithm is trained by using a set containing 1000
Dutch company names (from different industries and varying in size, i.e., the
number of employees) and the URL of their website. We emphasise that the
Dutch language of the training set is not necessarily an issue, as most foreign
webshops selling to Dutch consumers will have a Dutch version of the website
(see Section 5.1). For each company, the URL with the highest assigned matching
score is returned and the corresponding matching score is stored.

Step II searching for a shopping cart. For each company, the HTML code of the URL
found in step I is downloaded as a raw text file. In the raw text file, the occurrences
of variations of the words shop and cart in Dutch, English and German are counted.
The full list is winkel, wagen, mand, shop, cart, bag, basket, warenkorb. The choice
of these three languages is based on the fact that most Dutch citizens mostly
speak only Dutch, English and/or German. Note that in modern information
retrieval, it is more common to count the occurrences of all words found in a
document (see Manning et al., 2008, Chapter 6). We have chosen not to follow
this approach, as it would lead to serious dimensionality issues; the number of
different terms (words) would be much larger than the number of documents
(websites of companies) in the training set.

Step III: machine learning. The final step is to find a classification algorithm bB8W that
can accurately predict the industry class B8 2 �. The true, unobserved industry
class BW

8
2 � represents whether company 8 2 � is a webshop. Recall that, for each

company in both the training and test set, the class BW
8

was observed by manually
searching the Internet.

Before training a classification algorithm, the counts of the words are trans-
formed to real numbers in the interval [0, 1] by using (normalised) term-frequency
times inverse-document-frequency (TF.IDF) (see Witten et al., 2017, p. 314, for a
definition). To prevent division by 0 in computing the IDF, a single document
containing each of the eight words once is added to the data. The eight TF.IDF
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values and the maximum matching score are used as features in fitting classifica-
tion algorithms on the training data. The machine learning approach is identical
to that described in step IV of Section 5.3.1.1.

5.3.1.3 Constructing the final estimate of the industry class

The two selected classification algorithms, each with the optimal parameter set-
ting, are trained on the entire training data set. The trained models are used to
compute bB8BR and bB8W on the remaining part of the data set. Companies whose
features, which are needed for one of the two algorithms, are (partially) missing
receive the value �1 as prediction, to be interpreted as ‘missing’. It happens for
bB8BR if the tax-stem of the company has less than three characters. It happens
for bB8W if the maximum matching score is below 0.5 or if no HTML code was
downloaded. The final single categorisationbB8 is obtained by combining bB8BR and
bB8W as follows:

bB8 B
8>>>>>>><
>>>>>>>:

�1 when bB8BR = bB8W = �1,

bB8BR when bB8W = �1,

bB8W when bB8BR = �1,

bB8BR ^ bB8W otherwise.

The AND-operator ^ is computed as the minimum of the two integers. It im-
plies that bB8 categorises a company as a webshop if and only if the company is
categorised as such by both bB8BR and bB8W (see Fig. 5.2).

5.3.2 Accurately estimating webshop turnover
Estimating webshop turnover oncebB8 has been estimated seems straightforward:
simply use it instead of B8 to evaluate expression (5.1). However, this straight-
forward evaluation will result in a biased estimation of webshop turnover. This
section aims to estimate and correct that bias, yielding a more accurate estimate
of webshop turnover.

5.3.2.1 Biased estimation of webshop turnover

We begin by isolating the bias in estimating expression (5.1). For companies in the
training set, the manual categorisation B8 is the true class of company 8 2 �. Hence,
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rewriting expression (5.1), the total (annual) cross-border Internet purchases could
thus be estimated as ’

82�"
B8 H8 +

’
82�\�"

bB8 H8 , (5.2)

where �" ⇢ � is the training set of manually categorised companies. The first
term is the total turnover of observed webshops in the training data set and the
second term is the total turnover of predicted webshops in the rest of the data set.

Now, Fig. 5.3 illustrates that expression (5.2) yields (because of the second term)
a biased estimate of expression (5.1). In fact, any aggregate based on the results of
a classification algorithm will be a biased estimate of the true value. For a binary
classifier, the only exception is when the number of false positive predictions is
equal to the number of false negative predictions, which is equivalent to precision
and recall being equal. To the best of our knowledge, we are the first to note this
in the setting of machine learning.4

Before estimating and correcting the bias we introduce the vector notation from
Van Delden et al. (2016). We write ai for the 2-vector (B8 , 1 � B8)) and consider
the aggregate turnover vector y =

Õ
82� aiH8 . Similarly, define bai based on bB8 .

Expression (5.2) will thus become the first component of the estimated 2-vector by
given by

by B ’
82�"

aiH8 +
’
82�\�"

baiH8 . (5.3)

In the remainder of this section, only the subset �\�" ⇢ � is considered. Hence,
any index 8 will refer to a company that is not in the training set �" . Consequently,
the estimate by will be used to refer only to the second term on the right-hand side
of equation (5.3), as the first term does not introduce any bias. Similarly, y will be
used in the remainder of this section to refer to

Õ
82�\�" aiH8 .

5.3.2.2 Classification-error model

To estimate and correct the bias, we follow the approach of Van Delden et al.
(2016), which did not focus on machine learning algorithms, but it can directly
be applied in that setting, as we will show below. The approach entails that B8 is
considered to be deterministic and bB8 to be stochastic, conditionally on B8 . They

4As mentioned in Section 5.1, we were alerted to the literature on quantification learning only after
publication of this chapter. It was first noted in the setting of machine learning by Forman (2005).
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assume the following classification-error model

?6⌘8 B P(bB8 = ⌘ | B8 = 6), 6 , ⌘ 2 � . (5.4)

We emphasise that this assumption is very reasonable if bB8 is the result of a
machine learning algorithm. Such an algorithm is mostly based on assuming
a data-generating process, where the independent variable B8 is assumed to be
a function of dependent variables (or features) that result in bB8 , plus an error
or noise term. This noise term corresponds to the stochastic classification error
model above.

In addition, we assume that ?6⌘8 does not depend on 8 2 �\�" . This assumption
might be argued to be incorrect for two reasons. First, it is more difficult to find
the correct website for a small company than for a large company. Moreover, a
small company that is not a webshop might not even have a website. Second, the
coverage and quality of the business register for smaller companies is significantly
lower than for larger companies. Both reasons imply that the probability of a
classification error (more specifically, a false negative classification error) increases
as turnover decreases. However, we make the assumption because accurately
estimating % for different turnover classes, as suggested by Van Delden et al.
(2016), requires a far larger training data set than the training data set that we
have available.

The resulting 2 ⇥ 2 matrix % = (?6⌘)6 ,⌘2� is estimated as follows. On the test
data set, bB8 is compared to B8 . Denoting by TP, FP, TN, and FN the number of
true and false positive and true and false negative classifications respectively, the
estimator b% of % takes the form

b% =
©≠≠≠≠
´

TP
TP + FN

FN
TP + FN

FP
TN + FP

TN
TN + FP

™ÆÆÆÆ
¨
. (5.5)

We next show how to use this estimator to obtain accurate estimates of cross-
border Internet purchases.
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5.3.2.3 Estimating bias and variance

If we assume the classification-error model, it follows E(bai) = %)ai and therefore

E(by) = %)y. (5.6)

The bias of by as an estimator of y equals

B(by) = E(by) � y = (%) � �2)y, (5.7)

where �2 is the 2 ⇥ 2 identity matrix. This shows that, in general, expression (5.3)
yields a biased estimate of y. In fact, the bias is only zero if either (1) the classifi-
cation algorithm does not make any errors (i.e., %) = �2) or (2) y precisely equals
an eigenvector of %) corresponding to the eigenvalue 1.

To estimate the bias as given in expression (5.7), we could use the plug-in
estimator bB0 = (b%) � �2)by. (5.8)

Following Van Delden et al. (2016), we assume that E[b%)] = %) and that b%) and by
are uncorrelated. It follows that E[bB0] = %

)B(by), hence the plug-in estimator is
a biased estimator of the bias. If we assume that ?01 + ?10 < 1 (and b?01 +b?10 < 1),
then the inverse matrix& = (%))�1 exists (and b& = (b%))�1 exists). Now, assuming
E[b&] = & and that b& and bH are uncorrelated, an unbiased estimator of the bias is

bB1 = (�2 � b&)by. (5.9)

However, correcting by by bB1 might increase the variance of (the first component
of) the estimator. It might lead to low accuracy in practice. Therefore, Van Delden
et al. (2016) propose to find the optimal value ⌫ = ⌫⇤ for which the MSE of the first
component of bB� = (1�⌫)bB0+⌫ bB1 as an estimator of the bias B(by) is minimised
for ⌫ 2 [0, 1]. For more details on how to derive ⌫⇤, please consult Appendix 5.B.

Having found ⌫⇤, we estimate y (still excluding yM ) by the first component of
the vector

by,⇤ = by � bB,⇤ = by � (�2 + ⌫⇤(b& � �2))(b%) � �2)by
=

⇣
2�2 � b%) � ⌫⇤(b& � �2)(b%) � �2)

⌘ by. (5.10)
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The standard deviation is estimated by the square root of the upper-left value in
the variance-covariance matrix

b+(by,⇤) =
⇣
2�2 � b%) � ⌫⇤(b& � �2)(b%) � �2)

⌘ b+(by) ⇣2�2 � b%) � ⌫⇤(b& � �2)(b%) � �2)
⌘
)

.

(5.11)
Here, the variance +(by) of by is estimated by

b+(by) = diag
⇣b%)bk⌘

� b%)diag
⇣bk⌘ b% , (5.12)

where bk =
Õ
8
baiH

2
8
. The bias of b+(by) as estimator of +(by) is relatively small and

therefore is not corrected (Van Delden, Scholtus & Burger, 2015, Appendix A4).
As the values of yM are not stochastic, expression (5.11) also yields the standard
deviation of the final estimate of y.

5.3.3 Summarising our data-driven supply-side approach
The proposed data-driven supply-side approach for measuring cross-border In-
ternet purchases within the EU can be summarised as follows. Based on EU VAT
legislation, the starting point is a data set of tax returns filed by foreign companies
established within the EU. These tax data are supply-side data as they contains
company turnover. Then, the challenge is to identify webshops within the data
set of tax returns. We address this challenge in two steps. In the first step, we
implement approximate string matching techniques to merge the tax data to a
business register of retail companies that are established within the EU. The mer-
ging can be viewed as data-driven record linkage, as we optimised the performance
of the approximate string matching by using machine learning algorithms. In the
second step, we use web scraping in combination with machine learning to assess
whether a company is a webshop. The outcomes of the two steps are combined
to obtain a more accurate estimate of cross-border Internet purchases. Moreover,
we use the data to estimate the bias and standard deviation of the estimate. Thus,
the data-driven methods applied to the supply-side data yield our data-driven
supply-side approach for measuring cross-border Internet purchases within the
EU.
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5.4 Results
Below, we present our findings of applying the approach to the Netherlands by
estimating cross-border Internet purchases within the EU by Dutch consumers.
The section is structured as follows. First, in Section 5.4.1, the results of training the
classification algorithms to estimate the industry class by the business register are
presented. Then, in Section 5.4.2, the same is presented for estimating the industry
class by websites. Next, in Section 5.4.3, we present the results of estimating cross-
border Internet purchases by Dutch consumers. It contains the most relevant
results of the paper. Finally, in Section 5.4.4, we compare the results of our
data-driven supply-side approach to currently available results from demand-side
approaches based on consumer surveys. We interpret and discuss the differences
of the resulting estimates of cross-border Internet purchases by Dutch consumers.

5.4.1 Results from estimating the industry class by the business
register

As can be seen from the results in Table 5.6, machine learning is very well suited for
probabilistic record linkage of firm-level data. Recall from step IV of Section 5.3.1.1
that we compared ten different machine learning algorithms (Table 5.4), each
evaluated by using multiple parameter settings (Table 5.5), to estimate the industry
class BBR

8
by the business register. Table 5.6 does not include results for MNB;

this algorithm assumes discrete features, whereas they are continuous (distances
between strings). For each algorithm, we have selected the parameter settings
that are optimal in estimating BBR

8
, based on the mean F1-score from the stratified

5-fold cross-validation. The results in Table 5.6 show that the mean goodness of
fit of the machine learning algorithms are high, with little difference between the
algorithms. Moreover, the standard deviations in scores over the folds (shown in
parentheses) are small.

The final classification algorithm that we use to predict BBR
8

is RBFSVC, with
parameters⇠ = 100, ✏ = 1 and the balanced class-weighting scheme (see Table 5.6).
Observe that this choice not only maximises the mean F1-score, but also mean
precision and mean recall. In particular, the algorithm does not falsely predict
positive classifications on the training data set. Moreover, the local behaviour of
the mean F1-score of RBFSVC, as a function of the parameters ⇠ and ✏, is stable
around the optimal parameters (see Appendix 5.C).
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T���� 5.6: Mean (plus or minus standard deviation) of scores for optimal parameter
settings for each of the specified algorithms estimating BBR

8
.†

Algorithm Optimal parameters F1 # Precision Recall
RBFSVC ⇠ = 100, ✏ = 1 0.97 (± 0.03) 1.00 (± 0.00) 0.94 (± 0.05)
GB = = 50, 3 = 1, ⌫ = 0.01 0.95 (± 0.02) 0.98 (± 0.03) 0.92 (± 0.03)
kNN : = 3 0.95 (± 0.03) 0.98 (± 0.03) 0.93 (± 0.04)
LinSVC ⇠ = 0.01 0.94 (± 0.02) 0.97 (± 0.03) 0.91 (± 0.03)
LDA 0.94 (± 0.03) 1.00 (± 0.00) 0.89 (± 0.05)
LR ⇠ = 1, L1-penalty 0.94 (± 0.03) 0.97 (± 0.03) 0.92 (± 0.03)
AB = = 100, 3 = 1, ⌫ = 0.1 0.94 (± 0.04) 0.96 (± 0.04) 0.93 (± 0.04)
RF = = 50, 3 = 4 0.94 (± 0.04) 0.95 (± 0.04) 0.93 (± 0.04)
QDA 0.93 (± 0.02) 1.00 (± 0.00) 0.87 (± 0.03)

† The scoring function F1 (used to rank the results) is used to optimise across the parameter
settings in the parameter grid. Each parameter setting is evaluated using stratified 5-fold cross-
validation. In each column, the maximum score is highlighted. In the fourth column three
scores are the maximum score (rows RBFSVC, LDA, and QDA).

5.4.2 Results from estimating the industry class by websites
The results in Table 5.7 show lower scores and greater difference between al-
gorithms than the results in Table 5.6. Again, the algorithms (which are now
used to estimate the industry class BW

8
by websites) are ranked with respect to

the optimal mean F1-score over the folds in the stratified 5-fold cross-validation.
Also, note that the standard deviations of scores over the folds (which are shown
in parentheses) are relatively large. Analysing the results more closely, using the
(simple) categorisation of the machine learning algorithms that were used into
linear, non-linear and ensemble algorithms (see Table 5.4), we make an interest-
ing observation. Based on the results in Table 5.7, all three algorithms from the
category of linear methods (LR, LinSVC, LDA) performs less well than the (better
performing) algorithms from the other two categories of methods. This suggests
that a linear separation of the data points in higher dimensional space does not
yield the best classification for unseen data. Therefore, it could be more difficult
to estimate the industry class by websites than by the business register, leading to
the considerable differences between the results of the two estimations. Hence, in
future work it might be worthwhile to obtain more training data to improve the
results.

The final classification algorithm that we use to estimate BW
8

is RF, with param-
eters = = 200, 3 = 1 and the balanced class-weighting scheme (see Table 5.7). The
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T���� 5.7: Mean (plus or minus standard deviation) of scores for optimal parameter
settings for each of the specified algorithms predicting BW

8
.†

Algorithm Optimal parameters F1 # Precision Recall
AB = = 100, 3 = 1, ⌫ = 0.1, bal. 0.80 (± 0.11) 0.82 (± 0.10) 0.78 (± 0.12)
GB = = 200, 3 = 1, ⌫ = 0.1 0.79 (± 0.10) 0.80 (± 0.09) 0.78 (± 0.12)
RF = = 200, 3 = 1, bal. 0.78 (± 0.10) 0.85 (± 0.14) 0.76 (± 0.16)
kNN : = 35 0.76 (± 0.09) 0.81 (± 0.04) 0.73 (± 0.17)
RBFSVC ⇠ = 1, ✏ = 0.1, bal. 0.76 (± 0.11) 0.78 (± 0.08) 0.76 (± 0.18)
LR ⇠ = 1, L1-penalty 0.75 (± 0.12) 0.76 (± 0.10) 0.76 (± 0.18)
LinSVC ⇠ = 0.01 0.74 (± 0.10) 0.77 (± 0.07) 0.73 (± 0.17)
LDA 0.74 (± 0.13) 0.69 (± 0.14) 0.81 (± 0.17)
MNB � = 10�10 0.70 (± 0.12) 0.71 (± 0.15) 0.71 (± 0.12)
QDA 0.67 (± 0.15) 0.63 (± 0.12) 0.73 (± 0.21)

† The scoring function F1 (used to rank the results) is used to optimise across the parameter settings
in the parameter grid. Each parameter setting is evaluated using stratified 5-fold cross-validation. In
each column, the maximum score is highlighted.

reason for this choice is that RF maximises mean precision. Moreover, the local
behaviour of the F1-score of RF, as a function of the algorithm parameters, is more
stable around the optimal parameters compared with the local behaviour for AB
and GB (see Appendix 5.C).

5.4.3 Estimating cross-border Internet purchases
In Table 5.8, we present our final estimates of cross-border Internet purchases
within the EU by Dutch consumers. Recall that the algorithm chosen in Sec-
tion 5.4.1 has now been (re)trained on the entire training data set indexed by �" .
It resulted in a model bBBR

8
that was qualified to predict B8 on the remaining part

of the data set of tax returns, indexed by �\�" . Similarly, a model bBW
8

has been
trained by using the algorithm chosen in Section 5.4.2. The two models were
combined into a final model bB8 (as described in Section 5.3.1.3, see also Fig. 5.2).
The comparison between the modelbB8 and the observed true values B8 on the test
data set yields the values TP = 8, FP = 4, TN = 62 and FN = 5. It follows that

b% =
✓
8/13 5/13
4/66 62/66

◆
⇡

✓
0.615 0.385
0.061 0.939

◆
.
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The main results of the paper are shown in Table 5.8. The values H" contain the
total cross-border Internet purchases at companies in the set �" . The categorisa-
tion for companies in �" has been determined manually and can be considered
free from errors. The values bH contain the additional estimated cross-border In-
ternet purchases at companies in the set �\�" . The values ⌫opt contain the optimal
values of ⌫ in minimising the MSE of the estimated bias of bH. Note that all optimal
values of ⌫ are equal to 0, meaning that the increased variance dominates the de-
creased squared bias of bB1 compared to bB0. This is due to the relatively large
off-diagonal values in the matrix b%. The values b⌫⌫opt represent the estimated bias
of bH for the optimal value ⌫ = ⌫opt. Note that the bias strongly differs across the
three years. The values H show the final estimate of the total cross-border Internet
purchases, computed as

H = H" + (bH � b⌫⌫opt). (5.13)

The last column in Table 5.8 contains the standard deviation of H, estimated as
outlined at the end of Section 5.3.2.

In the Netherlands, total household consumption on retail goods (food and
durable goods, codes 1000 up until and including 3000) in 2016 was equal to
e87,206 million, according to Statistics Netherlands (https://opendata.cbs.nl).
Statistics Netherlands does not publish the total on-line consumption of goods by
Dutch consumers. The only currently available estimate is by Thuiswinkel.org
and GfK and it is based on consumer surveys. The estimate of 2016 equals
e11.01 billion. It seems possible that just over 12% of on-line consumption by
Dutch consumers is spent at foreign webshops established within the EU. Besides,
Statistics Netherlands does publish year-on-year growth figures on on-line retail
sales by Dutch webshops. In 2016, this year-on-year growth was equal to 22.1%.
It is quite similar to the growth of 21.2% that we find by comparing the values of
H in 2015 and 2016 as presented in Table 5.8.

Reflecting on our findings, we note that the standard deviation of the final
estimate would still be too large for official statistical purposes. However, as
will be discussed more thoroughly in Section 5.4.4, our findings prove to be a
significant improvement over currently available alternative estimates.

https://opendata.cbs.nl
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T���� 5.8: Final results of cross-border Internet purchases within the EU
by Dutch consumers in millions of euros.

Year H
"

bH ⌫opt b⌫⌫opt H Std(H)
2014 e 405 M e 495 M 0 e 63 M e 837 M e 97 M
2015 e 565 M e 586 M 0 e 21 M e 1,132 M e 101 M
2016 e 725 M e 667 M 0 e 19 M e 1,372 M e 110 M

5.4.4 Comparison with demand-side approach
In Section 5.1, we claimed that our data-driven supply-side approach would be
more accurate than demand-side approaches to estimate cross-border Internet
purchases within the EU. To justify this claim, we compare our results for the
Netherlands to the results of the consumer survey approach by market research in-
stitute GfK (commissioned by Thuiswinkel.org on behalf of Ecommerce Europe).
We choose to use the estimate by these commercial organisations, as, to the best
of our knowledge, there is no scientific literature reporting the total cross-border
Internet purchases by Dutch consumers.

In 2016, total cross-border on-line consumption by Dutch consumers according
to GfK was equal to e637 million, e190 million of which were spent in China and
e70 million in the United States. This implies that at most e377 million were
spent within the EU, but this figure includes on-line consumption of both goods
and services.

Moreover, the fraction of on-line consumption of goods in the total on-line
consumption in 2016, as reported by GfK, was e11.01 billion / e20.16 billion =
0.55. We assume that this proportion is independent of the country in which the
goods or services were purchased. As a result, cross-border on-line purchases of
goods within the EU, according to GfK, would approximately equal e206 million
in 2016.

We, however, find e1,372 million for 2016 with a standard deviation of e110
million, i.e., 8%. The estimate is more than six times as high as that of GfK.
The results show the severe downward bias in using demand-side approaches to
estimate cross-border on-line consumption and it motivates the implementation
of our approach for other EU member states.
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5.5 Chapter conclusions
We have proposed a methodology to measure cross-border Internet purchases
within the EU by using tax data, a business register, and website data. We have
implemented data-driven methods to combine these supply-side data sources in
a computationally efficient manner. Applied to the Netherlands, the proposed
approach leads to a strong improvement of existing approaches that are based on
consumer surveys. In particular, market research institute GfK (commissioned
by Thuiswinkel.org on behalf of Ecommerce Europe) use consumer surveys and
estimated cross-border Internet purchases by Dutch consumers within the EU
in 2016 to be approximately e206 million. Our approach yields an estimate of
e1,372 million, i.e., six times as high as GfK’s estimate, with a standard deviation
of e110 million (8%).

The approach that we propose requires foreign companies’ tax returns to
contain only the legal company name and the turnover from sales of goods to
consumers. Because of EU VAT legislation these data are available in every EU
member state. In fact, we do not require the economic activity of a company to
be accurately available in filed tax returns. The training and test set could even
be constructed without any known economic activity, by viewing all companies
as belonging to the same class and following the construction described in Sec-
tions 5.2.2 and 5.2.3. We also do not assume that the URL of the home page of
a company is available in filed tax returns. Moreover, the additional data (the
business register and websites) required by the approach proposed are open data
sources. Hence, our main conclusion is that the approach is applicable in any
EU member state and more accurately estimates cross-border Internet purchases
within the EU.

In addition to our methodological contribution to official statistics concerning
cross-border Internet purchases, we point out two aspects of our contribution that
might be of interest to a general audience in statistics. The first aspect is our fully
data-driven (and therefore generic) approach for probabilistic record linkage of
firm-level data sources. The novelty of our approach compared with the extant
literature is that we use machine learning to maximise the accuracy of the record
linkage. In this regard, we improve upon existing methods as the optimisations
(choosing an optimal string matching algorithm and similarity threshold) are fully
automated. Moreover, our approach is computationally efficient by using state-
of-the-art hashing techniques from computer science. Therefore, our approach
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can be applied to related large-scale (text-based) probabilistic record linkage prob-
lems. The second aspect is the observation that aggregation (e.g., summing) after
running a classification algorithm yields (potentially strongly) biased estimates.
We believe that we are the first to make this observation in the field of machine
learning. As a first step, we have shown

(1) that, in many fields outside machine learning, techniques have been de-
veloped to correct the bias of aggregate estimates and

(2) that we can directly apply the techniques to classification algorithms.

In our view, the bias of aggregates based on results from classification algorithms
deserves more investigation beyond our first step.

Although our new methodology improves the estimation of cross-border In-
ternet purchases within the EU, we point out two potential sources of bias of our
current approach. First, companies with sales below the threshold value in the
country of destination (in the Netherlands: e100,000) do not have to file a tax re-
turn. The Internet purchases at such small companies are therefore missing in an
estimation based on tax data. Yet, the sales of small companies via marketplaces
(e.g., Amazon) are included in tax data. Second, the reported turnover from sales
to consumers might be inaccurate, potentially leading to an underestimation of
total cross-border Internet purchases. However, this underestimation is expected
to be minimal because of strict law enforcement by, and collaboration between,
tax authorities in the EU. We have not aimed to correct for either of these two
biases, as no data are available to estimate them. Moreover, we aimed to show the
downward bias of consumer survey approaches compared with a supply-side ap-
proach in estimating cross-border Internet purchases within the EU. We therefore
do not mind if our supply-side approach still yields a conservative estimate.

Future work on measuring cross-border Internet purchases within the EU
might focus on improving the predictions by websites of company classifications.
The empirical results show that this is the weakest part of the approach that
we propose, as the F1-scores for website-based predictions are lower than the
F1-scores for the predictions based on using the business register. The results
may be improved by enlarging the training set of the URL retrieval software from
Dutch to European websites using the company names and URLs registered in the
business register. We consider this improvement outside the scope of the current
paper, as the results of our data-driven supply-side approach already show a
strong improvement compared with existing consumer survey approaches.
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Finally, further applications of the data-driven supply-side approach include
revealing the structure of the cross-border on-line retail market in any EU member
state. Our approach directly returns a list of foreign webshops and their annual
cross-border Internet sales to the observing member state. If the information
on domestic webshops that are active within the member state’s e-commerce
market is complemented, the structure of that market may be analysed. Related
to this is the export of the webshops established in a single EU member state,
being the supply-side counterpart of cross-border on-line consumption within a
member state. It might be interesting to compare the two market structures within
individual member states and to compare the market structures between member
states within the EU.



5
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APPENDIX

5.A Estimating the industry class by the business re-
gister

This appendix contains the details of the first three steps of our four-step approach
for estimating the industry class by the business register. The details of step IV
can be found in the main text.

Step I: stemming company names
The stemming of company names in the tax data and the business register follows
the following three steps, inspired by Lovins (1968) and Porter (1980).

• Step 1: use the business register to create, for each country in the EU and
each n = 1,2,3,4, a list of the five most common legal company name
suffixes (i.e., end-of-string words) of length n. Complement the list with the
types of business entities from Table 5.9.

• Step 2: for each EU member state, identify the prefixes of the suffixes in
the list obtained in step 1 as well as the suffix-class (of the form ‘business
type/member state’). Concatenate the suffix-prefix lists obtained into a
single list.

• Step 3: for each legal company name, search each of its words (starting from
the second word) in the suffix-prefix list from step 2. Stop if a match is
found. Split the name into a stem and a suffix, storing its suffix class.

We include an example to illustrate the stemming procedure. In Germany,
the most common type of business entity is Gesellschaft mit beschränkter Haf-
tung (GmbH), which is similar to a private company limited by shares (LTD).
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T���� 5.9: Overview of the types of business entities per EU mem-
ber state, obtained from Wikipedia (https://en.wikipedia.org/wiki/
List_of_business_entities).

Country Code Types of business entities
Austria AT AG, GmbH, KG, GmbH & Co. KG
Belgium BE BVBA, NV, SA
Bulgaria BG AD, EAD, EOOD, OOD
Croatia HR d.d., d.o.o.
Cyprus CY (Same as GB)
Czech Republic CZ a.s., s.r.o.
Denmark DK ApS, A/S, A.M.B.A.
Estonia EE OÜ, AS
Finland FI Oy, oyj
France FR SARL, SA
Germany DE OHG, KG, AG, GmbH, GmbH & Co. KG/AG/OHG
Greece GR A.E., E.P.E.
Hungary HU korlatolt felelossegu tarsasag, reszvenytarsasag
Ireland IE (same as GB)
Italy IT s.r.l., s.p.a., societa a responsabilita limitata
Latvia LV SIA, AS
Lithuania LT UAB, AB
Luxembourg LU S.A., S.A.R.L., SECS
Malta MT (same as GB)
Netherlands NL BV, NV
Poland PL Sp. Z.O.O., S.A.
Portugal PT lda., S.A.
Romania RO S.R.L., S.A.
Slovakia SK S.R.O., A.S.
Slovenia SI d.d., d.o.o.
Spain ES S.A, sociedad anonima, S.L., sociedad limitada
Sweden SE AB, aktiebolag
United Kingdom GB private limited company, ltd, limited, plc, public limited company

This type of business entity will show up in step 1 for country = ‘DE’ and
n = 4. Many variations may occur due to partial abbreviations (e.g., Gesellschaft
mbH). Step 2 ensures that only three suffix-prefixes must be searched for in step
3: GMBH, G M B H, and Gesellschaft. The suffix-class corresponding to each
of these three suffix-prefixes is ‘private company limited by shares, German’
(LTD/DE). Now, take as an example a German company named Muller GmbH,
which is stored as muller gmbh after the preprocessing step. The algorithm
starts searching the second word, gmbh, in the suffix-prefix list. It is found, and
three values are stored for this company: stem = ‘muller’, suffix = ‘gmbh’,
suffix_class = ‘LTD/DE’. In general, if the second word is not found, the al-
gorithm would continue with the third word, until the name’s final word. If no
matches are found at all, the stem equals the name and we obtain suffix = ‘’
and suffix_class = ‘’ (empty strings).

https://en.wikipedia.org/wiki/List_of_business_entities
https://en.wikipedia.org/wiki/List_of_business_entities
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Step II: locality-sensitive hashing
The tax data and the business register do not contain characters with diacritical
marks (e.g., the German umlaut as in ‘ü’). A German name such as Müller
(English: Miller) has been registered using plain alphabetic characters instead.
For the ‘ü’ in Müller, two conventions exist: Muller or Mueller. This leads to
potential spelling differences between the tax data and the business register for
the same company. Another common difference is the use or omission of white
spaces (e.g., webshop versus web shop).

As discussed in the main text, we use the famous LSH scheme MinHash
(Broder, 1997) to match tax data and the business register in an elegant and efficient
way concerning approximate string matching. The following four paragraphs
elaborate on (1) the approximate string matching method for which MinHash is
locality-sensitive, (2) creating the MinHash signatures, (3) creating the LSH Forest
data structure and (4) the details of our implementation in Python.

The LSH scheme MinHash is locality sensitive for the Jaccard distance on
character =-grams, or =-shingles (Leskovec et al., 2014, Chapter 3). A character
=-gram is defined as a substring of = consecutive characters in a string. As an
example, the set of character 3-grams, or trigrams, of the string ‘webshop’ is the
set {‘web’, ‘eb ’, ‘b s’, ‘ sh’, ‘sho’, ‘hop’}. For = 2 N, write 5= for the functions
mapping a string to its set of character =-grams. The Jaccard distance between
two sets � and ⌫ is defined as

3�(�, ⌫) = 1 � |� \ ⌫|/|� [ ⌫|. (5.14)

The =-gram Jaccard distance 3� ,= between two strings B and C is defined as

3� ,=(B , C) = 1 � 3�( 5=(B), 5=(C)). (5.15)

For MinHash, a string is identified by a binary-valued vector in {0, 1}2= , with
2= = (26+ 10+ 1)= (enumerated in the order of the alphabet (26), digits (10), white
space (1)). In fact, a string is stored only as the list of index numbers (according
to the =-gram enumeration) of the =-grams it contains. The randomised dimen-
sionality reduction MinHash computes a :-bit min-hash signature for each 5=(0)
in the following way. First, randomly choose : hash functions ⌘1 , . . . , ⌘: from
the family of random linear functions of the form ⌘(G) = (�G + �) mod ?, with
0 and 1 integers and ? a fixed, large prime number. Then, randomly choose :
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hash functions 61 , . . . , 6: mapping the values 0, . . . , ? � 1 uniformly at random
onto {0, 1}. The 9-th bit of the :-bit min-hash signature of 0 is then given by
69(min8{⌘9(E8)}), where E is the list containing the index numbers of the character
=-grams of 0.

To reduce the number of evaluations of 3�= that are required to match the two
data sources, we apply the LSH Forest data structure (Bawa et al., 2005) on the
results of MinHash. In short, an LSH tree is defined as the logical prefix tree on
all :-bit signatures. The LSH forest consists of ; LSH trees, each constructed with
an independently drawn random sequence of hash functions from the described
family of hash functions (MinHash). Now, given the stem B of a company name
from the tax data, each of the ; LSH trees is updated with an additional leaf node
containing (the end point of the path through the LSH tree specified by the :-bit
signature of) B(0). The LSH trees are then searched bottom up simultaneously,
starting from the new leaf node, until the < most similar items are identified.
Consult Bawa et al. (2005) for further algorithmic details.

In our implementation in Python, the function MinHashLSHForest from the
Python library datasketch is used (https://github.com/ekzhu/datasketch).
We set = = 3, i.e., we consider the Jaccard distance of character trigrams. The total
number of hash functions is fixed to be 64 and the number of LSH trees was set
to the default value ; = 8. The datasketch implementation then fixes : = 64/8 = 8
for the length of the min-hash signatures that are used to build each of the LSH
trees. The choice of : = 8 is relatively small but works already quite well in our
case, as shown in Section 5.4.1. The top < = 100 most similar leaf nodes (stems of
company names from the business register) from the LSH forest are returned for
each stem of company names from the tax data. If the suffix class of a company
from the business register is different from that of the company from the tax data,
the company from the business register is removed from the list. The resulting
lists serve as input for the next part of our data-driven approach for firm-level
record linkage.

Step III: combining string distance metrics
We combine the following eight commonly used string distance metrics:

(a) 1, the normalised Levenshtein (or edit) distance;

https://github.com/ekzhu/datasketch
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(b) 2, the Jaro-Winkler divergence (not a metric in the mathematical sense (Wink-
ler, 1990));

(c) 3-5, the Jaccard distance on sets of character 1-, 2- and 3-grams;

(d) 6-8, the cosine distance on term frequency vectors of character 1-, 2- and
3-grams.

The Jaro-Winkler, Jaccard and cosine distances are defined as 1 minus the
corresponding string similarity measures and always take values in the interval
[0, 1]. The Levenshtein distance is normalised to the interval [0, 1], which is
achieved by dividing by the maximum length of the two input strings. All metrics
are defined and compared by Cohen et al. (2003). For a more recent discussion,
see Leskovec et al. (2014, pp. 87-93).

At the end of this step, each company in the tax data is equipped with an
eight-dimensional vector containing values in the interval [0, 1]. These values
can be interpreted as the distance (along different metrics) to the set of EU retail
companies in the business register. The values will be used as features in the
machine learning algorithms as described in step IV of Section 5.3.1.1.

5.B Finding �⇤

This appendix describes how the optimal value ⌫ = ⌫⇤ is found. Recall that
Van Delden et al. (2016) considered the linear combinations bB� = (1�⌫)bB0+⌫ bB1

for ⌫ 2 [0, 1] of the bias estimators given by Equations (5.8) and (5.9). They
proposed to find the optimal value ⌫ = ⌫⇤ that minimises the MSE of the first
component (bB�)1 of bB� as an estimator of the bias B(by). This MSE is given by

MSE
⇣
(bB�)1

⌘
=

n
B(bB�)

o2

1
+

n
+(bB�)

o
11
, (5.16)

where
n
+(bB�)

o
11

denotes the upper left entry in the variance-covariance matrix

of the 2-vector bB�. The following iterative approach is suggested by Van Delden
et al. (2016) to find ⌫⇤.

Step 1: Initialise – start with ⌫old = 0.

Step 2: Compute bB = bB0 and b⌦ = b+(by).
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Step 3: Compute ⌫new = max{0,min{1, (<1 �<3 +<4)/(<1 +<2 �2<3 +<4)}},
where

<1 =
⇣
(b%) � �2)bB⌘2

1
, (5.17)

<2 =
⇣
(b%) � �2)b⌦(b%) � �2)) b&) b&⌘

11
, (5.18)

<3 =
1
2

⇣
(b%) � �2)b⌦(b%) � �2))(b& + b&))

⌘
11
, (5.19)

<4 =
⇣
(b%) � �2)b⌦(b%) � �2))

⌘
11
. (5.20)

Step 4: If |⌫new � ⌫old | < 10�6, stop and return ⌫new. Otherwise, set

bB = bB,new = (1 � ⌫new)bB0 + ⌫new bB1 = (�2 + ⌫new(b& � �2))bB0. (5.21)

Step 5.: Set ⌫old B ⌫new and return to step 2.

Details of the derivation of the formulas in step 3 can be found in Appendix
A3 in Van Delden et al. (2015). We indicate that the above iterative procedure
is performed for each of the years 2014, 2015 and 2016 separately. The same
(estimated) matrix b% is used for each year. The optimal value of ⌫ might differ
across years, as it depends on the annual turnover.

5.C Local behaviour around optimal parameters
This appendix contains additional results on the local behaviour of the mean
and standard deviation of F1-scores (obtained from the 5-fold cross-validation)
around the optimal parameters for the optimal algorithm. The results forbBBR

8
(by

the business register) andbBW
8

(by websites) are presented separately.

Business Register. Table 5.10 shows that the results for ⇠ � 10 hardly depend on
the class-weighting scheme that is chosen. Moreover, different choices of ✏ and
different choices of ⇠, given ⇠ � 10, only minimally affect the mean F1-score
over the five folds. The standard deviation is similar in each of these parameter
settings as well. Thus, the mean F1-score is stable around the optimal parameter
setting.
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T���� 5.10: Mean (and standard deviation of) F1-scores for RBFSVC predictingbBBR
8

.†

✏ Results for uniform class weighting Results for balanced class weighting

⇠ = 1 ⇠ = 10 100 ⇠ = 1 ⇠ = 10 ⇠ = 100

0.001 – 0.93 (± 0.05) 0.94 (± 0.02) – 0.91 (± 0.04) 0.94 (± 0.02)
0.01 0.93 (± 0.05) 0.94 (± 0.02) 0.92 (± 0.03) 0.92 (± 0.05) 0.94 (± 0.02) 0.92 (± 0.03)
0.1 0.94 (± 0.02) 0.93 (± 0.02) 0.96 (± 0.04) 0.94 (± 0.02) 0.93 (± 0.02) 0.96 (± 0.04)
1 0.93 (± 0.03) 0.95 (± 0.04) 0.97 (± 0.03) 0.94 (± 0.02) 0.95 (± 0.04) 0.97 (± 0.03)

† The optimal parameter setting (⇠ = 100, ✏ = 1, uniform) with corresponding F1-score 0.97 is
displayed in bold font.

T���� 5.11: Mean (and standard deviation of) F1-scores for AB predictingbBW
8

.†

= Results for ⌫ = 0.01, balanced class weighting Results for ⌫ = 0.1, uniform class weighting

3 = 1 3 = 2 3 = 3 3 = 1 3 = 2 3 = 3

50 0.77 (± 0.06) 0.75 (± 0.13) 0.67 (± 0.15) 0.74 (± 0.14) 0.70 (± 0.17) 0.69 (± 0.12)
100 0.75 (± 0.12) 0.73 (± 0.14) 0.69 (± 0.14) 0.78 (± 0.13) 0.75 (± 0.12) 0.70 (± 0.15)
200 0.75 (± 0.12) 0.71 (± 0.15) 0.67 (± 0.16) 0.77 (± 0.09) 0.73 (± 0.14) 0.67 (± 0.16)
500 0.78 (± 0.10) 0.69 (± 0.15) 0.70 (± 0.15) 0.75 (± 0.10) 0.76 (± 0.13) 0.69 (± 0.15)

⌫ = 0.1, balanced class weighting ⌫ = 1, balanced class weighting

3 = 1 3 = 2 3 = 3 3 = 1 3 = 2 3 = 3

50 0.80 (± 0.09) 0.74 (± 0.15) 0.67 (± 0.12) 0.72 (± 0.08) 0.71 (± 0.06) 0.71 (± 0.14)
100 0.80 (± 0.11) 0.75 (± 0.14) 0.65 (± 0.09) 0.71 (± 0.08) 0.71 (± 0.06) 0.70 (± 0.11)
200 0.79 (± 0.10) 0.72 (± 0.13) 0.67 (± 0.09) 0.70 (± 0.07) 0.71 (± 0.10) 0.70 (± 0.11)
500 0.75 (± 0.09) 0.73 (± 0.12) 0.68 (± 0.14) 0.72 (± 0.06) 0.69 (± 0.14) 0.66 (± 0.10)

† The optimal parameter setting (= = 100, 3 = 1,⌫ = 0.1, balanced)with corresponding F1-score
0.80 is displayed in bold font.

Websites. Next, we examine the local behaviour of the mean and standard devi-
ation of F1-scores obtained from the 5-fold cross-validation around the optimal
parameters for the algorithms AB, GB and RF when predictingbBW

8
.

Starting with AB, Table 5.11 shows that increasing the maximum tree depth 3
from the optimal value 3 = 1 negatively impacts the goodness of fit as measured by
F1. Moreover, for ⌫ = 0.01 and ⌫ = 1, the mean F1-score is substantially lower for
3 = 1 compared with the optimal ⌫ = 0.1 (all using the balanced class-weighting
scheme). Thus, the results by AB are not stable around the optimal maximum
tree depth 3 = 1 and not around the optimal learning rate ⌫ = 0.1. The results are
less sensitive to the choice of the class-weighting scheme, for ⌫ = 0.1.

Studying Table 5.12, we may conclude that the mean F1-scores of GB are
not very stable around the optimal parameter setting (= = 200, 3 = 1,⌫ = 0.1).
Increasing the maximum depth 3 from the optimal value 3 = 1 while fixing the
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T���� 5.12: Mean (and standard deviation of) F1-scores for GB predictingbBW
8

.†

= Results for ⌫ = 0.1 (3 varies) Results for 3 = 1 (⌫ varies)

3 = 1 3 = 2 3 = 3 ⌫ = 0.01 ⌫ = 0.1 ⌫ = 1

50 0.75 (± 0.12) 0.72 (± 0.14) 0.71 (± 0.15) 0.65 (± 0.05) 0.75 (± 0.12) 0.74 (± 0.10)
100 0.77 (± 0.12) 0.71 (± 0.15) 0.69 (± 0.13) 0.71 (± 0.08) 0.77 (± 0.12) 0.75 (± 0.10)
200 0.79 (± 0.10) 0.71 (± 0.15) 0.69 (± 0.13) 0.73 (± 0.12) 0.79 (± 0.10) 0.73 (± 0.10)
500 0.74 (± 0.12) 0.72 (± 0.16) 0.66 (± 0.14) 0.76 (± 0.12) 0.74 (± 0.12) 0.73 (± 0.10)

† The optimal parameter setting (= = 200, 3 = 1,⌫ = 0.1) with corresponding F1-score 0.79 is
displayed in bold font. Note that the parameter settings for the second and sixth column are
identical.

T���� 5.13: Mean (and standard deviation of) F1-scores for RF predictingbBW
8

.†

= Results for uniform class weighting Results for balanced class weighting

RF 3 = 1 3 = 2 3 = 3 3 = 1 3 = 2 3 = 3

50 0.75 (± 0.13) 0.72 (± 0.14) 0.74 (± 0.15) 0.74 (± 0.13) 0.76 (± 0.10) 0.71 (± 0.16)
100 0.76 (± 0.13) 0.73 (± 0.14) 0.69 (± 0.17) 0.76 (± 0.13) 0.75 (± 0.13) 0.68 (± 0.15)
200 0.73 (± 0.14) 0.73 (± 0.14) 0.67 (± 0.16) 0.78 (± 0.10) 0.71 (± 0.13) 0.71 (± 0.13)
500 0.76 (± 0.14) 0.67 (± 0.14) 0.68 (± 0.13) 0.75 (± 0.10) 0.70 (± 0.15) 0.71 (± 0.12)

† The optimal parameter setting (= = 200, 3 = 1, balanced) with corresponding F1-score 0.78 is
displayed in bold font.

optimal learning rate ⌫ = 0.1, leads to a drop in mean F1-score. The same holds
for changing the optimal learning ⌫ = 0.1 while fixing 3 = 1.

Finally, we present the results of RF on the training data set in Table 5.13.
For the balanced class-weighting scheme, the results seem stable as = increases.
Moreover, the variance is smaller than in the uniform class-weighting scheme.
However, increasing the maximum depth 3 from the optimal value 3 = 1 leads to
a drop in mean F1-score.
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CHAPTER 6

SMOOTHED VARIANTS OF
THE AUC
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6.1 Introduction
This thesis so far has focused on official statistics based on classifiers. An interesting
alternative is to consider official statistics based on rankers. Below, we define what
a ranker is and why we believe it provides an interesting alternative to classifiers
in reducing misclassification bias in statistical learning. This chapter is devoted
to a specific theoretical problem concerning model selection of rankers.

6.1.1 Rankers and misclassification bias
In Chapter 2 we have seen that misclassification bias occurs when aggregating the
predictions of binary classifiers. In statistical learning, binary classifiers are based
on statistical models that for each object produce an estimate of the probability of
belonging to the class of interest. Henceforth, we will refer to that probability as
the score. The score is then cut off at a threshold value 2 between 0 and 1. Usually,
2 is set to 0.5 so that cutting off corresponds to rounding off. We claim that
rounding off the scores causes misclassification bias, even if the model is correctly
specified. We prove our claim for LDA (as an example), see the box titled “The
LDA Example” below.

The LDA example shows that aggregating the scores instead of counting the
classifications prevents misclassification bias only if the model assumptions are
satisfied. In particular, the LDA example shows that aggregating the scores when
dealing with prior probability shift (see Chapter 3) does not prevent misclassifica-
tion bias. However, Forman (2006) proposed a method to reduce misclassification
bias (called median sweep) that is based on scores instead of on classifications. The
empirical evidence that he provides shows that median sweep outperforms the
misclassification estimator �̂? (see Chapter 2).

Median sweep is a three-step method. In the first step, objects are ranked based
on the scores produced by the statistical learning method. In the second step, for
each threshold 2 = 1/; (for some fixed integer ; � 2 and with 1 = 1, . . . , ; � 1), the
resulting classifier-based base rate (see also Chapter 2) is estimated by using the
misclassification estimator. In the third step, the median of the ; � 2 values from
the second step is computed. The median value is final estimate for the base rate.

A statistical learning method that returns (ranked) scores is referred to as a
ranker. The estimates produces by median sweep are called ranker-based statistics.
The quality of median sweep’s estimate depends on the ranking performance of the
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ranker that is used. Intuitively, a ranker performs well if it attains a score close
to 1 to objects belonging to the class of interest and a score close to 0 to objects
not belonging to the class of interest. The most common performance metric for
rankers is the AUC: the area under the receiver operating characteristic (ROC)
curve. The aim is to select the ranker with highest AUC. We next introduce the
open problem concerning model selection of rankers.

The LDA Example.

Linear Discriminant Analysis (LDA) is based on the assumption that the
vector of features G8 for any data point 8, given that the true class label B8
equals :, is a random vector following a multivariate normal distribution
with density 5: . The mean ⇠: of the distribution differs between classes
:, while the covariance matrix ⌃ = ⌃: is identical for each class. The
covariance matrix ⌃ and the means ⇠: (: = 1, 2), are estimated on the
training set. An unlabelled object is classified by computing for each class
the probability that it belongs to that class, given the feature values of
the object, and then selecting the class to which the highest probability is
assigned. For more details, consult Hastie et al. (2009). The proof of the
following proposition shows how rounding off such probabilities causes
misclassification bias.

Proposition 6.1. Assume that the base rate �" in the training set is equal to the
base rate � is the unlabelled data set. Then, the LDA-estimate b�! is unbiased if
and only if there is no class imbalance, i.e., if � = 0.5.

Proof. See Appendix 6.A. An illustration of the proof is given in Fig. 6.1. ⇤

If all modelling assumptions of LDA are satisfied, then aggregating the
scores ?" that are predicted by LDA prevents misclassification bias, i.e.,
E[?"] = � (see Lemma 6.4 in Appendix 6.A). However, if prior prob-
ability shift occurs, i.e., �" < �, then aggregating scores also results in
misclassification bias, see Proposition 6.2 below.

Proposition 6.2. If �" < �, then the expectation E[?"] does not equal �, in
general.

Proof. See Appendix 6.A. ⇤
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F��. 6.1: Illustration of how rounding off scores causes misclassification bias in The LDA
Example. The grey area is the misclassification bias that occurs when estimating the blue
area with LDA as classifier. This figure is the geometric interpretation of the proof of
Proposition 6.1, see Appendix 6.A.

6.1.2 Model selection of rankers
Performance metrics for classification algorithms (such as accuracy or the F1-
score) often require categorical data as input. Therefore, they cannot evaluate
the quality of the score distribution produced by a ranker. The exceptions are
performance metrics that are based on, for example, the ROC curve. Such metrics
integrate classification performance over all possible threshold values. The AUC
is indeed the most commonly used metric, but many alternatives exist (Majnik &
Bosnić, 2013). A particularly appealing alternative is the area under the precision-
recall curve. It leads to different optimisation results than AUC, so the two are
not equivalent (Davis & Goadrich, 2006). Moreover, the area under the precision-
recall curve is claimed to be more suitable than AUC for class-imbalanced data
sets (Sofaer, Hoeting & Jarnevich, 2019).

In this chapter we will investigate the AUC (and not the alternatives) because
of its close relation to the Wilcoxon-Mann-Whitney statistic (Mann & Whitney,
1947; Wilcoxon, 1945): the classical estimator of the AUC is identical to the ([0, 1]-
normalised) Wilcoxon-Mann-Whitney statistic (Bamber, 1975). We will refer to
that estimator as the standard AUC estimator. Many theoretical properties of the
Wilcoxon-Mann-Whitney test statistic are known. As we are interested in theo-
retical properties of model selectors, we therefore prefer to use that AUC.
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A closer look into the Wilcoxon-Mann-Whitney statistic shows that it is com-
puted by summing the outcome of an indicator function, which is not differen-
tiable. To improve optimisation, Yan et al. (2003) proposed to approximate the
indicator function with a smooth function. The resulting variant of the standard
AUC will be referred to as the softAUC estimator (see Vanderlooy & Hüllermeier,
2008). The open problem is the following: is the softAUC estimator a better esti-
mator of the true AUC of rankers and, ultimately, does a sotftAUC estimator result
in the selection of better rankers?

The starting point of our research will be the paper by Vanderlooy and Hüller-
meier (2008). They claim that the standard AUC most often selects better rankers,
supported by a theoretical analysis combined with empirical evidence. However,
we believe that their theoretical analysis should be improved and that their em-
pirical evidence is insufficient to support their claim. In fact, we conjecture that
the opposite of their claim holds for any base rate and any set of rankers to select
from. We postulate our conjecture in two parts. The first part of our conjecture
states that a specific variant of the standard AUC estimator , under some regularity
conditions, can be tuned to have a smaller MSE than the standard AUC estimator
when estimating the AUC of rankers. The crux is to let the parameter � of the
softAUC estimator be dependent on the underlying distribution of the data (see
Fig. 6.2). We provide a complete proof of the first part of our conjecture for data
sets containing only a single observation for each class. Moreover, we provide
some first suggestions for how to generalise the proof to larger data sets. The
second part of our conjecture states that the softAUC estimator can also be tuned
to be better model selector of rankers than the standard AUC estimator. Again,
we provide a partial proof only, including suggestions for how to complete it.

We stress that this chapter is a theoretical contribution. In practice, in particular
for larger data sets, the MSE of the standard AUC estimator will be (very) close
to 0, see also the upper bounds derived by Birnbaum and Klose (1957). For
smaller data sets, the MSE of the standard AUC estimator could be improved
more substantially by employing softAUC estimators. However, the data set
might be too small to tune the additional parameter �, so other solutions are
recommended (Airola, Pahikkala, Waegeman, De Baets & Salakoski, 2009). Still,
our theoretical re-evaluation of AUC estimators could indicate that the use of
softAUC estimators is justified in applications. At the least, our contribution
motivates a further theoretical analysis of softAUC estimators.

Moreover, we believe that our theoretical results are new, as most existing
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F��. 6.2: Duplication of the simulation study by Vanderlooy and Hüllermeier (2008). They
considered 1 � - and . to be the exponential distributions with rate parameter ⌫ (in
their notation: �), restricted to the interval [0, 1]. The plot shows the MSE of the softAUC
estimatorb◆� relative to that of the standard AUC estimatorb◆ (assuming a data set containing
a single observation for each class) for different values of �. The horizontal black line is
drawn at H = 1; this is where the MSE of b◆� is equal to that of b◆. In contrast to fixing � = 3
or � = 10 (vertical gray lines) a priori, we illustrate how the points of intersection increase
with �, and that the MSE of b◆� is smaller than that of b◆, for � sufficiently large.

theoretical results are focused on the standard AUC estimator (i.e., the Wilcoxon-
Mann-Whitney statistic) and not on the softAUC estimator. Existing results in-
clude the proof that the standard AUC estimator (for data sets containing a single
observation for each class) attains the Cramér-Rao lower bound and hence is the
uniformly minimum-variance unbiased (UMVU) estimator of the AUC of rankers
(Lenstra, 2005, Section 5). However, we will show that the bias that is introduced
by smoothing decreases the variance sufficiently to reduce the MSE. Furthermore,
we present results for data sets of finite size, whereas existing results are mostly
asymptotic by viewing the Wilcoxon-Mann-Whitney statistic as a two-sample U-
statistic (Van der Vaart, 1998, Chapter 12).

The remainder of this chapter is organised as follows. In Section 6.2, we
provide the formal mathematical definitions of the standard AUC and softAUC
estimators and we postulate our two-part conjecture. In Section 6.3, we prove
the first part of our conjecture for data sets containing a single observation for
each class. In Section 6.4, we propose how to generalise our approach to larger
data sets and provide a full proof of the first part of the conjecture for a uniform
score distribution and a specific scaling function. In Section 6.5, we discuss the
second part of our conjecture and provide a partial proof. Finally, in Section 6.6,
we present our conclusions and recommend directions for future research.
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6.2 Preliminaries and our conjecture
Assume that -1 , . . . ,-= and.1 , . . . ,.< are independent draws from two different
score distributions, corresponding to the positive and negative labels, respectively.
We write �- and �. for the respective cumulative distributions functions. Con-
sider the Wilcoxon-Mann-Whitney statistic (Mann & Whitney, 1947; Wilcoxon,
1945)

b◆(-1 , . . . ,-= ,.1 , . . . ,.<) B
1
=<

=’
8=1

<’
9=1

F⇤(-8 � .9), (6.1)

where F⇤(C) equals 1 for C > 0, equals 0 for C < 0 and equals 1/2 for C = 0. The
expectation of b◆ is denoted by ✏ and can be expressed by the double integral

✏ B
π 1

0

π 1

0
F⇤(G � H) 5-(G) 5.(H) 3G 3H. (6.2)

It easily follows that ✏ is the true AUC of the ranker corresponding to �- and
�. , by observing that the points on the ROC curve can be parameterised by
(1 � �.(C), 1 � �-(C)), for C 2 [0, 1]. As noted in Section 6.1.1, this observation has
been made by Bamber (1975) for the first time. Hence, b◆ is an unbiased estimator
of the AUC. The estimator in Equation (6.1) will be referred to as the standard AUC
estimator.

We compare the standard AUC estimator with softAUC estimators. They are
parameterised by a scalar � � 0 and are defined as

b◆�(-1 , . . . ,-= ,.1 , . . . ,.<) B
1
=<

=’
8=1

<’
9=1

F�(-8 � .9), (6.3)

in which F�(C) = 5 (�C) with 5 any increasing function mapping onto the open
interval (0, 1) that is point symmetric at C = 0. We will refer to such func-
tions as point-symmetric scaling functions. Yan et al. (2003) first proposed such
a softAUC estimator. They used the logistic function 5 (C) = 1/(1 + exp(�C)) as
point-symmetric scaling function, but other functions can be used as well. In fact,
the set of point-symmetric scaling functions contains (shifted and scaled) sigmoid
functions. We remark that all point-symmetric scaling functions 5 satisfy the
identities 5 (0) = 1/2, limC!1 5 (C) = 1, and limC!�1 5 (C) = 0.
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The expectation of b◆� is denoted by ✏�. Observe that F�(C) ! F⇤(C) as � ! 1,
for all C 2 [�1, 1], and hence ✏� ! ✏.

With the notation partially adopted from Van Dantzig (1951), the MSE of the
standard AUC estimator can be expressed as

"⇤(= ,<) B MSE(b◆(-1 , . . . ,-= ,.1 , . . . ,.<)) =
1
=<

�
�2
⇤ + (= � 1))2

⇤ + (< � 1)#2
⇤
�
,

(6.4)
in which

�2
⇤ = E[(F⇤(-1 � .1) � ✏)2], (6.5)

)2
⇤ = E[(F⇤(-1 � .1) � ✏)(F⇤(-2 � .1) � ✏)], (6.6)

#2
⇤ = E[(F⇤(-1 � .1) � ✏)(F⇤(-1 � .2) � ✏)]. (6.7)

Similarly, the MSE of the softAUC estimator can be expressed as

"�(= ,<) B MSE(b◆�(-1 , . . . ,-= ,.1 , . . . ,.<))

=
1
=<

⇣
�2
� + (= � 1))2

� + (< � 1)#2
� + (= � 1)(< � 1)(✏ � ✏�)2

⌘
, (6.8)

in which

�2
� = E[(F�(-1 � .1) � ✏)2], (6.9)

)2
� = E[(F�(-1 � .1) � ✏)(F�(-2 � .1) � ✏)], (6.10)

#2
� = E[(F�(-1 � .1) � ✏)(F�(-1 � .2) � ✏)]. (6.11)

We conjecture that the difference "⇤(= ,<)�"�(= ,<) is positive, for � sufficiently
large.

Conjecture 6.1. For any pair of score distributions �- and �. that are absolutely con-
tinuous with respect to the Lebesgue measure on [0, 1] and that have overlapping support,
and for any increasing point-symmetric (at C = 0) function 5 that maps onto (0, 1) and is
square-integrable on (�1, 0], and for any = ,< � 1, there exist constants ⌫= ,< > 0 and
⇠= ,< > 0 such that

"⇤(= ,<) �"�(= ,<) > ⇠= ,<

�
(6.12)

for all � > ⌫= ,< .
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In Section 6.3, we will prove that positive constants � and ⌫� exist such that
�2
⇤ � �2

� > �/� for all � > ⌫� (in Theorem 6.1). Moreover, we will prove that a
positive constant⇡ exists such that (✏�✏�)2 < ⇡/�2 for all � > 0 (in Theorem 6.2).
Subsequently, we will briefly discuss an example to show that the square inte-
grability of 5 on (�1, 0] is a necessary condition. By combining Theorem 6.1
and Theorem 6.2 we will prove Conjecture 6.1 for = = < = 1. In Section 6.4, we
suggest how to generalise to = ,< > 1 and we prove the conjecture for = ,< > 1
and a specific choice of �- , �. and 5 .

We postulate that Conjecture 6.1 implies the following result, which is dis-
cussed in Section 6.5.

Conjecture 6.2. If Conjecture 6.1 is true, then ◆� is a better model selector than ◆, for �
sufficiently large. More precisely, let (� and (⌫ represent random vectors of = +< scores
of two models � and ⌫ (trained on the same data set) with true AUCs satisfying ✏� > ✏⌫.
Then, we conjecture that there exists some constant �= ,< > 0 such that

P
⇣
◆�((�) � ◆�((⌫) > 0

⌘
> P

⇣
◆((�) � ◆((⌫) > 0

⌘
, (6.13)

for all � > �= ,< .

6.3 General theoretical results
If - and . are independent and have CDFs �- and �. , respectively, then denote
the CDF of ) B - � . by ⌧. The distribution of ) is referred to as the score
margin distribution (Vanderlooy & Hüllermeier, 2008). We assume that �- , �.
and (hence) ⌧ are absolutely continuous with respect to the Lebesgue measure
on the Euclidean subspace [�1, 1] (i.e., differentiable real-valued functions) with
corresponding probability density functions (PDFs) 5- , 5. and 6. It follows that

✏ =
π 1

�1
F⇤(C)6(C) 3C , and ✏� =

π 1

�1
F�(C)6(C) 3C . (6.14)

Below, we will show that �2
⇤ � �2

� > �/� for some � > 0 and � sufficiently large
(Subsection 6.3.1) and that (✏ � ✏�)2 < ⇡/�2 for some ⇡ > 0 and � sufficiently
large (Subsection 6.3.2). For the reader’s convenience we reiterate (see Section 6.1)
that the differences )2

⇤ � )2
� and #2

⇤ � #2
� are discussed in Section 6.4.
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6.3.1 Difference of the first variance terms
The proof of Theorem 6.1 is the main result of the chapter. It shows that the
difference �2

⇤ � �2
� converges to 0 from above as � ! 1, and that the convergence

rate is at most 1/�. Compared with Vanderlooy and Hüllermeier (2008), we add
the assumption that 6(0) > 0, which we believe is a reasonable assumption. If the
assumption does not hold, we either have ✏ = 1, or, if ✏ < 1, we need the sets �-
and �. to which 5- and 5. assign positive probability to have empty intersection,
but still contain points G 2 �- and H 2 �. with G < H. Both cases seem unlikely
to occur in practice. In contrast to Vanderlooy and Hüllermeier (2008), we do not
need to assume that 6(�C)  6(C) for all C 2 [0, 1]. In fact, we do not need 6 to be
continuous at any other point than at C = 0, as long as 6 is bounded on [�1, 1].
In typical applications, 6 will be continuous on [�1, 1], implying that it is also
bounded on [�1, 1].

Theorem 6.1. If 6 is continuous at C = 0 with 6(0) > 0, then for any point-symmetric
scaling function 5 , there exist constants ⌫� � 0 and � > 0 such that �2

⇤ � �2
� > �/� for

all � > ⌫�.

Proof. If a ranker has true AUC ✏, then the ranker that is obtained by applying
the transformation G 7! 1 � G to the scores has true AUC 1 � ✏. Therefore, we
may assume (without loss of generality) that the true AUC ✏ is at least 1/2. We
distinguish two cases.

The first case. Assume that 1/2  ✏  3/4. Let ⌫� = 0 and � > ⌫�. For �1  C < 0,
it holds that 0 < F�(C)  1/2. Hence, as ✏ � 1/2, |F�(C) � ✏ | < ✏ = |F⇤(C) � ✏ |. In
addition, for 0 < C  1, it holds that 1/2  F�  1. It implies, as ✏  3/4, that for
C > 0

|F�(C) � ✏ |  max{|1/2 � ✏ |, |1 � ✏ |} = |1 � ✏ | = |F⇤(C) � ✏ |. (6.15)

Hence, |F�(C)�✏ |  |F⇤(C)�✏ | and thus (F�(C)�✏)2  (F⇤(C)�✏)2 for all�1  C  1,
with strict inequality for all C < 0 and equality for C = 0, as F�(0) = 1/2 = F⇤(0).
We obtain a lower bound for the difference of the first variance terms, given by

�2
⇤ ��2

� =
π 1

�1
(F⇤(C)�✏)2� (F�(C)�✏)26(C) 3C �

π
*

(F⇤(C)�✏)2� (F�(C)�✏)26(C) 3C ,
(6.16)
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for any subset* ⇢ [�1, 1]. We choose a suitable* as follows. As 6 is continuous
at C = 0 with 6(0) > 0, there is a ⇣ > 0 such that 6(C) > 6(0)/2 > 0 for all C in the
open interval (�⇣, ⇣). Then take * = *� = [0, ⇣/�]. To compute the integral over
* , define the primitive functions

�1(C) B
π

C

0
5 (B) 3B , and �2(C) B

π
C

0
( 5 (B))2 3B . (6.17)

Verify, by substituting A = �B, that

π
*�

F�(B) 3B =
π ⇣

0

1
�
F�(A/�) 3A =

1
�

π ⇣

0
5 (A) 3A = 1

�
�1(⇣). (6.18)

Similarly,
Ø
*�
(F�(B))2 3B = �2(⇣)/�. The lower bound on �2

⇤ � �2
� then becomes

�2
⇤ � �2

� >
6(0)

2

π
*�

(F⇤(C) � ✏)2 � (F�(C) � ✏)2 3C

=
6(0)
2�

⇥
⇣ � 2✏⇣ + ✏2⇣ � �2(⇣) + 2✏�1(⇣) � ✏2⇣

⇤

=
6(0)
2� [⇣ � �2(⇣) + 2✏(�1(⇣) � ⇣)]

� 6(0)
2� [�1(⇣) � �2(⇣)] , (6.19)

where the last equality follows from ✏ � 1/2. Note that �1(⇣) � �2(⇣) > 0 because
0  5  1, hence 5 2  5 , and ⇣ > 0. We take ⌫� = 0 and � = �1(⇣) � �2(⇣), which
is indeed a constant that does not depend on �, to complete the proof for the first
case.

The second case. Assume that 3/4 < ✏  1. The continuity of 6 at C = 0 with
6(0) > 0 guarantees that ✏ < 1. We use a second &-⇣-argument to complete the
proof. Let & be equal

& =
1
2

�1(C✏) � �2(C✏)
(2✏ � 1)(C✏ � �1(C✏))

· 6(0). (6.20)

In the expression for &, C✏ is defined as the positive solution to the equation
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( 5 (C) � ✏)2 = (F⇤ � ✏)2, which exists (and is unique) if and only if 3/4 < ✏ < 1.
The functions �1 and �2 are the primitive function of 5 and 5

2, respectively, as
defined before. As 5 maps into (0, 1) and because C✏ is positive, it follows that
C✏ � �1(C✏) > 0 as well as �1(C✏)� �2(C✏) > 0. The assumption 6(0) > 0 implies that
& > 0. As 6 is continuous at C = 0, there exists a ⇣ > 0 such that |6(C) � 6(0)| < &
for all C in the open interval (�⇣, ⇣). Next, we take ⌫� > 0 as

⌫� =
1
⇣
C✏ . (6.21)

Our task is now to show that �2
⇤ � �2

� > �/� for some � > 0 and any � > ⌫�.
So, let � > ⌫�. Analogously to the first case, it holds that (F�(C) � ✏)2 <

(F⇤(C) � ✏)2 for �1  C < 0. Solving (F�(C) � ✏)2 = (F⇤(C) � ✏)2 for C > 0 yields the
unique solution

C
0 =

1
�
C✏ . (6.22)

Note that C0 < ⇣. Moreover, it holds that (F�(C)�✏)2 < (F⇤(C)�✏)2 for all C 2 (C0, 1],
by definition of C0. It leads to the lower bound

�2
⇤ � �2

� =
π 1

�1

⇥
(F⇤(C) � ✏)2 � (F�(C) � ✏)2

⇤
6(C) 3C

>
π

C
0

�C0

⇥
(F⇤(C) � ✏)2 � (F�(C) � ✏)2

⇤
6(C) 3C . (6.23)

Split the latter integral into the part left of C = 0 and the part right of C = 0, and
denote them by �! and �', respectively. Note that �! is positive and �' is negative.
The aim is to derive bounds for �! and �'. To that end, first verify, by substituting
A = �B as before, that

π
C
0

0
F�(B) 3B =

π
C✏

0

1
�
F�(A/�) 3A =

1
�

π
C✏

0
5 (A) 3A = 1

�
�1(C✏). (6.24)

Similarly,
Ø
C
0

0 (F�(B))2 3B = �2(C✏)/�. Furthermore, note that 0 < 6(C) < 6(0) + &
for all C 2 [0, C0]. An upper bound on the positive number ��' is then given by
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��' =
π

C
0

0

⇥
(F�(C))2 � 2✏F�(C) + ✏2 � ✏2 + 2✏ � 1

⇤
6(C) 3C (6.25)

< (6(0) + &)

1
�
�2(C✏) �

2✏
�
�1(C✏) +

(2✏ � 1)
�

C✏

�
(6.26)

=
6(0) + &

�

⇣
(2✏ � 1)(C✏ � �1(C✏)) � (�1(C✏) � �2(C✏))

⌘
. (6.27)

Next, the point-symmetry of 5 at C = 0 can be used to show that

π 0

�C0
F�(B) 3B =

1
�

π 0

�C✏
5 (A) 3A = 1

�

π
C✏

0
5 (�A) 3A

=
1
�

π
C✏

0
(1 � 5 (A)) 3A = 1

�

�
C✏ � �1(C✏)

�
. (6.28)

Similarly, it follows that

π 0

�C0
(F�(B))2 3B =

1
�

π
C✏

0

�
1 � 5 (A)�2

3A =
1
�

�
C✏ � 2�1(C✏) + �2(C✏)

�
. (6.29)

Then, one can derive that

�! B
π 0

�C0

⇥
(F⇤(C) � ✏)2 � (F�(C) � ✏)2

⇤
6(C) 3C

>
6(0) � &

�

π 0

�C0

⇥
�(F�(B))2 + 2✏F�(B)

⇤
3B

=
6(0) � &

�

⇣
� C✏ + 2�1(C✏) � �2(C✏) + 2✏C✏ � 2✏�2(C✏)

⌘

=
6(0) � &

�

⇣
(2✏ � 1)(C✏ � �1(C✏)) + (�1(C✏) � �2(C✏))

⌘
. (6.30)



6

�.�. General theoretical results 161

Introducing the notation 0 = (2✏ � 1)(C✏ � �1(C✏)) and 1 = �1(C✏) � �2(C✏), observe
that & = 1/20 · 6(0) and hence

�! + �' >
1
�

�(6(0) � &)(0 + 1) � (6(0) + &)(0 � 1)�

=
6(0)
�

✓
20 � 1

20 · (0 + 1) � 20 + 1
20 · (0 � 1)

◆

=
6(0)
�

· 0(0 + 1) � 0(0 � 1)20 =
1 · 6(0)

�
. (6.31)

We take � = 1 · 6(0) = (�1(C✏) � �2(C✏)) · 6(0) > 0. Hence, for this choice of � > 0
and for any � > ⌫� we may conclude that �2

⇤ � �2
� > �/�. It completes the proof

for the second case and thus concludes the proof of the theorem. ⇤

We point out that the entire proof can be used to extend the result to the
difference of the first term in the mean absolute error of the two estimators under
consideration. The only modification is choosing 2& = (1�✏)C✏/(✏C✏��1(C✏))· 6(0)
instead. Moreover, the convergence rate of at most 1/� that we obtained in
Theorem 6.1 above has been essential in postulating Conjecture 6.1, as will become
clear in the next subsection.

6.3.2 Convergence rate of squared bias
The result below shows that the squared bias term (✏ � ✏�)2 in the MSE of the
softAUC estimator, see expression (6.8), converges to 0 as � ! 1 with a conver-
gence rate of at least 1/�2.

Theorem 6.2. Assume that 6 is bounded and that 5 is a point-symmetric scaling function,
square integrable on (�1, 0]. Then, (✏ � ✏�)2 < ⇡/�2 for some constant ⇡ > 0 and all
� > 0.
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Proof. Let ' be an upper bound on 6 and let 2 =
Ø 0
�1( 5 (C))2 3C, which is finite by

assumption. An upper bound on the squared difference (✏� ✏�)2 is then given by

(✏ � ✏�)2 =
✓π 1

�1
(F⇤(C) � F�(C))6(C) 3C

◆2


π 1

�1
(F⇤(C) � F�(C))2 · (6(C))2 3C

 2'2
π 0

�1
( 5 (�C))2 3C = 2'2

�2

π 0

��
( 5 (C))2 3C < 22'2

�2 . (6.32)

We take ⇡ = 22'2. This completes the proof. ⇤

Combining Theorem 6.1 with Theorem 6.2 proves Conjecture 6.1 for the case
of = = < = 1 by

"⇤(1, 1) �"�(1, 1) = �2
⇤ � �2

� � (✏ � ✏�)2 >
�

�
� ⇡

�2 >
�/2
�

, (6.33)

for all � > max{2⇡/�, ⌫�}.
Finally, we take a closer look at the condition of square integrability in The-

orem 6.2 and make two observations. First, we observe that the conditionØ 0
�1( 5 (C))2 3C < 1 is satisfied by the logistic function 5 (C) = 1/(1+ exp(�C)), as the

improper integral exists and is equal to log(2) � 1/2. Our second observation is
that square integrability is also a necessary condition for Conjecture 6.1 to hold
for larger values of = and <. For a counterexample, we take 5 (C) = 1 � 1/

p
4 + C

for C � 0 and 5 (C) = 1/
p

4 � C for C  0. This function is not square integrable. We
take the uniform distribution on [�1/3, 1] as our distribution ⌧. It can be shown
that

✏ � ✏� =
3
2

1p
�

✓q
1 + 4/� �

q
1/3 + 4/�

◆
>

3
8

1p
�
, (6.34)

where the inequality holds for all � > 2304/649 ⇡ 3.55. Hence, (✏ � ✏�)2 > ⇡/�,
which implies that the difference in MSE (see inequality (6.12)) eventually becomes
negative, for �, =, and < sufficiently large. Indeed, this counterexample shows
that square integrability is a necessary condition for Conjecture 6.1 to hold for
larger values of = and <.
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6.4 Analytic proof for a simple score function
In this section we will investigate the sign and convergence rate of both )2

⇤ � )2
�

and #2
⇤ � #2

�. In Subsection 6.4.1, we prove that if - and 1 � . have the same
distribution, then )2

⇤ � )2
� = #2

⇤ � #2
�, hence in that case it suffices to investigate

#2
⇤ � #2

� only. In Subsection 6.4.2, for a simple score distribution and an algebraic
scaling function, we prove analytically that #2

⇤ � #2
� > �⇠/�2 for some constant

⇠ > 0 and any � > 0. It is sufficient to prove Conjecture 6.1 for the example.

6.4.1 A useful symmetry argument
Lemma 6.1 formulates a symmetry argument which is useful in reducing the
computations in Subsection 6.4.2.

Lemma 6.1. If - and 1 � . have the same distribution, then )2
⇤ = #2

⇤ and )2
� = #2

�.

Proof. The assumption that - and 1 � . have the same distribution implies that
5-(G) = 5.(1� G). The result then follows directly from substituting B = 1� G and
C = 1 � H in the expression for )2

⇤ or )2
�. For completeness,

)2
⇤ =

π 1

0

✓π 1

0
(F⇤(G � H) � ✏) 5-(G) 3G

◆2

5.(H) 3H

=
π 1

0

✓π 1

0
(F⇤(G � H) � ✏) 5.(1 � G) 3G

◆2

5-(1 � H) 3H

= �
π 0

1

✓
�

π 0

1
(F⇤(1 � B � (1 � C)) � ✏) 5.(B) 3B

◆2

5-(C) 3C

=
π 1

0

✓π 1

0
(F⇤(C � B) � ✏) 5.(B) 3B

◆2

5-(C) 3C = #2
⇤ . (6.35)

The proof of )2
� = #2

� is identical. ⇤

In the next subsection, we prove Theorem 6.3, which states that #2
⇤ � #2

� >

�⇠/�2 for a uniform score distribution.
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6.4.2 Complete proof for uniform score distribution
So far, we have not yet succeeded in deriving general bounds for the convergence
rate of #2

⇤ � #2
� that can be used to prove Conjecture 6.1. Here, we study that

convergence rate for a specific example, see the box titled “The Uniform Example”.

The Uniform Example.

To investigate the convergence rate of#2
⇤ �#2

� we consider a simple example,
namely a uniform score distribution in combination with an algebraic
point-symmetric scaling function. The specific example that we consider
is as follows.

Assume that - and . are independent random variables that follow
a uniform distribution on [1/3, 1] and [0, 2/3], respectively. Let 5 be the
following point-symmetric scaling (and sigmoid) function:

5 (C) = 1
2

1p
1 + C2

+ 1
2 . (6.36)

We are able to prove Conjecture 6.1 for this specific example.

We begin by computing ✏ and ✏�.

Lemma 6.2. In The Uniform Example, we have ✏ = 7/8 and

✏� =
1
2 + 9

16

q
1 + 1/�2 � 3

16

q
1 + 9/�2 + 9

16�2 log(3) � 9
16�2 log

 
1 +

p
1 + 9/�2

1 +
p

1 + 1/�2

!
.

(6.37)
Observe that the limit of ✏� for � ! 1 equals 7/8 (= ✏), as it should.

Proof. The true AUC ✏ can be computed directly, yielding

✏ =
π 1

0

π 1

0
F⇤(G � H) 3�.(H)3�-(G)

=
✓
3
2

◆2
·
π 2/3

1/3

π
G

0
1 3H 3G +

✓
3
2

◆2
·
π 1

2/3

π 2/3

0
1 3H 3G =

3
8 + 1

2 =
7
8 . (6.38)
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Next, let � > 0.The expected value ✏� of the softAUC can be expressed as

✏� =
π 1

0

π 1

0
F�(G � H) 3�.(H) 3�-(G) =

9
4

π 1

1/3

π 2/3

0

1
2

�(G � H)p
1 + (�(G � H))2

+ 1
2 3H 3G

=
9
8

π 1

1/3

π 2/3

0

�(G � H)p
1 + (�(G � H))2

3H 3G + 1
2 . (6.39)

To compute the inner integral, note that, for any real number G, a primitive
function of F�(G � H) with respect to H is given by

H 7! �1
�

q
1 + (�(G � H))2. (6.40)

Hence,
π 2/3

0

�(G � H)p
1 + (�(G � H))2

3H =
1
�

✓q
1 + (�G)2 �

q
1 + (�(G � 2

3 ))2
◆
. (6.41)

Then, for any real number 0, observe that a primitive function of
p

1 + (�(G � 0))2
with respect to G is given by

G 7! 1
2�

✓
�(G � 0)

q
1 + (�(G � 0))2 + arcsinh(�(G � 0))

◆
, (6.42)

in which arcsinh is the inverse hyperbolic sine. It follows that

π 1

1/3

q
1 + (�G)2 3G =

1
2�

✓
�
q

1 + �2 + arcsinh(�) � �

3

q
1 + (�/3)2 � arcsinh(�/3)

◆

=
1
2

q
�2 + 1 � 1

18

q
�2 + 9 + 1

2� arcsinh(�) � 1
2� arcsinh(�/3).

(6.43)
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Similarly, one can derive that

π 1

1/3

q
1 + (�(G � 2

3 ))2 3G =
π 1/3

�1/3

q
1 + (�G)2 3G

=
1
�

✓
�

3

q
1 + �2/9 + arcsinh(�/3)

◆

=
1
9

q
�2 + 9 + 1

�
arcsinh(�/3), (6.44)

where we use that
p

1 + G2 is an even function. Put together, we obtain

✏� =
1
2 + 9

8
1
�

✓
1
2

q
�2 + 1 � 1

6

q
�2 + 9 + 1

2� arcsinh(�) � 1
2� arcsinh(�/3)

◆
(6.45)

Using that arcsinh(G) = log(G +
p

1 + G2), we further reduce the above to

✏� =
1
2 + 9

16

q
1 + 1/�2 � 3

16

q
1 + 9/�2 + 9

16�2 log(3) � 9
16�2 log

 
1 +

p
1 + 9/�2

1 +
p

1 + 1/�2

!
.

(6.46)

Letting � ! 1, it follows that ✏� ! 1/2+ 9/16� 3/16 = 7/8 = ✏, as it should. ⇤

The lemma below provides a crucial bound on the convergence rate of ✏ � ✏�.

Lemma 6.3. In The Uniform Example it holds that ✏ � ✏� < 1/�2 for all � > 0.

Proof. Rewrite the difference ✏ � ✏� as

✏ � ✏� =
3
8 � 3

16

 s
9 + 9

�2 �
s

1 + 9
�2

!
� 9

16�2 log

 
3 +

p
9 + 9/�2

1 +
p

1 + 9/�2

!
. (6.47)

The expression within the logarithm is larger than 1. Hence,

✏ � ✏� <
3
8 � 3

16

 s
9 + 9

�2 �
s

1 + 9
�2

!
. (6.48)
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For 0 < � <
p

8/3 it holds that 2 � 16/(3�2) < 0. For � �
p

8/3, observe that the
following expression is strictly positive:

9�6 � 1
4�

6
✓
2 � 16

3�2

◆2 ✓
9 + 9

�2

◆
= 9�6 � �

3�2 � 8
�2 �

�2 + 1
�
= 39�4 � 16�2 � 64.

(6.49)

Hence, for all � > 0, the above shows that

✓
2 � 16

3�2

◆ s
9 + 9

�2 < 6. (6.50)

Similarly, it can be shown that

✓
2 � 16

3�2

◆ s
1 + 9

�2 < 2. (6.51)

Combining the two bounds results in
⇣
2 � 16

3�2

⌘ ⇣q
9 + 9

�2 +
q

1 + 9
�2

⌘
< 8 =

⇣q
9 + 9

�2 +
q

1 + 9
�2

⌘ ⇣q
9 + 9

�2 �
q

1 + 9
�2

⌘
.

(6.52)

It proves that s
9 + 9

�2 �
s

1 + 9
�2 > 2 � 16

3�2 , (6.53)

for all � > 0, and hence

3
8 � 3

16

 s
9 + 9

�2 �
s

1 + 9
�2

!
<

1
�2 . (6.54)

This concludes the proof that ✏ � ✏� < 1/�2 for all � > 0. ⇤

Lemma 6.2 and Lemma 6.3 enable us to prove that #2
⇤ � #2

� > �⇠/�2 for
⇠ = 15/8 and all � > 0.
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Theorem 6.3. In The Uniform Example it holds that

#2
⇤ � #2

� > � ⇠
�2 , (6.55)

with ⇠ = 15/8 and for all � > 0.

Proof. The third variance term #2
⇤ can be computed directly, yielding

#2
⇤ + ✏2 =

π 1

0

✓π 1

0
F⇤(G � H) 3�.(H)

◆2

3�-(G)

=
✓
3
2

◆3
·
π 2/3

1/3

✓π
G

0
1 3H

◆2
3G +

✓
3
2

◆3
·
π 1

2/3

 π 2/3

0
1 3H

!2

3G

=
✓
3
2

◆3
·

1
3 G

3
�2/3

1/3
3G +

✓
3
2

◆3
· 1

3 ·
✓
2
3

◆2

=
7
24 + 1

2 =
19
24 . (6.56)

Hence, using the result from Lemma 6.1, we obtain

#2
⇤ =

19
24 +

✓
7
8

◆2
=

5
192 . (6.57)

For #2
�, we first derive the lower bound

1
�2

π 1

1/3

q
1 + (�G)2

q
1 + (�(G � 2

3 ))2 3G >
1
�2

π 1

1/3

q
(�G)2

q
(�(G � 2

3 ))2 3G

=
π 2/3

1/3

✓
2
3 � G

◆
G 3G +

π 1

2/3

✓
G � 2

3

◆
G 3G

=
1
3

h
G

2 � G3
i2/3

1/3
+ 1

3

h
G

3 � G2
i1

2/3

=
2
27 (6.58)
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Rewrite #2
� in a convenient way, resulting in

#2
� =

π 1

0

✓π 1

0

�
F�(G � H) � 1

2 + 1
2 � ✏

�
3�.(H)

◆2

3�-(G)

=
9
4 ·

π 1

1/3

 π 2/3

0

�
F�(G � H) � 1

2
�
3H

!2

3G + 2
✓
1
2 � ✏

◆ ✓
✏� �

1
2

◆
+

✓
1
2 � ✏

◆2
.

(6.59)

Then, compute

π 1

1/3

 π 2/3

0

�
F�(G � H) � 1

2
�
3H

!2

3G

=
1

4�2

π 1

1/3

✓q
1 + (�G)2 �

q
1 + (�(G � 2

3 ))2
◆2

3G

=
1

4�2

π 1

1/3

✓
1 + (�G)2 � 2

q
1 + (�G)2

q
1 + (�(G � 2

3 ))2 + 1 + (�(G � 2
3 ))2

◆
3G

=
1

4�2
4
3 +

⇥ 1
12G

3⇤1
1/3 +

h
1
12

�
G � 2

3
�3

i1

1/3
� 1

2�2

π 1

1/3

q
1 + (�G)2

q
1 + (�(G � 2

3 ))2 3G

=
7
81 + 1

3�2 � 1
2�2

π 1

1/3

q
1 + (�G)2

q
1 + (�(G � 2

3 ))2 3G

<
1
6 + 1

3�2 . (6.60)

The last inequality is where inequality (6.58) is used. Substitute the bound into
Equation (6.59) to find

#2
� <

9
4

✓
1
6 + 1

3�2

◆
+ 2

✓
1
2 � ✏

◆ ✓
✏� �

1
2

◆
+

✓
1
2 � ✏

◆2

=
131
192 + 9

8�2 � 3
4✏�

=
5

192 + 9
8�2 � 3

4 (✏� � ✏), (6.61)
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which converges to 5/192 = #2
⇤ as � ! 1, as it should. Finally, Lemma 6.3

implicates that
#2
⇤ � #2

� >
3
4 (✏� � ✏) � 9

8�2 > � 15
8�2 , (6.62)

for all � > 0. This completes the proof. ⇤

The combination of Theorem 6.1, Theorem 6.3 together with Lemma 6.1, and
Theorem 6.2 yields the proof of Conjecture 6.1 for The Uniform Example. As
clearly stated in Conjecture 6.1, we expect that the same result holds for more
general distribution functions. Investigating such generalisations is left as a future
research direction.

6.5 Implications for model selection
If Conjecture 6.1 is generally true, we believe that it implies that softAUC estimat-
ors, for � sufficiently large, are also better model selectors than the standard AUC
estimator. As a first step, we prove the following corollary of Conjecture 6.1. The
implications for model selection are discussed after the proof.

Corollary 6.1. Assume that two scoring functions have been trained on the same data
set, resulting in true AUCs ✏� and ✏⌫, and scores (� and (⌫. If Conjecture 6.1 is correct,
and (� and (⌫ are uncorrelated, then the estimator of the difference ✏� � ✏⌫ based on ◆�
has a smaller MSE than that based on ◆, for � sufficiently large.

Proof. Let (� = {-�

1 , . . . ,-
�

=
,.

�

1 , . . . ,.
�

=
} be the (= + <)-vector of the scores

of the = positive and < negative labels, corresponding to model �. Define (⌫
corresponding to model ⌫ similarly. The MSE of b◆((�) � b◆((⌫) as estimator of
✏� � ✏⌫ can be written as

E[{(b◆((�) �b◆((⌫)) � (✏� � ✏⌫)}2]
= E[{(b◆((�) � ✏�) � (b◆((⌫) � ✏⌫)}2]
= E[(b◆((�) � ✏�)2] + E[(b◆((⌫) � ✏⌫)2] � 2E[(b◆((�) � ✏�)(b◆((⌫) � ✏⌫)]
= "

�

⇤ (= ,<) +"⌫

⇤ (= ,<) � 2E[b◆((�) � ✏�]E[b◆((⌫) � ✏⌫].
= "

�

⇤ (= ,<) +"⌫

⇤ (= ,<) (6.63)

In the third equality, we use that (� and (
⌫ are uncorrelated. In the fourth

equation, we use that b◆ is an unbiased estimator of the true AUC. Similarly, we
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find

E[{(b◆�((�) �b◆�((⌫)) � (✏� � ✏⌫)}2]
= "

�

� (= ,<) +"⌫

� (= ,<) � 2E[b◆�((�) � ✏�]E[b◆�((⌫) � ✏⌫)]. (6.64)

It follows that the difference equals

E[{(b◆((�) �b◆((⌫)) � (✏� � ✏⌫)}2] � E[{(b◆�((�) �b◆�((⌫)) � (✏� � ✏⌫)}2]
= "

�

� (= ,<) �"�

⇤ +"⌫

� (= ,<) �"⌫

⇤ (= ,<)
+ 2E[b◆�((�) � ✏�]E[b◆�((⌫) � ✏⌫]. (6.65)

The identity G
2 + 2GH + H

2 = (G + H)2 proves the inequality 2GH � �G2 � H
2, as

(G + H)2 � 0. Hence, it holds that

2E[b◆�((�) � ✏�]E[b◆�((⌫) � ✏⌫] � �(E[b◆�((�) � ✏�])2 � (E[b◆�((⌫) � ✏⌫])2

� �⇡
�2 . (6.66)

The second inequality follows from applying Theorem 6.2 twice and choosing
⇡ = ⇡

� + ⇡
⌫. Finally, if Conjecture 6.1 is correct, it can be applied to both

"
�

⇤ �"�

� and "⌫

⇤ �"⌫

� and the result follows. ⇤

In reality, (� and (⌫ will most likely have a nonzero (positive) correlation. So,
we have to compare the covariance of b◆ with that of b◆�. We remark (warning)
that Theorem 6.1 does not state the same as Conjecture 6.2, but there are some
connections. To make the connections clear, define (1) �⇤ B ◆((�) � ◆((⌫) and
(2) �� B ◆((�� ) � ◆((⌫� ). If ✏�� � ✏⌫� > ✏� � ✏⌫ > 0 (for � sufficiently large), then
it is intuitively clear that (a) �� is larger than �⇤ and (b) has a smaller variance
as well according to Theorem 6.1. Conversely, if 0 < ✏�� � ✏⌫� < ✏� � ✏⌫ (for �
sufficiently large), then perhaps the smaller variance of �� can be used to prove
Conjecture 6.2. However, this suggestion is left as future work.

6.6 Chapter conclusions
We have provided a thorough theoretical re-evaluation of softAUC estimators,
complementing (and, at least partly, contradicting) the empirical evidence in the
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literature. From the results that we have been able to prove so far, one may
already conclude that, in small data sets, softAUC estimators might provide better
estimates of the true AUC than the standard AUC estimator. However, tuning
the parameter � might be challenging in small data sets as well. So, our main
recommendation is to further investigate to what extent our theoretical results
generalise to larger data sets.

Supported by the computations in Section 6.4, we believe that the conditions
in Conjecture 6.1 are sufficient. Moreover, reflecting on the proofs derived in Sec-
tion 6.3, we believe that most of the conditions are also necessary. The absolute
continuity of �- and �. with respect to the Lebesgue measure on [0, 1] might be
relaxed, as long as it holds for the measure induced by the CDF ⌧ of -�. around
C = 0, i.e., as long as 6 (1) exists around C = 0, (2) is continuous there, and (3) is
strictly positive there. One might attempt to construct counterexamples, but we
believe that the conditions on 6 are rather minimal as they are. The condition that
5 is square integrable on (�1, 0] is necessary to prove Theorem 6.2; a counter-
example was discussed there. The other conditions on 5 are included to ensure
that F�(C) = 5 (�C) converges to F⇤(C) as � ! 1, although the monotonicity and
point-symmetry are not strictly necessary to that end. However, these conditions
are rather convenient in deriving our proofs and still allow for sufficient flexibility
in the choice of 5 .

We anticipate that the remaining open problem mentioned in this chapter
might be handled by one of the following two attempts. At first, we might extend
the results of Section 6.4 to other indicator functions and then to (suitable) step
functions. Consequently, we may approximate the distribution functions �- and
�. by a sequence of step functions and use either the monotone convergence
theorem or the dominated convergence theorem to swap the limits and integrals.
Secondly, we could rewrite the difference #2

⇤ � #2
� as a single integral with an

integrand of the form 0
2 � 12 and write that as the product (0 � 1)(0 + 1). Then,

we might split the domain of integration into points where G � H is close to 0 and
points where |G � H | > 2, where 2 is some fixed, small constant. Within the first
part of the domain, we expect the integral to be positive if we assume that the
probability density function 6 is differentiable and increasing at C = 0. Within the
second part of the domain, we believe that the absolute value of the integral can
be bounded from above by a constant multiple of 1/�2. The desired result would
then be produced.
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A final remark is that the choice of the algebraic sigmoid function allows for
a more thorough empirical study as well. The key is that when using the logistic
function, the researcher quickly encounters numeric overflow in the exponential
function, whereas the algebraic sigmoid function as used by us can be evaluated
accurately and computationally efficiently for much larger values of �. Therefore,
the final direction for future research that we recommend is to evaluate the dif-
ference #2

⇤ � #2
� for a wide variety of distribution functions (if necessary, at large

values of �) employing the algebraic sigmoid function. This recommendation
could prove useful in reducing or extending the assumptions that we propose in
our conjectures.
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APPENDIX

6.A Theoretical derivations for The LDA Example
This appendix contains the proofs of the propositions stated in The LDA Example
(see Section 6.1).

Proof of Proposition 6.1. The solutions to the equation �1 51(G) = �2 52(G) are pre-
cisely the (affine) hyperplane (see also Hastie et al., 2009) given by

G
)⌃�1(⇠2 � ⇠1) �

1
2 (⇠2 + ⇠1))⌃�1(⇠2 � ⇠1) + log �2

�1
= 0. (6.67)

The region where the left-hand side of the above equation is smaller than 0, i.e.,
�2 52(G) < �1 51(G), is referred to as region '1. The other side of the hyperplane
is referred to as region '2. The expectation of the LDA-estimator b�! for �1 = �,
using the optimal Bayes classifier, can then be expressed as

E[b�!] =
π
'1

�1 51(G) + �2 52(G) 3G. (6.68)

We first consider the situation for � < 0.5. Assume, without loss of generality,
that � < 0.5 and hence �1 < �2. We will show that E[b�!] < �.

The matrix ⌃ is positive definite, because it is assumed to be a full-rank co-
variance matrix. We may thus define

� B
1p

(⇠2 � ⇠1))⌃�1(⇠2 � ⇠1)
, (6.69)

as (⇠2 � ⇠1))⌃�1(⇠2 � ⇠1) > 0. Consider the affine transformation

� : RA ! R : G 7! �2(G � ⇠1))⌃�1(⇠2 � ⇠1). (6.70)
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Observe that �maps ⇠1 to 0, ⇠2 to 1, and any point on the affine hyperplane given
by Equation (6.67) onto the point

G3 =
1
2 � �2 log �2

�1
. (6.71)

Next, write .8 = �-8 where -8 ⇠ N(⇠8 ,⌃), for 8 = 1, 2, and write 61 and 62 for
the respective densities. It follows that .1 ⇠ N(0, �2) and .2 ⇠ N(1, �2) and, for
8 = 1, 2, that π

'1

�8 58(G) 3G =
π

G3

�1
�8 68(G) 3G , (6.72)

Moreover, from �1 < �2 it follows that �262(G) > �161(G) for G > G3 and that
�262(G) < �161(G) for G < G3.

To complete the proof, we distinguish two cases. In the first case, assume that
G3  0. It follows that

E[b�!] =
π
'1

�1 51(G) + �2 52(G) 3G =
π

G3

�1
�161(G) + �262(G) 3G

<
π

G3

�1
2�161(G) 3G <

π 0

�1
2�161(G) 3G = �1 = �. (6.73)

In the second case, assume that G3 > 0, but note that we must have G3 < 1
2 ,

because �1 < �2. Define .3 ⇠ N(2G3 � 1, �2) having density 63(G) = 62(2G3 � G).
Because 63(G3) = 62(G3), it follows that �161(G) = �263(G) if and only if G = G3.
Moreover, as 2G3 � 1 < 0, we find

�263(2G3 � 1) = �262(1) =
�2p
2��2

>
�1p
2��2

= �161(0) > �161(2G3 � 1). (6.74)

Hence, �263(G) > �161(G) for all G < G3 and �263(G) < �161(G) for all G > G3. It
follows that π

G3

�1
�262(G) 3G =

π 1

G3

�263(G) 3G <
π 1

G3

�161(G) 3G. (6.75)

We conclude that

E[b�!] =
π

G3

�1
�161(G) + �262(G) <

π 1

�1
�161(G) 3G = �1 = �. (6.76)
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Finally, if � = 0.5 and hence �1 = �2, then in the above G3 = 1
2 and �263(G) =

�161(G) for any G 2 R. It then follows that
π

G3

�1
�161(G) + �262(G) 3G = �1 = �. (6.77)

Thus, E[b�!] = �. This concludes the proof of Proposition 6.1. ⇤

The following (rather trivial) result shows that aggregating scores prevents
misclassification bias if all modelling assumptions are satisfied and �" = �.

Lemma 6.4. Assume that �" = �. Let - be a random vector in the feature space X
that is drawn from 51 with probability �1 = � and from 52 with probability �2 = 1 � �.
Denote the probability that a realisation G of - is classified into class : 2 {1, 2} by ?:(G).
The expectation EX[?1] then equals the base rate �.

Proof. The probability density function 5- of - is given by

5-(G) = �1 51(G) + �2 52(G). (6.78)

The score ?1(G) estimated by LDA is given by

?1(G) =
�"1 51(G)

�"1 51(G) + �"2 52(G)
=

�"1 51(G)
5-(G)

, (6.79)

using that ↵" = ↵ in the last equality. It directly follows that

EX[?1] =
π
G2X

�"1 51(G)
5-(G)

3�-(G) =
π
G2X

�"1 51(G) 3G = �"1 = �1 = �. (6.80)

This concludes the proof. ⇤

Finally, we provide the proof of Proposition 6.2.

Proof of Proposition 6.2. As in the proof of Lemma 6.4, the probability density
function 5- of - is given by

5-(G) = �1 51(G) + �2 52(G). (6.81)
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The score ?1(G) estimated by LDA is (again) given by

?1(G) =
�"1 51(G)

�"1 51(G) + �"2 52(G)
. (6.82)

Define the unbiased probability ?*1 (G) as

?
*

1 (G) = �1 51(G)
�1 51(G) + �2 52(G)

. (6.83)

First, assume that �"1 > �1. Compare ?1(G) and ?*1 (G) by viewing

(�1 51 + �2 52)(�"1 51 + �"2 52)(?1 � ?*1 ) = �"1 51(�1 51 + �2 52) � �1 51(�"1 51 + �"2 52)
= �"1 �2 51 52 � �1�"2 51 52

= (�"1 �2 � �1�"2 ) 51 52
= (�"1 � �1) 51 52 > 0. (6.84)

The derivation shows that ?1(G) > ?
*

1 (G) for any G 2 X. It implies that aggregating
probability vectors still results in a biased estimate for �:

EX[?1] =
π
X
?1(G) 3�-(G) >

π
X
?
*

1 (G) 3�-(G)

=
π
X

�1 51(G)
5-(G)

5-(G) 3G = �1. (6.85)

Similarly, if �"1 < �1, we will find EX[?1] < �1. This concludes the proof of
Proposition 6.2. ⇤

The proof of Proposition 6.2 highlights a fundamental issue: if the base rate
differs between the training data and the unlabelled data, then the score estimated
by LDA is biased for every single data point. Moreover, the bias is in the same direction
for all data points. The implication is that the bias will never cancel out, neither
when aggregating scores over the entire population, nor when aggregating them
over any subpopulation.
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CHAPTER 7

CONCLUSIONS

In this chapter we first answer the four research questions in Section 7.1. We
then answer the problem statement and arrive at the main conclusion of this
thesis in Section 7.2. Finally, we recommend five directions for future research in
Section 7.3.

7.1 Answers to the research questions
Below, we reiterate the research questions as introduced in Chapter 1 and provide
an answer to each of them separately.

RQ1: Which estimator of the base rate, in particular when dealing with
concept drift, has the smallest MSE in finite populations?

As announced in Section 1.6, we answered RQ1 in two steps, namely under two
different assumptions (A1 and A2). We recall that assumption A1 corresponds
to the double sampling scheme and that assumption A2 corresponds to a specific
type of concept drift called prior probability shift (see Section 1.6).

In Chapter 2, we answered RQ1 under assumption A1. We derived analytic ex-
pressions for the MSE of both the misclassification estimator �̂? and the calibration
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estimator �̂2 up to and including terms of order 1/=, where = equals the sample
size of the test set. We then used these expressions to prove theoretically that
the MSE of the calibration estimator is smaller than that of the misclassification
estimator of any base rate and any classification algorithm.

In Chapter 3, we derived similar analytic expressions, but now under assump-
tion A2. Based on a numerical comparison of the resulting expressions, we were
able to show how (the sign of) the difference ⇡(�̂? , �̂2) of the MSEs of the two
estimators depends on (a) the level of drift ⇣, (b) the initial base rate �, (c) the
sample size = of the test set, and (d) the performance of the classifier in terms
of ?00 and ?11. The conclusion of Chapter 3 is that the MSE of the calibration
estimator is smaller than that of the misclassification estimator only when the
performance of the classifier is low or when the drift is close to 0. Therefore, our
recommendation is that the calibration estimator should not be applied to data
streams or time series data, unless training and test data in each time period are
available to (i) retrain the classifier and hence (ii) adapt to concept drift.

RQ2: How can we leverage identification regions of misclassification prob-
abilities in order to reduce the MSE of classifier-based statistics even further?

In Chapter 4, we derived the posterior distribution (for conjugate priors) of
the model parameters used when employing the misclassification estimator. We
then proposed a new Bayesian method to correct for misclassification bias. The
method that we proposed is to use the misclassification estimator and impose
constraints on the prior distribution of the model parameters, leveraging their
identification regions. We argued that our method is successful when the sample
size = of the test set is much smaller than the population size # of the unlabelled
data set. By means of a simulation study, we showed that our method reduces
the MSE of the standard misclassification estimator, indeed in particular when
dealing with small test sets. Hence, the method that we developed in Chapter 4
provides an answer to RQ2.

RQ3: To what extent can statistical learning be used to improve the accuracy
of estimates of cross-border Internet purchases within the EU?

In Chapter 5, we first discovered that existing consumer-survey approaches led
to a serious underestimation of cross-border Internet purchases within the EU. We
argued that language plays a pivotal role. We therefore identified three supply-side
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data sources that contain information on cross-border Internet purchases within
the EU. We then developed a general-purpose approach for firm-level record
linkage to combine the data sources. The approach is based on approximate
string matching, locality-sensitive hashing, and statistical learning (i.e., support
vector classification with radial basis function kernel). Furthermore, we combined
that approach with web scraping techniques and statistical learning (i.e., random
forest) to develop a new data-driven approach to estimate cross-border Internet
purchases within the EU, which is internationally consistent and comparable.
Finally, we applied our approach to data from the Netherlands for the year 2016.
It resulted in an estimate of cross-border Internet purchases that is six times as high
as existing estimates, having a standard error of only 8%. Thus, the answer to RQ3
is that statistical learning can improve the accuracy of estimates of cross-border
Internet purchases within the EU significantly.

7.2 Answer to the problem statement
We are now able to provide an answer to the problem statement based on the
answers to the research questions.

Problem statement (PS): In what way can we reduce misclassification
bias in statistical learning so that we obtain more accurate classifier-based
statistics?

Our answer to the problem statement contains a theoretical component (based
on the answers to RQ1 and RQ2) and an empirical component (based on the
answer to RQ3).

Theoretical component. Reducing misclassification bias might simultaneously in-
crease the variance of classifier-based statistics (see Fig. 1.1). Therefore, we invest-
igated the MSE of two popular bias correction methods: (1) the misclassification
estimator and (2) the calibration estimator. Among these two estimators, the
calibration estimator has the smallest MSE if training and test data are available in
each time period. However, if training and test data are scarce, the misclassifica-
tion estimator often has a smaller MSE. The MSE can be reduced even further by
imposing parameter constraints.
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Empirical component. Our results from Chapter 5 show that statistical learning has
the potential to improve official statistics significantly. Moreover, even imperfect
classification algorithms can be used to obtain accurate classifier-based statistics,
as long as we correct for misclassification bias.

Thus, we may conclude that misclassification bias in statistical learning can be
handled adequately. Therefore, statistical learning can indeed further the field
of official statistics. Our recommendation is to apply statistical learning either to
develop new official statistics or to improve existing official statistics. Based on the
results from Chapter 3, we stress that statistical learning cannot replace domain
experts. Hence, prudence is recommended when evaluating the cost efficiency of
implementing statistical learning methods in official statistics.

7.3 Future work
Below, we recommend five directions for future research to further the method-
ological understanding of statistical learning. We believe that devoting attention
to these five research directions will improve applications of statistical learning
methods in official statistics.

First, we support the recommendation by González et al. (2017) that the the-
oretical properties of (the more advanced) methods from quantification learning
should be investigated. More specifically, inspired by González et al. (2017), we
distinguish three categories of methods to examine. The first category of meth-
ods that we distinguish is model averaging of classifier-based quantifiers. It is well
known that model averaging reduces the MSE, and we believe that a theoretical
examination is still tractable when averaging the methods that are presented in
this thesis. The second category of methods to investigate is the group of methods
based on rankers instead of classifiers. In fact, many classifiers are a composition
of a ranker with a threshold function. The threshold function discards informa-
tion that is valuable in estimating the base rate. This is shown by the empirical
evidence provided by Forman (2006) for his method called median sweep. We
believe that the theoretical results presented in Chapter 6 might support the theor-
etical analysis of quantifiers based on rankers, which we might call ranker-based
statistics. The third category of methods is distribution matching. We believe that
a promising starting point would be to embed the literature on quantification



7

�.�. Future work 185

learning methods that are based on distribution matching within the statistical
literature on kernel density estimation. There is a rich statistical literature on
kernel density estimation (see, e.g., Gramacki, 2018) that might prove to be very
useful in the context of quantification learning.

Second, investigating more realistic measurement error models is an impor-
tant direction for future research. Throughout this thesis, we have assumed
the strongest type of nondifferential misclassification, namely independent and
identically distributed misclassifications (conditional on the true class). Initially,
our work can be extended to misclassifications that are nondifferential within
strata of the data only, as considered by Van Delden et al. (2016). We believe that
our theoretical results will generalise to that setting rather easily. Thereafter, more
complex measurement error models, e.g., those outlined by Schennach (2016),
should be investigated. To deal with these more complex measurement error
models adequately, we anticipate that more advanced statistical theory needs to
be developed.

Third, future work could also focus on other types of aggregation. In this thesis
we have studied proportions of a random variable only. A natural extension would
be to consider ratios of random variables, including growth rates of a random variable
over time. A second possible extension is deaggregation, either by aggregating over
subpopulations instead of the entire target population or by further specifying
a dichotomous classification into further subclasses. How can we train a binary
quantifier for the entire target population, such that it is also an accurate quantifier
for subpopulations or for more detailed classifications? Early results by Scholtus
and Van Delden (2020) provide empirical evidence that this is a nontrivial task.

Fourth, future research could address other types of concept drift, extending
our results on prior probability shift. We believe that the following three steps
should be taken in this direction. A first step should be to generalise the results
in Chapter 2 to the broader definition of prior probability shift (called class drift,
see Webb et al., 2016). A second step should be to investigate covariate drift, which
occurs whenever %(-) changes over time. Again, we recommend to investigate
the restrictive definition of (pure) covariate shift (see Moreno-Torres et al., 2012)
before looking into the broader definition of covariate drift by Webb et al. (2016).
A third step should be to look into more specific properties of the two types of
concept drift just mentioned, for example the drift frequency, duration and magnitude
(Webb et al., 2016). These three steps will require new theoretical findings and
derivations. They will be more intricate than our findings and derivations in
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Chapters 2 and 3. However, our results provide a starting point.
A fifth possible direction for future research is to examine the biases that occur

in big data sources (Baeza-Yates, 2018; Mehrabi et al., 2019), with selectivity being
the most relevant one within the context of official statistics (De Broe et al., 2020).
The setting of prior probability shift partially resembles selectivity, but more gen-
eral settings should be investigated. We believe that a deeper understanding of
selectivity in big data sources, complemented with the other four research direc-
tions outlined above, will support national statistical institutes to keep providing
the detailed and highly accurate statistical information that society demands.
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SUMMARY

In Chapter 1, two conflicting developments that affect the field of official statistics
are identified. On the one hand, there is an increasing demand for the swift
availability of detailed and highly accurate statistical information. The current
craving for accurate information about excess deaths due to COVID-19 is a striking
example. On the other hand, national statistical institutes (NSIs) that produce
official statistics on such topics have to endure budget cuts and are obliged to
reduce the survey burden on companies and citizens. The consequence of these
two conflicting developments is that NSIs will have to rely increasingly on new
types of data (i.e., big data) that must be processed and analysed by new types of
methods (viz. statistical learning methods).

This thesis focuses on a specific group of statistical learning methods, namely
classifiers. When the output of a classifier is aggregated, one obtains classifier-
based statistics. If a classifier is not perfect, the resulting classifier-based statistics
suffer from misclassification bias. To correct for that bias, a test set containing
perfect information on the true classifications is required. A key challenge is
selecting a correction method, in particular when dealing with time series that
are non-stationary (i.e., that suffer from concept drift). In Chapter 1, the following
open problem in the literature is raised: no solid theoretical analyses of methods
correcting for misclassification bias in finite populations exist. Hence, the problem
statement is formulated as follows.

Problem statement: In what way can we reduce misclassification bias in
statistical learning so that we obtain more accurate classifier-based statistics?

Next, two theoretical research questions and one empirical research question
are derived from the problem statement. They are stated below and are comple-
mented with the results that were obtained when addressing them.
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Theoretical results. The simplest classifier-based statistic is the base rate of a dicho-
tomous variable, i.e., the relative occurrence of a category among a total of two
categories. In general, reducing bias increases variance. This phenomenon is re-
ferred to as the bias-variance trade-off. Therefore, the mean squared (estimation)
error (MSE) is used to evaluate the accuracy of classifier-based statistics. The first
research question is formulated as follows.

Research question 1: Which estimator of the base rate, in particular when
dealing with concept drift, has the smallest MSE in finite populations?

In Chapter 2, it is assumed that the test set that is used to correct for misclas-
sification bias is a random sample from the population. Under that assumption,
analytic expressions are derived for the MSE of two popular methods that correct
for misclassification bias: (1) the misclassification estimator and (2) the calibra-
tion estimator. The expressions are valid up to and including terms of order 1/=,
where = is the sample size of the test set. It is shown that the MSE of the calibration
estimator is always smaller than that of the misclassification estimator.

In Chapter 3, the main assumption from Chapter 2 is dropped. The assumption
that the misclassification probabilities are identical in (a) the test set and (b) the
unlabelled set is retained. This allows for prior probability shift, a specific type
of concept drift. The theoretical derivations from Chapter 2 are adapted to the
setting of Chapter 3. Next, numerical analyses are performed based on the derived
analytic expressions. The main result is that the difference in MSE between the
misclassification estimator and the calibration estimator is often in favour of the
misclassification estimator when prior probability shift occurs.

The misclassification probabilities are estimated based on the test set. If the test set
is small, the variance of the estimator is relatively large. A Bayesian framework is
considered to investigate the variance of the estimator, leading to the formulation
of the second research question.

Research question 2: How can we leverage identification regions of misclas-
sification probabilities in order to reduce the MSE of classifier-based statistics
even further?

In Chapter 4 it is first demonstrated that the misclassification estimator might
result in impermissible estimates of classifier-based statistics (e.g., negative counts)
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when small test sets are used. To prevent impermissible estimates, constraints on
the prior distributions of misclassification probabilities are imposed. The con-
straints are based on the identification regions of the model parameters. Finally,
a simulation study shows that imposing these parameter constraints reduces the
MSE of the misclassification estimator even further.

Empirical results. Over the last decades, many statistical learning methods have
been developed. The empirical evidence in fields other than official statistics is
quite promising. However, the field of official statistics aims at accurate aggregated
data, while many other fields aim at accurate predictions for individual data points.
In Chapter 1 it was shown that these two types of accuracy are in some way each
other’s opposites. Therefore, empirical evidence of statistical learning methods
in the field of official statistics is still required. Hence, a specific application in
official statistics is considered, namely estimating cross-border Internet purchases
within the European Union (EU). The third research question is formulated as
follows.

Research question 3: To what extent can statistical learning be used to
improve the accuracy of estimates of cross-border Internet purchases within
the EU?

Chapter 5 proposes a new methodology to estimate cross-border Internet
purchases within the EU. The methodology is based on supply-side data, because
demand-side data are argued to result in serious underestimations. Moreover,
a combination of approximate string matching, locality-sensitive hashing, web
scraping, and statistical learning is proposed as part of the new methodology.
Subsequently, the methodology is applied to the Netherlands for the year 2016
leading to a rather surprising result: earlier estimates of cross-border Internet
purchases within the EU (for the Netherlands in 2016) were less than a sixth of
the actual value. These empirical results undeniably show that official statistics
may be improved by implementing statistical learning methods.

Ranking instead of classifying. Empirical evidence from quantification learning
(i.e., the median sweep method) shows that ranking objects instead of classifying
objects might improve the accuracy of what we called classifier-based statistics.
Investigating what we might call ranker-based statistics is left as a future research
direction. Nonetheless, the problem of selecting the best ranker among a set of
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rankers is investigated in Chapter 6. In general, model selection requires a per-
formance metric. The area under the receiver operating characteristic curve (AUC)
is a performance metric that is typically used for model selection of rankers. In
Chapter 6, preliminary theoretical evidence is provided showing that a smoothed
variant of the AUC might be a better model selector of rankers than the standard
AUC. That theoretical evidence seems to contradict earlier empirical evidence.

Conclusion. The conclusion of this thesis is that statistical learning methods can be
used in the field of official statistics as long as misclassification bias is adequately
corrected for. Our recommendation is to implement statistical learning methods
(and the correction methods for misclassification bias discussed in this thesis)
either to create new official statistics or to improve existing ones. Finally, we argue
that domain experts are of vital importance to the successful implementation of
statistical learning methods within official statistics.
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SAMENVATTING

In Hoofdstuk 1 worden twee tegenstrĳdige ontwikkelingen aangewezen die effect
hebben op officiële statistiek. Aan de ene kant is er een toenemende behoefte
aan de snelle beschikbaarheid van gedetailleerde en betrouwbare statistische in-
formatie. De huidige honger naar betrouwbare informatie omtrent de oversterfte
ten gevolge van COVID-19 is daarvan een treffend voorbeeld. Aan de andere kant
hebben officiële statistiekbureaus die dergelĳke officiële statistieken produceren
(zoals het CBS) te maken met bezuinigingen en de verplichting om administra-
tieve lasten te verlagen. Het gevolg van deze twee tegenstrĳdige ontwikkelingen
is dat statistiekbureaus in toenemende mate afhankelĳk zĳn van nieuwe soorten
data (denk aan big data) die alleen verwerkt en geanalyseerd kunnen worden met
behulp van nieuwe soorten methoden (waaronder statistical learning methods).

Dit proefschrift richt zich op een specifieke groep van statistical learning
methods, namelĳk classifiers. De geaggregeerde uitkomsten van een classifier
noemen wĳ classifier-based statistics. Als de gebruikte classifier niet foutloos is,
dan treedt er misclassification bias op. Om voor die vertekening te kunnen corri-
geren is een test set nodig waarin foutloze informatie staat over de te voorspellen
klassen. Het is vervolgens een grote uitdaging om een juiste correctiemethode
te kiezen. Dat geldt in het bĳzonder voor tĳdreeksanalyse waarbĳ de data niet
stationair zĳn (of, met andere woorden, leidt onder concept drift). In Hoofdstuk 1
wordt het volgende open probleem in de literatuur boven water gehaald: er be-
staat voor eindige populaties geen gedegen theoretische analyse van methodes
die corrigeren voor misclassification bias. Hieruit volgt de onze probleemstelling.

Probleemstelling: Op welke manier kunnen we misclassification bias in
statistical learning verminderen opdat we classifier-based statistics met hogere
nauwkeurigheid verkrĳgen?

Vervolgens worden er twee theoretische en een empirische onderzoeksvraag
uit deze probleemstelling afgeleid. Ze worden hieronder genoemd en aangevuld
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met de resultaten die behaald zĳn tĳdens het behandelen van de onderzoeks-
vragen.

Theoretische resultaten. De meest eenvoudige classifier-based statistics is de base
rate van een dichotome variabele, dat wil zeggen, de relatieve frequentie van één
categorie in een groep van twee categorieën. In het algemeen zorgt het verlagen
van bias voor het verhogen van variantie. Dit verschĳnsel wordt de bias-variance
trade-off genoemd. Daarom gebruiken wĳ de mean squared (estimation) error
(MSE) om de nauwkeurigheid van classifier-based statistics te toetsen. De eerste
onderzoeksvraag is als volgt geformuleerd.

Onderzoeksvraag 1: Welke schatter voor de base rate heeft de laagste MSE
in eindige populaties, in het bĳzonder als we te maken hebben met concept
drift.

In Hoofdstuk 2 wordt aangenomen dat de test set (die we gebruiken om te
corrigeren voor misclassification bias) een aselecte steekproef is uit de popula-
tie. Onder die aanname worden analytische uitdrukkingen afgeleid voor de MSE
van twee populaire correctietechnieken voor misclassification bias: (1) de mis-
classification estimator en (2) de calibration estimator. De uitdrukkingen zĳn
benaderingen die geldig zĳn voor alle termen tot die van order 1/=, waarbĳ =
de omvang van de test set aanduidt. Het wordt aangetoond dat de MSE van de
calibration estimator altĳd kleiner is dan die van de misclassification estimator.

In Hoofdstuk 3 wordt een belangrĳke aanname uit Hoofdstuk 2 losgelaten.
Wel behouden we de aannames dat de misclassification probabilities gelĳk zĳn
in zowel (a) de test set als (b) de unlabelled set. Hierdoor wordt prior probabi-
lity shift, een specifieke vorm van concept drift, weer enigszins toegelaten. De
theoretische afleidingen uit Hoofdstuk 2 worden aangepast naar de setting van
Hoofdstuk 3. Vervolgens worden er numerieke analyses uitgevoerd met de ver-
kregen analytische uitdrukkingen als basis. Het hoofdresultaat van Hoofdstuk 3
is dat het verschil in MSE tussen de misclassification estimator en calibration esti-
mator vaak in het voordeel is van de misclassification estimator, met name in het
geval van prior probability shift.

De misclassification probabilities worden geschat op basis van een test set. Als de
test set klein is, dan is de variantie van die schatter relatief groot. We beschouwen
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een Bayesiaans raamwerk om de variantie van die schatter te onderzoeken. Dit
heeft geleid tot de tweede onderzoeksvraag.

Onderzoeksvraag 2: Hoe kunnen we identification regions benutten om
misclassification bias te verminderen.

In Hoofdstuk 4 wordt getoond dat de misclassification estimator tot ontoe-
laatbare schattingen van classifier-based statistics (zoals negatieve tellingen) kan
leiden. Om zulke schattingen te voorkomen wordt voorgesteld om de parameter
constraints te baseren op identification regions. Tot slot laat een simulatiestudie
zien dat de parameter constraints de MSE van de misclassification estimator nog
verder kunnen verlagen.

Empirische resultaten. In de laatste jaren zĳn veel statistical learning methoden
ontwikkeld. De empirische evidentie in vakgebieden buiten de officiële statistiek
is veelbelovend. Echter, binnen de officiële statistiek zĳn we gericht op nauwkeu-
rige data op geaggregeerd niveau, terwĳl veel andere vakgebieden geïnteresseerd
zĳn in nauwkeurige voorspellingen voor individuele datapunten. In Hoofdstuk 1
werd al aangetoond dat deze twee typen nauwkeurigheid in zekere zin elkaars
tegenovergestelde zĳn. De empirische evidentie van statistical learning metho-
den binnen de officiële statistiek staat dan ook nog in de kinderschoenen. Met
dat in gedachte bestuderen wĳ een specifieke toepassing binnen de officiële sta-
tistiek, namelĳk het schatten van grensoverschrĳdende internetaankopen binnen
de Europese Unie (EU). De derde onderzoeksvraag luidt als volgt.

Onderzoeksvraag 3: In hoeverre kan statistical learning gebruikt worden
om de nauwkeurigheid van grensoverschrĳdende internetaankopen binnen de
EU te verbeteren?

Hoofdstuk 5 stelt een nieuwe methodologie voor om grensoverschrĳdende
internetaankopen binnen de EU te schatten. De methodologie is gebaseerd op
gegevens vanuit de productiekant, omdat data vanuit de consumptiekant leiden
tot zeer grote onderschattingen. Bovendien wordt als onderdeel van de methodo-
logie een combinatie van approximate string matching, locality-sensitive hashing,
web scraping, and statistical learning voorgesteld. Vervolgens wordt de metho-
dologie toegepast voor Nederland in het jaar 2016 met een verrassend resultaat:
eerdere schattingen van grensoverschrĳdende internetaankopen binnen de EU
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blĳken minder dan een zesde van de werkelĳke waarde te vertegenwoordigen.
Dit empirische bewĳs laat ontegenzeggelĳk zien dat officiële statistieken verbe-
terd kunnen worden door statistical learning methoden te implementeren.

Rangschikken boven classificeren. Empirisch bewĳs vanuit quantification learning
(zoals de median sweep methode) laat ziet dat het rangschikken (Engels: ranking)
van objecten, afgezet tegen het classificeren van objecten, de nauwkeurigheid van
wat wĳ classifier-based statistics noemen kan verbeteren. Het onderzoek naar wat
je dan ranker-based statistics zou kunnen noemen laten we over aan toekomstig
onderzoek. We kĳken in Hoofdstuk 6 echter wel naar het probleem van het
kiezen van een goede ranker binnen een gegeven groep rankers. In het algemeen
vereist dergelĳke modelselectie om een performance metric. Bĳ het vergelĳken
van rankers wordt doorgaans de zogenaamde area under the receiver operating
characteristic curve (AUC) gebruikt. In Hoofdstuk 6 presenteren we voorlopige
theoretische resultaten die laten zien dat gladde (Engels: smoothed) varianten
van de AUC niet onder doen voor de standaard AUC. Die theoretische resultaten
lĳken eerdere empirische resultaten uit de literatuur tegen te spreken.

Conclusie. De conclusie van dit proefschrift is dat statistical learning methoden
zeker gebruikt kunnen worden voor officiële statistiek, zolang er maar op de
juiste wĳze voor misclassification bias wordt gecorrigeerd. Onze aanbeveling is
om statistical learning methoden vooral in te zetten om nieuwe of verbeterde
officiële statistieken te produceren (gebruikmakend van de correctiemethoden
voor misclassification bias zoals besproken in dit proefschrift). Ten slotte betogen
we dat experts met domeinkennis onmisbaar zĳn voor het succesvol inzetten van
statistical learning methoden binnen de officiële statistiek.
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