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Triadic motifs are the smallest interconnected building blocks of complex networks, such as
production networks. They can be detected as over‐occurrences with respect to null models
that only consider pairwise interactions. Recently, there has been growing interest in the role
of triadic motifs in the propagation of economic shocks. However, their characterization at the
level of individual commodities is still poorly understood.

To address this gap, we analyze both binary and weighted triadic motifs in the Dutch
inter‐industry production network disaggregated at the level of 187 commodity groups. We
introduce appropriate null models that filter out node heterogeneity and the strong effects of
link reciprocity. We find that, while the aggregate network that overlays all products is
characterized by a multitude of triadic motifs, most single‐product layers feature no significant
motif, and roughly 85% of the layers feature only two motifs or less.

This result has several important policy implications. First, it suggests that the propagation of
economic shocks through production networks is likely to be complex and heterogeneous, as it
will depend on the specific triadic motifs that are present in each commodity layer. Second, it
implies that statistical bureaus can identify fine‐grained information about the structural
relationships between different commodities by analyzing triadic motifs at the disaggregated
level. This information can be used to develop more targeted and effective policy interventions.

Overall, the analysis of triadic motifs in production networks has the potential to provide
policymakers with valuable insights into the structure and dynamics of these networks. This
information can be used to develop more targeted and effective policies to support economic
growth and resilience.

Keywords: production network, pattern detection,; network motifs

1 Introduction

1.1 Background

Over the past decade, research into the complex network of relationships between statistical
units is a burgeoning field for national statistical institutes. Statistics Netherlands (CBS) is playing
a pioneering role in this due to the wealth of integral, register‐based, data that is available. There
are now micro‐level network data availlable for research, not only for researchers within CBS but
also for academic research through the standard protocols for secure access to such data. For
relationships between people, at least those relationships that are registered for administrative
purposes, there are now datasets for a number of years so that the dynamics of social networks
can start to be studied. For business interactions and firm‐to‐firm trade there is a parallel effort
in reproducing the structure of economic and financial networks. While there is more limited
information available to Statistics Netherlands on firm‐to‐firm transactions, the available data
does allow reconstruction and it has to that end developed its own method to do so,
cf. (Hooijmaaijers and Buiten 2019).

While aggregated information about single firms is contained in most National Statistical
Institutes’ repositories, reliable data on input/output relationships are available only for a small
number of countries. For instance, the Compustat dataset contains the major customers of the
publicly listed firms in the USA (Atalay et al. 2011). The FactSet Revere dataset contains major
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customers of publicly listed firms at a global level, with a focus on the USA, Europe, and
Asia (König et al. 2022). Two datasets are commercially available in Japan, namely, the dataset
collected by Tokyo Shoko Research Ltd. (TSR) (Carvalho et al. 2020) and the one collected by
Teikoku DataBank Inc. (TDB) (Mizuno et al. 2014). They are characterized by a high coverage of
Japanese firms but with a limited amount of commercial partners. Other domestic datasets
contain transaction values among VAT‐liable firms: this is the case for countries such as
Brazil (Mungo et al. 2023), Belgium (Dhyne et al. 2015), Hungary (Diem et al. 2022),
Ecuador (Bacilieri et al. 2023), Kenya (Chacha et al. 2022), Turkey (Demir et al. 2022),
Spain (Peydro et al. 2020), Rwanda and Uganda (Spray and Wolf 2018), West Bengal (Kumar et al.
2021); or contain transaction values among the totality of registered domestic firms such as in
the case of Dominican Republic (Cardoza et al. 2020) and Costa Rica (Alfaro‐Ureña et al. 2018).

Recently, Statistics Netherlands (CBS) produced two multi‐layer production network datasets for
domestic intermediate trade of Dutch firms for 2012 (Hooijmaaijers and Buiten 2019) and
2018 (Buiten et al. 2021), with each layer corresponding to a different product exchanged by a
firm for its own production process. The presence of product granularity makes it an invaluable
source for the analysis of commodity‐specific structural patterns. The importance of such
patterns for structural analysis of the (Dutch) economy is underlined by e.g. Chong et al. 2019,
and (Vries et al. 2021), which build on extracting such knowledge from the aggregates recorded
in supply‐use tables.

The 2012 dataset has been recently used to prove the complementarity structure of production
networks (Mattsson et al. 2021) by inspecting the number of cycles of order 3 and 4 compared to
a null model taking into consideration the in‐degree and out‐degree distributions. Firms are
matched according to a deterministic procedure, which is shown to decrease the dataset quality
by inducing a bias in the network density and the degree distribution, as proved in (Rachkov et al.
2021) for a sample of known links of the production network collected by Dun & Bradstreet. We
use the improved version for 2018 and construct an inter‐industry network.

This discussion paper is a companion to Di Vece et al. 2024, in which the details of the
methodology are explained. Here, the emphasis is on the results for individual industry groups at
various levels of aggregation.

1.2 Relevance

In production networks, user firms connect to supplier firms to buy goods for their own
production. Customer‐Supplier relationships are, hence, characterized by an intrinsic product
granularity. Any given firm can in principle operate more than one production pipeline and is
capable of supplying multiple products. For example, a well‐known multinational
telecommunications company also sells household appliances, and multinational companies
known for multimedia are also suppliers or re‐sellers of a large number of different products. The
aggregation from product‐level to firm‐level relationships is non‐trivial and can produce
structural changes in the resulting inferred network.

The heterogeneity encoded in the production network structure plays an essential role in
structuring national economies and controlling their dynamics, whether that be the economic
response to exogenous (international) factors or endogenously created volatility. Studies of the
former are e.g. on economic growth (McNerney et al. 2022) and in the propagation of
shocks (Acemoglu et al. 2012), (Carvalho and Tahbaz‐Salehi 2019) related to exogenous events, or
endogenous events such as the 2008 financial crisis (Maluck and Donner 2015; Wang et al. 2022).
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In this study, we focus on triadic motifs and anti‐motifs that are over‐occurrences and
under‐occurrences of different patterns of directed triadic connections, respectively. Triadic and
tetradic connections are known as the building blocks of complex networks (Milo et al. 2002),
playing the role of homophily‐driven connections in social networks (Asikainen et al. 2020), or
complementarity‐driven structures in production networks (Ohnishi et al. 2010; Mattsson et al.
2021). It has been proven that for the majority of (available) real‐world networks, the triadic
structure is maximally random (Colomer‐de‐Simón et al. 2013) and by fixing it their global
structure is statistically determined (Jamakovic et al. 2009). In contrast, research on weighted
motifs and anti‐motifs is still underdeveloped. To our knowledge, only one study involves trade
volumes circulating on triadic subgraphs, using a probabilistic model based on random walks on
the WTW (Picciolo et al. 2022).

Motif detection strictly depends not only on the properties of the real network but also on the
randomization method used for the computation of random expectations. In Network Science
literature, various methods have been advanced for network randomization, primarily edge‐stub
methods, edge‐swapping methods, and Maximum‐Entropy methods, we focus on the latter.
Randomization methods based on Entropy Maximization (Jaynes 1957a; Jaynes 1957b; Jaynes
1982) build Graph Probability distributions that are maximally random by construction. Available
global or node‐specific data are encoded as constraints in the optimization procedure, and their
corresponding Lagrange Multipliers are computed by Maximum Likelihood Estimation
(MLE) (Garlaschelli and Loffredo 2008). This theoretical framework has been proven to
successfully reconstruct economic and financial systems (Bardoscia et al. 2021; Cimini et al. 2019;
Cimini et al. 2021; Squartini and Garlaschelli 2017), accurately predicting both the topology and
the weights of the WTW (Garlaschelli and Loffredo 2004; Squartini et al. 2011a; Squartini et al.
2011b).

Two studies using Maximum‐Entropy modeling are especially worthy of note for motif detection:
a theoretical study where the authors develop null models for triadic motif detections and
compute z‐scores of triadic occurrences analytically (Squartini and Garlaschelli 2011), and an
applied study where triadic motifs and their time evolution are used as early warnings of
topological collapse during the 2008 financial crisis (Squartini et al. 2013).

Our contribution goes in this direction, using Maximum‐Entropy methods constraining degree
distributions and strength distributions ‐ in their directed form and taking into account their
reciprocal nature ‐ to characterize triadic connections and the total money circulating on them
for different product layers of the Dutch production network. An analysis of this kind can give
better insight into how much product‐level granularity is needed in production network datasets
and how the links and weights of a production network are organized for different products.
Once product layer patterns have been detected, National Bureau officials ‐ having experience in
the domestic trade of that single commodity ‐ can infer if such motifs and anti‐motifs are due to
commodity‐specific characteristics, market imbalances, or represent structures aided by laws. If
imbalances and anomalies are detected, they can eventually advance policy laws to nudge a
more convenient redistribution of connections and trade volumes.

2 Theoretical Background
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Figure 2.1 Illustrative depiction of a multi‐layer network. The nodes 𝑖, 𝑗 and 𝑘 are
connected in different ways through edges, in multiple layers referring to different
connection attributes, such as the type of commodity in input/output.This ϐigure is
inspired by Di Vece et al. 2023b.

2.1 Networks

A Network 𝒢 ≡ (𝑉 , 𝐸) is a collection of vertices (or nodes) 𝑉 and edges (or links) 𝐸, such that
vertices are connected by edges following some predicate which is context‐dependent. For
example firm 𝑖 can connect to firm 𝑗 if they have an intermediate input/output relationship, such
as in Production Networks, or they can connect if firm 𝑖 controls firm 𝑗, such as in the case of
Control Networks. (Rungi et al. 2017). In both cases a directed connection from 𝑖 to 𝑗 is formed.
When the network is composed of directed (or oriented) links, we call it directed. If, instead, the
links are exclusively bi‐directional, such as in the case of individuals forming contracts on the
Bitcoin Lightning Network (Vallarano et al. 2020), the network is called undirected.

The connections are intrinsically characterized by their presence/abscence. A network, where
only presence/abscence relationships are present is called binary. Instead, if edges are also
characterized by a weight, indicating the intensity of the connection, e.g. the amount of output
(in monetary value) from firm 𝑖 to 𝑗, the network is called weighted.

Weighted Networks are represented in matrix form using a weighted adjacency 𝑁 × 𝑁 matrix
(𝑊)𝑖𝑗 = 𝑤𝑖𝑗, where 𝑁 = |𝑉 | is the number of nodes, and 𝑤𝑖𝑗 is given by the intensity of the
connection from node 𝑖 to node 𝑗. It is often useful also to indicated its binary projection
𝑎𝑖𝑗 = Θ(𝑤𝑖𝑗) reading

𝑎𝑖𝑗 = {1, if node i and j are connected
0, otherwise.

(1)

To describe the structure and the weights of a network and the behavior of its nodes, network
statistics are usually computed. These objects are functions of the weighted or/and the binary
adjacency matrices.

The degree of a node 𝑖 is defined as

𝑘𝑖 = ∑
𝑗≠𝑖

𝑎𝑖𝑗 (2)

and indicates the number of its connected neighbors. In the case of directed networks the
degree is defined for outward links (out‐degree) and for inward links (in‐degree) appropriately
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summing on the directed binary adjacency matrix and its transpose. In the case of Production
Networks, the out‐degree 𝑘𝑜𝑢𝑡

𝑖 of firm 𝑖 counts the number of its users, instead its in‐degree 𝑘𝑖𝑛
𝑖

counts the number of its suppliers

{𝑘𝑜𝑢𝑡
𝑖 = ∑𝑗≠𝑖 𝑎𝑖𝑗

𝑘𝑖𝑛
𝑖 = ∑𝑗≠𝑖 𝑎𝑗𝑖.

(3)

The analogue of the degree for weighted networks is the strength of node 𝑖 defined as

𝑠𝑖 = ∑
𝑗≠𝑖

𝑤𝑖𝑗 (4)

indicating the sum of the connection intensities of 𝑖 with its neighbors. In the directed case, the
strenght is usually decomposed in out‐strength 𝑠𝑜𝑢𝑡

𝑖 and in‐strength 𝑠𝑖𝑛
𝑖 , expressing the sum of

the intensities of connections respectively originating from 𝑖 and going to 𝑖,

{𝑠𝑜𝑢𝑡
𝑖 = ∑𝑗≠𝑖 𝑤𝑖𝑗

𝑠𝑖𝑛
𝑖 = ∑𝑗≠𝑖 𝑤𝑗𝑖.

(5)

Finally, networks can be mono‐layered, as discussed until now, or multi‐layered. In the case of
multi‐layer networks the connections are labelled by an attribute, specifying the type of
connections. For example, consider two industries 𝑖 and 𝑗, connected with each other in
different ways in different layers, such as in Fig.2.1: in the layer Cereals, 𝑖 is a supplier for 𝑗, while
in the layer ’Bread and other bakery products’, it is 𝑗 that supplies 𝑖. A multi‐layer approach
guarantees additional information with respect to mono‐layer aggregates where 𝑖 and 𝑗 would
be depicted as having a reciprocated connection, exchanging a ’representative’ commodity.

2.2 KL Minimization Framework

Depending on our assumption on the Data‐Generating Process, we can model the existence of
the link and its intensity jointly or separately . In the first case we would want to estimate the
distribution of the weighted network 𝑊 , i.e. 𝑄(𝑊), while in the case of disjoint estimation we
want to estimate two objects: the distribution of the binary network 𝐴, i.e. 𝑃(𝐴), and the
distribution of the weighted network 𝑊 compatible with the binary adjacency matrix 𝐴, i.e.
𝑄(𝑊|𝐴), such that 𝑄(𝑊) = 𝑃(𝐴)𝑄(𝑊|𝐴). In the case of our models it is possible to trivially
pass from the distribution of weighted networks to the distribution of dyadic weights, and from
the distribution of binary networks to the distribution of links.

Separate estimation of links and weights is usually pursued for numerical convenience, given the
reduced number of parameters to estimate in a single optimization, and in light of recent
results showing a generally good performance of separate (or conditional) methods when
compared to joint (or integrated) methods in terms of reproduction of higher‐order network
statistics. In order to estimate such distributions we can proceed in two different ways

– Proceed by assuming the distribution function and then test the robustness of our results to
change in distributional choice, a posteriori;

– Estimating distributions by requiring minimal assumptions.
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We follow the second path by maximising the uncertainty of our economic system given some
constraints, representing available data. This, in turn, implies a minimization of the
Kullback‐Leibler Divergence given some constraints, representing the information we have on
specific network statistics.

The Kullback‐Leibler divergence 𝐷𝐾𝐿(𝑄||𝑅) is a measure of the information lost when we use a
posterior distribution 𝑄 to approximate a prior distribution 𝑅. In mathematical terms it is
defined as

𝐷𝐾𝐿(𝑄||𝑅) = ∫
𝑊

𝑄(𝑊) ln(𝑄(𝑊)
𝑅(𝑊)) 𝑑𝑊 (6)

where, in our case the integral is on all possible realizations of 𝑊 , 𝑄(𝑊) is the posterior
distribution of weights (and our target distribution) and 𝑅(𝑊) is the analoguous prior.

By requiring the factorization assumption on both the posterior 𝑄(𝑊) = 𝑃(𝐴)𝑄(𝑊|𝐴) and the
prior 𝑅(𝑊) = 𝑇 (𝐴)𝑅(𝑊|𝐴) we obtain

𝐷𝐾𝐿(𝑄||𝑅) = −𝑆[𝑃 ] − 𝑆[𝑄|𝑃 ] + 𝑆[𝑃 , 𝑇 ] + 𝑆[𝑄, 𝑅|𝑃 ] (7)

where

𝑆[𝑃 ] = − ∑
𝐴

𝑃(𝐴) ln(𝑃 (𝐴)) (8)

the Shannon Entropy related to the binary posterior distribution 𝑃(𝐴),

𝑆[𝑄|𝑃 ] = − ∑
𝐴

𝑃(𝐴) ∫
𝑊𝐴

𝑄(𝑊|𝐴) ln(𝑄(𝑊|𝐴))𝑑𝑊 (9)

the Shannon Entropy related to the conditional distribution 𝑄(𝑊|𝐴) given 𝑃 .

The remaining terms, 𝑆[𝑃 , 𝑇 ] and 𝑆[𝑄, 𝑅|𝑃 ] are cross‐entropies of the form
𝑆[𝑃 , 𝑇 ] = − ∑

𝐴
𝑃(𝐴) ln(𝑇 (𝐴)) (10)

and

𝑆[𝑄, 𝑅|𝑃 ] = − ∑
𝐴

𝑃(𝐴) ∫
𝑊𝐴

𝑄(𝑊|𝐴) ln(𝑅(𝑊|𝐴))𝑑𝑊. (11)

which include prior information.

By requiring minimal prior assumptions, i.e. that the priors are uniform with a support equal or
greater than the one of the relative posterior, the last two terms are constant and minimizing
𝐷𝐾𝐿 equals maximising the joint entropy 𝑆[𝑄]

𝑆[𝑄] = 𝑆[𝑃 ] + 𝑆[𝑄|𝑃 ]. (12)

The constrained maximisation of the entropy 𝑆[𝑄] leads to the distribution of binary networks
𝑃(𝐴) and compatible weighted networks 𝑄(𝑊|𝐴) that on average respect a set of binary
constraints {𝐶𝑙(𝐴)} and a set of weighted constraints {𝐶𝑚(𝑊)}, where 𝐶𝛼(𝐴) is the l‐th
constraint, expressed as a function of 𝐴, and 𝐶𝑚 is the m‐th constraint, expressed as a function
of 𝑊 .
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For convenience, let us treat the binary problem of constrained maximization, the relative
problem for weighted networks can be treated in the same way. Our objective is to estimate
𝑃(𝐴) which maximize 𝑆[𝑃 ] given a normalization constraint

∑
𝐴

𝑃(𝐴) = 1 (13)

and constraints on links 𝐶𝑙(𝐴)
∑

𝐴
𝐶𝑙(𝐴)𝑃(𝐴) = 𝐶∗

𝑙 (14)

where 𝐶∗
𝑙 is the known measure of 𝐶𝑙 on the empirical network 𝐴∗.

To do so, we define the Lagrangian of the constrained problem, to maximize

𝑆[𝑃 ] − 𝜆0 (∑
𝐴

𝑃(𝐴) − 1) − ∑
𝑙

𝜃𝑙 (∑
𝐴

𝐶𝑙(𝐴)𝑃(𝐴) − 𝐶∗
𝑙 ) (15)

which leads to

𝑃(𝐴) = 𝑒− ∑𝑙 𝜃𝑙𝐶𝑙(𝐴)

∑𝐴 𝑒− ∑𝑙 𝜃𝑙𝐶𝑙(𝐴) . (16)

In similar way it is possible to show that the solution to the distribution estimation for weights is

𝑄(𝑊|𝐴) =
⎧{
⎨{⎩

𝑒− ∑𝑚 𝛽𝑚𝐶𝑚(𝑊)

∑𝑊𝐴
𝑒− ∑𝑚 𝜃𝑚𝐶𝑚(𝑊) if 𝑊 ∈ 𝑊𝐴

0 otherwise
(17)

where 𝑊 ∈ 𝑊𝐴 indicates that the specific 𝑊 belongs to the ensemble of weighted networks
compatible with 𝐴.

3 Methods and Measures

In Eq.16 and Eq.17 we obtained the general form of the distribution of binary adjacency matrices
𝑃(𝐴) and the distribution of compatible weighted matrices 𝑄(𝑊|𝐴) that maximize the joint
entropy 𝑆[𝑄] (and minimize the KL Divergence given uniform prior).

To explicitly express the related distribution we need to choose the set of constraints 𝐶𝑙(𝐴) and
𝐶𝑚(𝑊) and subsequently find the related set of Lagrange parameters 𝜃𝑙 and 𝛽𝑚 using Maximum
(Log‐)Likelihood Estimation (MLE) for binary models and Generalized Maximum Log‐Likelihood
Estimation (GLE) for conditional weighted models. For convenience, we leave the mathematical
details about the MLE and the GLE estimation of our models in Appendix A and B, respectively.
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Figure 3.1 (a) Decomposition of generic link (𝑖, 𝑗) in non‐reciprocated and
reciprocated edges. (b) The 13 possible conϐiguration of connected triads, labelled by
their 𝑚‐type. This ϐigure is inspired by the paper in Di Vece et al. 2023b.

3.1 Binary Null Models

In the case of binary models, the constraints that are usually imposed are the out‐degree 𝑘𝑜𝑢𝑡
𝑖

and in‐degree 𝑘𝑖𝑛
𝑖 sequences. We are requiring that in our statistical ensemble of economic

networks, both statistics are reproduced in average, allowing for small deviations related to noise
or external factors (e.g. interaction with industries in another country). In inter‐industry
production networks, this implies that we are constraining the number of suppliers and users of a
industry 𝑖. The implied model is called Directed Binary Configuration Model (DBCM) and is
characterized by a probability distribution of the form

𝑃(𝐴) = ∏
𝑖,𝑗≠𝑖

𝑝𝑎𝑖𝑗
𝑖𝑗 (1 − 𝑝𝑖𝑗)1−𝑎𝑖𝑗 (18)

where the dyadic connection probability 𝑃𝑟(𝑎𝑖𝑗 = 1) = 𝑝𝑖𝑗 is

𝑝𝑖𝑗 = 𝑒−𝜃𝑜𝑢𝑡
𝑖 −𝜃𝑖𝑛

𝑗

1 + 𝑒−𝜃𝑜𝑢𝑡
𝑖 −𝜃𝑖𝑛

𝑗
. (19)

where 𝜃𝑖 are estimated using MLE on the log‐likelihood ℒ = ln(𝑃 (𝐴)), which is equivalent to
requiring

{𝑘𝑜𝑢𝑡;∗
𝑖 = ∑𝑗≠𝑖 𝑝𝑖𝑗 = ⟨𝑘𝑜𝑢𝑡

𝑖 ⟩
𝑘𝑖𝑛;∗

𝑖 = ∑𝑗≠𝑖 𝑝𝑗𝑖 = ⟨𝑘𝑖𝑛
𝑖 ⟩

(20)

where 𝑘𝑜𝑢𝑡,∗
𝑖 is the empirical out‐degree of the i‐th node and ⟨𝑘𝑜𝑢𝑡

𝑖 ⟩ is the average over the
ensemble of networks of the same measure. The definitions for in‐degree sequences are
analogous.

If we are interested only in constraining the tendency of industries to have a certain number of
suppliers and users, then DBCM would be our preferred model. In the present case, in which we
are also interested in reciprocation of links, instead, we have to process our links in a different
way: for each couple we differentiate if a given connection is uni‐directional or bi‐directional,
moving from 𝑎𝑖𝑗 to the set {𝑎→

𝑖𝑗 , 𝑎←
𝑖𝑗 , 𝑎↔

𝑖𝑗 } as illustrated in Fig.3.1(a). The related degree
sequences are of three kinds:
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– non‐reciprocated out‐degree 𝑘→
𝑖 , indicating the portion of out‐degree of node 𝑖 which is

related to uni‐directional links,

𝑘→
𝑖 = ∑

𝑗≠𝑖
𝑎→

𝑖𝑗 = ∑
𝑗≠𝑖

𝑎𝑖𝑗(1 − 𝑎𝑗𝑖) (21)

– non‐reciprocated in‐degree 𝑘←
𝑖 , indicating the portion of in‐degree of node 𝑖 which is related

to uni‐directional links,

𝑘←
𝑖 = ∑

𝑗≠𝑖
𝑎←

𝑖𝑗 = ∑
𝑗≠𝑖

𝑎𝑗𝑖(1 − 𝑎𝑖𝑗) (22)

– reciprocated degree 𝑘↔
𝑖 , indicating the portion of out or in‐degree of node 𝑖 which are related

to bi‐directional links,

𝑘↔
𝑖 = ∑

𝑗≠𝑖
𝑎↔

𝑖𝑗 = ∑
𝑗≠𝑖

𝑎𝑖𝑗𝑎𝑗𝑖. (23)

The corresponding model is called Reciprocal Binary Configuration Model (RBCM) and is
characterized by the probability distribution

𝑃(𝐴) = ∏
𝑖,𝑗≤𝑖

(𝑝→
𝑖𝑗 )𝑎→

𝑖𝑗(𝑝←
𝑖𝑗 )𝑎←

𝑖𝑗(𝑝↔
𝑖𝑗 )𝑎↔

𝑖𝑗(𝑝↮
𝑖𝑗 )𝑎↮

𝑖𝑗 (24)

with connection probabilites with prescriptions

⎧{{{{{
⎨{{{{{⎩

𝑝→
𝑖𝑗 = 𝑥→

𝑖 𝑥←
𝑗

1 + 𝑥→
𝑖 𝑥←

𝑗 + 𝑥←
𝑖 𝑥→

𝑗 + 𝑥↔
𝑖 𝑥↔

𝑗

𝑝←
𝑖𝑗 = 𝑥←

𝑖 𝑥→
𝑗

1 + 𝑥→
𝑖 𝑥←

𝑗 + 𝑥←
𝑖 𝑥→

𝑗 + 𝑥↔
𝑖 𝑥↔

𝑗

𝑝↔
𝑖𝑗 = 𝑥↔

𝑖 𝑥↔
𝑗

1 + 𝑥→
𝑖 𝑥←

𝑗 + 𝑥←
𝑖 𝑥→

𝑗 + 𝑥↔
𝑖 𝑥↔

𝑗
𝑝↮

𝑖𝑗 = [1 + 𝑥→
𝑖 𝑥←

𝑗 + 𝑥←
𝑖 𝑥→

𝑗 + 𝑥↔
𝑖 𝑥↔

𝑗 ]−1 .

(25)

where 𝑥→
𝑖 ≡ 𝑒−𝜃→

𝑖 , 𝑥←
𝑖 ≡ 𝑒−𝜃←

𝑖 and 𝑥↔
𝑖 ≡ 𝑒−𝜃↔

𝑖 are the exponentiated Lagrange multipliers
regulating for the non‐reciprocated out‐degree, non‐reciprocated in‐degree and reciprocated
degree respectively. The parameters are estimated using MLE, maximizing ℒ = ln(𝑃 (𝐴)), which
is equivalent to require

⎧{{
⎨{{⎩

𝑘→
𝑖,∗ = ⟨𝑘→

𝑖 ⟩ = ∑𝑗≠𝑖 𝑝→
𝑖𝑗

𝑘←
𝑖,∗ = ⟨𝑘←

𝑖 ⟩ = ∑𝑗≠𝑖 𝑝←
𝑖𝑗

𝑘↔
𝑖,∗ = ⟨𝑘↔

𝑖 ⟩ = ∑𝑗≠𝑖 𝑝↔
𝑖𝑗 ,

(26)

i.e., the equivalence between empirical and ensemble‐averaged degrees.

3.2 Conditionally Weighted Null Models

When inquiring the structure of weights. the constraints that are usually imposed are
out‐strength 𝑠𝑜𝑢𝑡

𝑖 and in‐strength 𝑠𝑖𝑛
𝑖 sequences. As in the binary case, enforcing these

constraints insures that both statistics are reproduced in average in the ensemble of generated
networks. Constraining these quantities implies that for each industry 𝑖 we maintain its output,
i.e. the amount given by 𝑖 to all its users, and its input, i.e. the amount taken by 𝑖 from all its
suppliers, equal to their empirical measures. Such conditional model is called CReM𝐴. The
related distribution 𝑄(𝑊|𝐴) reads

𝑄(𝑊|𝐴) = ∏
𝑖

∏
𝑗≠𝑖

[(𝛽𝑜𝑢𝑡
𝑖 + 𝛽𝑖𝑛

𝑗 ) 𝑒−(𝛽𝑜𝑢𝑡
𝑖 +𝛽𝑖𝑛

𝑗 )𝑤𝑖𝑗]
𝑓𝑖𝑗 , (27)
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where 𝛽𝑜𝑢𝑡
𝑖 and 𝛽𝑖𝑛

𝑖 are Lagrange parameters which are estimated using Generalized
Log‐Likelihood Estimation (GLE) and 𝑓𝑖𝑗 = ⟨𝑎𝑖𝑗⟩ is the connection probability induced by the
binary model of choice. This kind of estimation, also called an ’annealed’ procedure (Di Vece et al.
2023a), ensures that binary random variability is taken into account when estimating parameters
the distribution of weights. Also GLE requires the solution of a system of first‐order equations
that equate empirical out‐strength and in‐strength to ensemble‐averaged counterparts:

{𝑠𝑜𝑢𝑡;∗
𝑖 = ∑𝑗≠𝑖 𝑤𝑖𝑗 = ⟨𝑠𝑜𝑢𝑡

𝑖 ⟩
𝑠𝑖𝑛;∗

𝑖 = ∑𝑗≠𝑖 𝑤𝑗𝑖 = ⟨𝑠𝑖𝑛
𝑖 ⟩.

(28)

According to the CReM𝐴 the weight 𝑤𝑖𝑗 is then estimated as

⟨𝑤𝑖𝑗⟩ = 𝑝𝑖𝑗⟨𝑤𝑖𝑗|𝑎𝑖𝑗 = 1⟩ (29)

where 𝑝𝑖𝑗 depends on the binary model of choice and the conditional weight ⟨𝑤𝑖𝑗|𝑎𝑖𝑗 = 1⟩ is

⟨𝑤𝑖𝑗|𝑎𝑖𝑗 = 1⟩ = (𝛽𝑜𝑢𝑡
𝑖 + 𝛽𝑖𝑛

𝑗 )−1 . (30)

We can modify the previous model such that we can take into account the reciprocity profile of
links on which the weights are sampled. To do so, we define four types of strengths:

– non‐reciprocated out‐strength 𝑠→
𝑖 , indicating the output of industry 𝑖 on uni‐directional links,

namely

𝑠→
𝑖 = ∑

𝑗≠𝑖
𝑤→

𝑖𝑗 = ∑
𝑗≠𝑖

𝑎→
𝑖𝑗 𝑤𝑖𝑗; (31)

– non‐reciprocated in‐strength 𝑠←
𝑖 , indicating the input of industry 𝑖 on uni‐directional links,

namely

𝑠←
𝑖 = ∑

𝑗≠𝑖
𝑤←

𝑖𝑗 = ∑
𝑗≠𝑖

𝑎←
𝑖𝑗 𝑤𝑗𝑖; (32)

– reciprocated out‐strength 𝑠𝑜𝑢𝑡,↔
𝑖 , indicating the output of industry 𝑖 on bi‐directional links,

namely

𝑠𝑜𝑢𝑡,↔
𝑖 = ∑

𝑗≠𝑖
𝑤𝑜𝑢𝑡,↔

𝑖𝑗 = ∑
𝑗≠𝑖

𝑎↔
𝑖𝑗 𝑤𝑖𝑗; (33)

– reciprocated in‐strength 𝑠𝑖𝑛,↔
𝑖 , indicating the input of industry 𝑖 on bi‐directional links,

namely

𝑠𝑖𝑛,↔
𝑖 = ∑

𝑗≠𝑖
𝑤𝑖𝑛,↔

𝑖𝑗 = ∑
𝑗≠𝑖

𝑎↔
𝑖𝑗 𝑤𝑗𝑖. (34)

Enforcing these network statistics as constraints leads to a separable distribution of weights
(𝑄(𝑊|𝐴) = 𝑄(𝑊|𝐴→)𝑄(𝑊|𝐴↔) and, hence, to the resolution of two separate sub‐problems:
one for the uni‐directional links, characterized by

𝑄(𝑊|𝐴→) = ∏
𝑖,𝑗≠𝑖

[(𝛽→
𝑖 + 𝛽←

𝑗 ) 𝑒−(𝛽→
𝑖 +𝛽←

𝑗 )𝑤𝑖𝑗]
𝑎→

𝑖𝑗
(35)
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and the prescription for the conditional weight given by

{⟨𝑤→
𝑖𝑗 |𝑎→

𝑖𝑗 = 1⟩ = (𝛽→
𝑖 + 𝛽←

𝑗 )−1

⟨𝑤←
𝑖𝑗 |𝑎←

𝑖𝑗 = 1⟩ = (𝛽←
𝑖 + 𝛽→

𝑗 )−1 (36)

and one for the reciprocated links, characterized by the distribution

𝑄(𝑊|𝐴↔) = ∏
𝑖,𝑗≠𝑖

[(𝛽𝑜𝑢𝑡,↔
𝑖 + 𝛽𝑖𝑛,↔

𝑗 ) 𝑒−(𝛽𝑜𝑢𝑡,↔
𝑖 +𝛽𝑖𝑛,↔

𝑗 )𝑤𝑖𝑗]
𝑎↔

𝑖𝑗
(37)

and the prescription for the conditional weight given by

⎧{
⎨{⎩

⟨𝑤𝑜𝑢𝑡,↔
𝑖𝑗 |𝑎↔

𝑖𝑗 = 1⟩ = (𝛽𝑜𝑢𝑡,↔
𝑖 + 𝛽𝑖𝑛,↔

𝑗 )−1

⟨𝑤𝑖𝑛,↔
𝑖𝑗 |𝑎↔

𝑖𝑗 = 1⟩ = (𝛽𝑖𝑛,↔
𝑖 + 𝛽𝑜𝑢𝑡,↔

𝑗 )−1 .
(38)

The set of Lagrange parameters {𝛽→
𝑖 , 𝛽←

𝑖 , 𝛽𝑜𝑢𝑡,↔
𝑖 , 𝛽𝑖𝑛,↔

𝑖 } are obtained using GLE, leading to the
solution of two systems of equations equating ensemble‐averaged non‐reciprocated strengths
and reciprocated strengths to their empirical counterparts. This model takes the name of
Conditionally Reciprocal Configuration Model (CRWCM), and is used in conjunction with the
RBCM for the inference of weights.

3.3 Pattern Detection Analysis

In Pattern Detection Analysis our goal is comparing patterns in the empirical network to expected
patterns in null models constraining a subset of empirical features. If there is no significant
deviation from expectation we say that our empirical network is in equilibrium with the statistical
ensemble, i.e. the constrained empirical features are the only ingredients needed for the system
to have that peculiar pattern. If, instead, the empirical pattern is over or under‐represented with
respect to expectations, we say that the empirical system is out‐of‐equilibrium with the statistical
ensemble, i.e. the constrained features do not give enough information to encode that peculiar
structure.

In our case we will focus on the connected triadic structures, seen as the 13 sub‐structures in
Fig.3.1(b), given by all the possible ways in which three nodes are connected. We will
characterize each sub‐structure by two quantities, the abundance 𝑁𝑚, namely the number of
subgraph of type 𝑚 in the graph, and the total flux 𝐹𝑚, namely the total amount of money
circulating on subgraphs of type 𝑚. For instance, consider the sub‐graph of type 𝑚 = 6, its
abundance 𝑁6 reads

𝑁6 = ∑
𝑖

∑
𝑗≠𝑖

∑
𝑘≠𝑖,𝑗

𝑎↔
𝑖𝑗 𝑎→

𝑗𝑘𝑎→
𝑖𝑘, (39)

while its total flux 𝐹6 reads

𝐹6 = ∑
𝑖

∑
𝑗≠𝑖

∑
𝑘≠𝑖,𝑗

𝑎↔
𝑖𝑗 𝑎→

𝑗𝑘𝑎→
𝑖𝑘 (𝑤𝑖𝑗 + 𝑤𝑗𝑖 + 𝑤𝑗𝑘 + 𝑤𝑖𝑘) . (40)

To compare expectations with empirical values we refer to z‐score analysis, by defining a z‐score
measure for the two statistics of interest. The z‐score of the abundance 𝑁𝑚 of subgraphs of type
𝑚, with respect to a generic binary null model is

𝑧[𝑁𝑚] = 𝑁𝑚 − ⟨𝑁𝑚⟩𝑚𝑜𝑑𝑒𝑙
𝜎[𝑁𝑚]𝑚𝑜𝑑𝑒𝑙

(41)

CBS | Discussion paper | November 2024 13



where ⟨𝑁𝑚⟩𝑚𝑜𝑑𝑒𝑙 is the model‐dependent ensemble‐averaged value of the abundance 𝑁𝑚 and
𝜎[𝑁𝑚]𝑚𝑜𝑑𝑒𝑙 is its model‐dependent standard error across the ensemble realizations. A similar
z‐score is defined also for the total flux 𝐹𝑚,

𝑧[𝐹𝑚] = 𝐹𝑚 − ⟨𝐹𝑚⟩𝑚𝑜𝑑𝑒𝑙
𝜎[𝐹𝑚]𝑚𝑜𝑑𝑒𝑙

(42)

where the null model is instead a mixture of binary and conditional weighted models.

In Network Science literature, it is often assumed that a triadic structure is a network ’motif’ if
the associated z‐score is 𝑧 > 3, while it is an ’anti‐motif’ if the associated z‐score is 𝑧 < −3. This
convention implicitly assumes that the abundance (and the total flux) of triadic structures
approximately follow a normal distribution across the statistical ensemble of graphs. In this work
we relax this assumption by estimating the confidence interval of each z‐score on 500 sample of
the system, generated according to the null model distribution of choice.

4 Results

4.1 Data Pre‐Processing

We used the published data about the Dutch production network in 2018, containing
’constructed’ relationships among 900 000 firms which are labelled by the type of commodity
supplied, for 650 commodities. This dataset can be viewed as a multilayer network, where nodes
are firms, edges are input/output relationships, and the layers indicate the type of commodity
supplier/used, i.e. 𝑎(𝛼)

𝑖𝑗 = 1 if firm 𝑖 supplies commodity 𝛼 to firm 𝑗, and 𝑎(𝛼)
𝑖𝑗 = 0 otherwise.

However, it is known that the deterministic procedure used by Statistics Netherlands (SN) in
inferring links (and weights) leads to biased network statistics, at least for the network density
and degree distributions (Rachkov et al. 2021; Kayzel and Pijpers 2023). For this reason we avoid
using the inter‐firm network as it is and we proceed taking advantage of the known coherence
with the input‐output tables at SBI4 industry‐classification for 192 commodity‐groups.

We do so, by aggregating the firms at the industry SBI5 classification level, and aggregating 650
commodity groups into 192. Obviously, we expect some noise due to the choice of the SBI5
classification instead of the SBI4, however we prefer it to increase the granularity of our sample
of industries.

After cleaning for intra‐industry trade, which is not salient in the detection of the connected
triadic motifs, we obtain a multilayer network of 862 industries and 187 commodity groups.
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4.2 Exploratory Analysis
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Figure 4.1 Counter‐Cumulative distribution for quantities of interest across layers:
(a)𝑃(⋅) for the number of active industries 𝑁𝑐, the connectedness 𝐿𝑐 and the total
circulating money 𝑊𝑐 on commodity 𝑐; (b)𝑃(⋅) for binary reciprocity 𝑟𝑡 and weighted
reciprocity 𝑟𝑤.

In literature it has been found that in Production Networks firm usually supply(use) to(from) a
very specialized set of firms, a notion that would imply that most industries are present in only a
few layers, and only a small number of industries are actively engaging in intermediate trade on
each layer.

In our case, we can see that this stylized fact is not true, in fact, the counter‐cumulative
distribution of the number of active industries in a given layer 𝑃𝑁 , plotted in Fig.4.1(a), shows a
distribution with a very fat tail. Specifically, while it is true that a large number of layers (> 50%)
are characterized by a small number of active industries (< 100), it is also the case that a (small)
number of commodity groups exist, for which almost the totality of industries is active (∼ 818).

In the same figure, we can also investigate the counter‐cumulative distribution of the
connectedness 𝐿 = ∑𝑖,𝑗≠𝑖 𝑎𝑖𝑗 and total money circulating 𝑊 = ∑𝑖,𝑗≠𝑖 𝑤𝑖𝑗 across layers. Those
display a less fat tail with respect to sizes but an uneven distribution across commodities is still
present. Specifically, less than 8% of layers have a number of links 𝐿 > 6000, while only 10% of
layers have 𝑊 > 5000, i.e. links and volumes, and hence the inter‐industry activity in
intermediate use/supply, are concentrated on a small amount of commodity groups, with an
increased concentration for weights with respect to links.

Let us now move to the analysis of the reciprocal behavior of industries across layers. If industry 𝑖
and 𝑗 reciprocate their link, it means that some firms in industry 𝑖 are suppliers of firms in
industry 𝑗, while others are their users. The topological reciprocity 𝑟𝑡 reading

𝑟𝑡 = 𝐿↔

𝐿 =
∑𝑖,𝑗≠𝑖 𝑎↔

𝑖𝑗
∑𝑖,𝑗≠𝑖 𝑎𝑖𝑗

(43)

can be seen as a measure of inter‐dependence in use/supply between distinct business activities.
Its counter‐cumulative distribution is depicted in Fig.4.1(b) showing that topological reciprocity is
usually very low for most of the commodity groups, while a low number of layers (< 10%) exist
for which high reciprocity (𝑟𝑡 > 0.3) holds.
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Figure 4.2 Comparison of triadic abundances 𝑁𝑚 and triadic ϐluxes 𝐹𝑚: aggregated
network vs ’gas/hot water/city heating commodity. (a) 𝑁𝑚 normalized by the
maximum across types. (b) 𝐹𝑚 normalized by the maximum across types. Slightly
modiϐied from Di Vece et al. 2024

A global reciprocity measure can also be defined for the weights, as the weight reciprocity 𝑟𝑤
defined as

𝑟𝑤 = 𝑊 ↔

𝑊 =
∑𝑖,𝑗≠𝑖 𝑤↔

𝑖𝑗
∑𝑖,𝑗≠𝑖 𝑤𝑖𝑗

(44)

measuring the fraction of weights on reciprocated links.

The counter‐cumulative distribution for weighted reciprocity, depicted in Fig.4.1(b) is denoted by
a fatter tail than the analogue for links, showing that in a higher amount of commodities (20%)
there is a higher weight reciprocity 𝑟𝑤 > 0.3. This means that while the volume on reciprocated
weights is typically low, their intensity is not negligible.

Consider now the abundance 𝑁𝑚 and 𝐹𝑚 of the 13 triadic subgraphs. In Fig.4.2(a) and Fig.4.2(b)
we plot their values for the Aggregated Network (in blue) and the commodity ’Gas/Hot
Water/City Heating’, to give the reader an example of different behaviours (for triads) arising
when the disaggregation at commodity‐level is performed. The values are renormalized by the
maximum across types for better comparison.

Regarding the intensity of triadic occurrences 𝑁𝑚, we can see in Fig.4.2(a) that while the
Aggregated Network has an heterogenenous spectrum of triadic types, with the predominance
of 𝑚 = 1 (representing open Vs with one suppliers and two users), followed by 𝑚 = 13
(representing fully reciprocated cycles) and 𝑚 = 6, the commodity registers a huge intensity in
occurrence of triads of type 𝑚 = 1.

When inspecting the weighted analogue in Fig.4.2(b), for the Aggregated Network the money is
highly concentrated around 𝑚 = 13 while in the commodity it is concentrated around 𝑚 = 1.

This specific change does not hold true for all layers: in fact, commodities display a
heterogeneous spectrum of commodities, as shown in a very recent paper (Di Vece et al. 2024).

However, the 𝑚 = 13, i.e. the completely reciprocated cycle, is usually an artifact produced by
the aggregation of nodes or commodities, that ‐ when a more microscopic description is available
‐ breaks up in favor of more oriented and less reciprocated subgraphs.
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From the empirical values 𝑁𝑚 and 𝐹𝑚 it is not possible to understand if some subgraphs are
over, under‐represented or possess a lower or higher concentration of money than expected. In
the following subsections we will provide some global results on statistical validation of 𝑁𝑚 and
𝐹𝑚, while we will more deeply describe only a limited amount of commodity groups of interest,
for convenience.

4.3 Pattern Detection Strategy

In the binary case we are interested in measuring the z‐score of 𝑁𝑚 defined in Eq.41. To do so
we need three quantities in total: the empirical 𝑁𝑚, already computed in the previous section,
the ensemble‐averaged ⟨𝑁𝑚⟩ and its standard deviation 𝜎[𝑁𝑚], according to the null model of
choice. In literature (Squartini and Garlaschelli 2011) it is shown that an analytical approach
exists to provide exact estimations of the z‐score for the null models DBCM and RBCM. While
intriguing, the use of the (‐3,3) as the confidence interval for validation, implicitly require that
𝑁𝑚 is distributed as a normal across ensemble binary configurations, given 𝑚. We, instead, find
that sampling 500 configurations those distributions are not normal according to a Shapiro Test
with 5% confidence intervals. This leads us to use a sampling method to extract the averages and
the standard deviation of 𝑁𝑚. To do so, we extract the 2.5 and 97.5 percentiles of 𝑁𝑚 out of
distribution of 500 realizations. The induced confidence interval will be given by
(𝑧−[𝑁𝑚], 𝑧+[𝑁𝑚]) where

⎧{{
⎨{{⎩

𝑧−[𝑁𝑚] = 𝑁 (2.5)
𝑚 − ⟨𝑁𝑚⟩

𝜎[𝑁𝑚]

𝑧+[𝑁𝑚] = 𝑁 (97.5)
𝑚 − ⟨𝑁𝑚⟩

𝜎[𝑁𝑚]

. (45)

A subgraph of type 𝑚 is over‐represented, and hence a network motif, if 𝑧[𝑁𝑚] > 𝑧+[𝑁𝑚] while
it is under‐represented, and hence a network anti‐motif, if 𝑧[𝑁𝑚] < 𝑧−[𝑁𝑚].

In the weighted case we are interested in measuring the z‐score of 𝐹𝑚 defined in Eq.42. To do so
we need three quantities in total: the empirical 𝐹𝑚, already computed in the previous section,
the ensemble‐averaged ⟨𝐹𝑚⟩ and its standard deviation 𝜎[𝐹𝑚], according to the null model of
choice. Also 𝐹𝑚 are not normally distributed across the ensemble, hence, also in this case we
proceed numerically. We extract the statistics ⟨𝐹𝑚⟩ and 𝜎[𝐹𝑚] from 500 realization of the
weighted matrices according to the mixture model DBCM+CReMa, filtering for directed degree
and strength sequences, and according to the mixture model RBCM+CRWCM, filtering for
degree and strength sequences in their reciprocated and non‐reciprocated fashion. The induced
confidence interval for 𝑧[𝐹𝑚] will be given by (𝑧−[𝐹𝑚], 𝑧+[𝐹𝑚]) where

⎧{{
⎨{{⎩

𝑧−[𝐹𝑚] = 𝐹 (2.5)
𝑚 − ⟨𝐹𝑚⟩

𝜎[𝐹𝑚]

𝑧+[𝐹𝑚] = 𝐹 (97.5)
𝑚 − ⟨𝐹𝑚⟩

𝜎[𝐹𝑚]

. (46)

A subgraph of type 𝑚 has an ’unexpectedly high’ total amount of circulating money if, and hence
it is a network motif, if 𝑧[𝐹𝑚] > 𝑧+[𝐹𝑚] while it has a ’unexpectedly low’ amount of circulating
money, and hence it is a network anti‐motif, if 𝑧[𝐹𝑚] < 𝑧−[𝐹𝑚].
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In the following we will use directly the reciprocal null model RBCM+CRWCM given its better
performance in identifying binary and weighted triads with respect to DBCM+CReM𝐴 as shown
in Di Vece et al. 2024.
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Figure 4.3 Number of commodities having a certain type of (a) motif 𝑐ℎ and (b)
anti‐motif 𝑐𝑙: comparison of behaviours between binary (in blue) and weighted triadic
deviations (in orange). This image is a modiϐication of one in Di Vece et al. 2024

In Fig.4.3(a) the number of commodities 𝑐ℎ having a 𝑚‐type triadic binary (in blue) and weighted
(in orange) motif is depicted. While binary and weighted motif are present with the same type in
a restricted number of commodities, 𝑚 = 1 shows a characteristic behaviour. In fact, the
formation with one supplier and two users is statistically expected in occurrence, i.e. its amount
is due to node‐specific and reciprocal tendencies of users and suppliers, however those triads
accommodate an unexpectedly high amount of money. For 40 commodities out of 187, users
take a large part of their input from selected suppliers, leading to possible systemic propagations
if the supply volume of such suppliers is reduced due to exogeneous or endogenous shocks.

On the other hand in Fig.4.3(b) we can see the number of commodities 𝑐𝑙 having a 𝑚‐type of
triadic binary (in blue) and weighted (in orange) anti‐motif. A high number of commodities have
binary anti‐motifs of type 𝑚 = 5, followed by 𝑚 = 8. However , while the number of binary
anti‐motifs is substantial, weighted anti‐motifs are reduced in number, i.e. structures can
under‐occur but the amount of money on them is usually coherent with expectations.

4.4 Triads in Strategic Commodities

In the following we analyze the ’fingerprint’ of triadic structures for strategic commodities in the
Netherlands.

The first three commodities considered contain firms in the semiconductor sector, which has
experienced high demand and global reach since the internet revolution. For food‐related
commodities, we consider cocoa/chocolate, which has non‐trivial structures, as previously
identified by CBS. For logistics, we consider ”Other Road Transport & Pipelines,” which contains a
large number of firms that do not specialize in a narrow range of transportation services related
to trams, buses, or taxis. For the law sector, we consider ”Tax Consultancy,” which is highly
resonant with the practice of optimising taxation payments and is therefore crucial in fiscal
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policy. Finally, for utilities, we study the ”Electricity” commodity, which has become increasingly
strategic in recent crises, such as the EuroDebt crisis of 2012, the COVID‐19 pandemic, and the
current Russia‐Ukraine war.

4.4.1 Other Machine Devices/Components
The first commodity layer that we enquire is ’Other Machine Devices/Components’. The
aforementioned layer consists of users and suppliers of machine devices and components that
are not exclusively Metal Components for Doors & Windows, Electrical components, Computer
or Peripherals, Telephones and Telecommunication systems, Medical instruments, photo devices
or eletrical machinery. In this section, then, falls the production of products such as
semiconductors. Given the large impact of the semiconductor industry in the Netherlands it is of
interest to describe the nature of connections of the related micro‐industries. This commodity
layer counts 138 suppliers annd 388 users.

Figure 4.4 (Top‐Left) Counter‐cumulative distribution of out‐degrees and in‐degrees
for the different industries in the layer ’Other Machine Devices/Components’, with
(Top‐Right) the top 5 ranked industries in terms of binary activity (𝑘𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑘𝑖;𝑜𝑢𝑡 or
𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛). (Bottom‐Left) Counter‐cumulative distribution of supply and use
volumes for the different industries in the layer ’Other Machine Devices/Components’,
with (Bottom‐Right) the top 5 ranked industries in terms of supply/use activity
(𝑠𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑠𝑖;𝑜𝑢𝑡 or 𝑠𝑖;𝑖𝑛/ ∑𝑖 𝑠𝑖;𝑖𝑛). Out‐going links are more concentrated on a limited
number of industries with respect to in‐going links. The same is true in average also
for supply and use, but there is an industry, i.e. ’Man. of other machine/tools for
speciϐic purposes’ that serve as a hub in use activity.

In Fig.4.4 the counter‐cumulative distribution for out‐degrees and in‐degrees (on the top‐left
panel) and supply and use (bottom‐left panel) are depicted. For ’out’ statistics the distribution is
plotted in blue, while the analogue for ’in’ statistics are plotted in orange. In both cases, the
statistics of interest is normalized by the sum across industries in the commodity layer.
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Given that sums are equivalent for out‐going and in‐going links, i.e. ∑𝑖 𝑘𝑖;𝑖𝑛 = ∑𝑖 𝑘𝑖;𝑜𝑢𝑡 and
∑𝑖 𝑠𝑖;𝑖𝑛 = ∑𝑖 𝑠𝑖;𝑜𝑢𝑡 we can compare the distributions. The in‐degree distribution reveals a large
presence of industries with very few connnections to suppliers with respect to the connections
with users. This result is also visible on the right panel for the level of activity (𝑘𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑘𝑖;𝑜𝑢𝑡
and 𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛), where the identity of the top 5 ranked industries is revealed: while the
activity of the top 5 ranked industries for out‐degree ranges from 3.6% to 4.2%, the same for the
in‐degree statistics range from 1% to 1.2%.

The distributions for out‐strength and in‐strength reveal a different behaviour. There is a relative
larger number of industries with low use volume with respect to supply volume, but there is also
the presence of an industry, specifically ’Manifacture of other machines/tools for specific
purposes’, which represents a ’use‐hub’. In fact, in the bottom‐right panel, we can see that its
activity is 18%, well above the range of activity in supply volumes, ranging from 7% to 14%.

  

Triadic Types

Figure 4.5 (a) 𝑁𝑚 and (b) binary triadic pattern detection for the commodity ’Other
Machine Devices/Components’. (c) 𝐹𝑚 and (b) weighted triadic pattern detection for
the same commodity. In occurrence terms 𝑚 = 1, i.e. open‐triads with one supplier
and two users, are predominant, while being expected according to the RBCM,
discounting node‐speciϐic and reciprocal tendencies. The binary pattern detection
reveals a motif in occurrence for 𝑚 = 9, representig forward feedback loops. Instead,
𝐹𝑚 clariϐies that on 𝑚 = 6 and especially on 𝑚 = 13 lie a large amount of money.
However both concentrations are statistically identiϐied by the reciprocal null model,
which actually signals a motif for 𝑚 = 1.

After having explored the activity in supply and use in their binary and weighted forms, we can
delve into the triadic pattern detection analysis. In Fig.4.5(a) and (b) we plot the empirical values
of 𝑁𝑚 and the z‐score profile obtained comparing the empirical model to the RBCM. The
empirical analysis unveils a high occurrence of subgraph 𝑚 = 1, representing triadic formations
connecting a supplier to two users (the different formations are depicted on the right panel).
However these triads are within expectation if node‐specific properties are discounted. Instead a
motif arises for 𝑚 = 9 representing feedback forward loops. A higher than expected presence of
these loops have been connected to systemic risk in financial networks, where they represent
landing chains that collapse as soon one of the actors suffers a negative shock Squartini et al.
2013. Moving to the weighted triadic flux detection in Fig.4.5(c) and (d), we show the empirical
value of 𝐹𝑚 across the 13 subgraphs and the related z‐score 𝑧𝐹𝑚

obtained comparing the
empirical network with the reciprocal model RBCM+CRWCM. The empirical investigations reveals
a high concentration of money on triads of type 𝑚 = 6 and 𝑚 = 13, however both amounts are
within expectations according to the reciprocal model. The z‐score profile reveals a higher than
expected amount of money on 𝑚 = 1 subgraphs.
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Since this is an analysis at the industry‐level, feedback forward loops can be thought of as an
impending risk due to ’bankruptcy’, if and only if the industries interacting in such loops contain a
very low number of firms, such that an eventual disconnection of the industry as a whole
becomes realistic. Conversely, the weighted for 𝑚 = 1 unveils that a limited number of suppliers
retain control of the market, due to properties that cannot be discounted by node‐specific or
reciprocal factors.

4.4.2 Repair/Installation/Maintenance
The second commodity layer selected for testing is the ”Repair/Installation/Maintenance” layer,
which consists of suppliers and users of this service. The commodity layer consists of 182
suppliers and 738 users.

Figure 4.6 (Top‐Left) Counter‐cumulative distribution of out‐degrees and in‐degrees
for the different industries in the layer ’Repair/Installation/Maintenance’, with
(Top‐Right) the top 5 ranked industries in terms of binary activity (𝑘𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑘𝑖;𝑜𝑢𝑡 or
𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛). (Bottom‐Left) Counter‐cumulative distribution of supply and use
volumes for the different industries in the layer ’Repair/Installation/Maintenance’,
with (Bottom‐Right) the top 5 ranked industries in terms of supply/use activity
(𝑠𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑠𝑖;𝑜𝑢𝑡 or 𝑠𝑖;𝑖𝑛/ ∑𝑖 𝑠𝑖;𝑖𝑛). The top 5 ranked industries in‐degree activity are
not the same as the ones having larger use volumes, with the exception of the ’General
Government administration’. Out‐degree activity is larger than in‐degree activity,
meaning that a small number of suppliers connect to a large number of users, with the
top supplier being ’Repair/Maintenance of machines for a speciϐic industry’ both in
binary annd weighted activity.

In Fig.4.6 the counter‐cumulative distribution for out‐degrees and in‐degrees (on the top‐left
panel) and supply and use (bottom‐left panel) are depicted. For ’out’ statistics the distribution is
plotted in blue, while the analogue for ’in’ statistics are plotted in orange. In both cases, the
statistics of interest is normalized by the sum across industries in the commodity layer.
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Also in this case the in‐degree distribution reveals a large presence of industries with very few
connections to suppliers with respect to connections with users. This effect is even more
pronounced here than in the previous commodity, in fact on the right panel, we can see that the
activity in in‐degree, i.e. 𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛, for the top 5 industries ranges from 0.5% to 0.6%. The
user industries with more suppliers are the those pertaining to the ’General Government
Administration’ and ’General civil and non‐residential construction’.

Interestingly enough, the industries with more suppliers are not the ones with larger use
volumes: on the bottom right panel, in fact, we can see that the top 5 ranked industries for use
volumes is different with the exception of the ’General Government administration’. The top
ranked industry is ’Construction of sports and recreational vessels’, which has a small number of
suppliers but the highest amount of use volume.

On the supply volume side we can identify a higher concentration of activity in the top 5 ranked
industries, ranging from 5% to 17%, with the most important supplier being
’Repair/Maintenance of machines for a specific industry’.

  

Triadic Types

Figure 4.7 (a) 𝑁𝑚 and (b) binary triadic pattern detection for the commodity
’Repair/Installation/Maintenance’. (c) 𝐹𝑚 and (b) weighted triadic pattern detection
for the same commodity. The triad‐type 𝑚 = 1, i.e. open‐triads with one supplier and
two users, is predominant both in occurrence and ϐlux terms. In absolute terms 𝑚 = 1
has a high number of occurrences with a large amount of money. Triadic pattern
detection signals 𝑚 = 4 and 𝑚 = 10 as binary motifs while it signals 𝑚 = 1 and 𝑚 = 6
as weighted motifs.

Moving to the triadic pattern detection analysis, in Fig.4.7(a) the 𝑁𝑚 and (b) the related z‐scores
𝑧𝑁𝑚

are depicted. The study of occurrences signal a large presence of subgraph 𝑚 = 1, however
this behaviour is within expectations when node‐specific properties are discounted. Instead, the
z‐score profile signals to motifs for 𝑚 = 4, i.e. the open triad connecting two suppliers to the
same user, and 𝑚 = 10, i.e. a cyclic closed loop with a bi‐directional link. The larger presence of
𝑚 = 4 can be thought of the commodity‐specific ’slight’ vulnerability to demand shock, in case
the firms within the user industry go bankrupt and are hence disconnected from the market.

When inspecting weights on triads through 𝐹𝑚, in Fig.4.7(c) we see that a large amount of
money rest on formations of type 𝑚 = 1, moreover this amount is unexpectedly high according
to the null model, as extracted from the z‐score profile in Fig.4.7(d).

The weight analysis gives us the information that while the layer is vulnerable to demand shocks
in case of bankruptcy it is also vulnerable to supply shock in volumes, i.e. a reduction in supply
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volumes of suppliers in formations 𝑚 = 1. Furthermore, the weighted z‐score profile also signals
a significant motif form 𝑚 = 6, a formation with two suppliers/users and one exclusive user.

4.4.3 Metal Components for Doors &Windows
The third commodity layer selected for testing is the ”Metal Components for Doors & Windows”
layer, which consists of suppliers and users of this product. This commodity was chosen because
of its unusual weighted triadic structure and the presence of highly important firms. The
aforementioned layer consists of 94 suppliers and 159 users.

Figure 4.8 (Top‐Left) Counter‐cumulative distribution of out‐degrees and in‐degrees
for the different industries in the layer ’Metal Components for Doors &Windows’, with
(Top‐Right) the top 5 ranked industries in terms of binary activity (𝑘𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑘𝑖;𝑜𝑢𝑡 or
𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛). (Bottom‐Left) Counter‐cumulative distribution of supply and use
volumes for the different industries in the layer ’Metal Components for Doors &
Windows’, with (Bottom‐Right) the top 5 ranked industries in terms of supply/use
activity (𝑠𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑠𝑖;𝑜𝑢𝑡 or 𝑠𝑖;𝑖𝑛/ ∑𝑖 𝑠𝑖;𝑖𝑛). Supply is monopolized both in binary and
weighted activity by the industry ”Man. of metal structures ad parts thereof”, counting
for the 8.6% of out‐degree activity and 76% of supply activity, while on the demand
side ”General civil and non‐residential construction” is a quasi‐monopoly counting for
3.7% of in‐degree activity and 23% of use activity.

In Fig.4.8 the counter‐cumulative distribution for out‐degrees and in‐degrees (on the top‐left
panel) and supply and use (bottom‐left panel) are depicted. For ’out’ statistics the distribution is
plotted in blue, while the analogue for ’in’ statistics are plotted in orange. In both cases, the
statistics of interest is normalized by the sum across industries in the commodity layer.

The out‐degree and in‐degree distributions (top‐left panel) provide a qualitatively similar
behaviour to the previous commodities: the out‐degree distribution provide a fatter tail than the
in‐degree distribution, i.e. a larger number of industries have few ingoing connections (less
suppliers) with respect to outgoing connections (more users). In contrast, the in‐strength and

CBS | Discussion paper | November 2024 23



outgoing distributions have the inverse behaviour: a higher number of industries accommodate
a higher amount of use volumes. This holds true with the exception of the top ranked industry in
out‐degree activity and supply volume, i.e. ’Manifacturing of metal structures annd parts
thereof’ which concentrates the 8.6% of out‐going connections and the 76% of total supply. A
similar, but less quantitatively important, concentration is revealed also on the demand side with
the industry ”General Civil annd non‐residential construction” which accomodates the 3.7% of
in‐going links and the 23% of use volumes.

  

Triadic Types

Figure 4.9 (a) 𝑁𝑚 and (b) binary triadic pattern detection for the commodity ’Metal
Components for Doors &Windows’. (c) 𝐹𝑚 and (d) weighted triadic pattern detection
for the same commodity. In absolute values 𝑚 = 1 accomodates the higher occurrence
and concentration of money. However, these ϐindings are within expectations
according to the reciprocal null model. Binary pattern detection signals a large
number of motifs (𝑚 = 6 and 𝑚 = 13) and anti‐motifs (𝑚 = 8, 𝑚 = 9 ad 𝑚 = 12).
However, even if occurrences for different triads are unexpected, the amount of
money on them is within expectation.

Figure 4.9 depicts the (a) number of triadic occurrences, 𝑁𝑚, and the (c) amount of triadic
fluxes, 𝐹𝑚, on connected triples. In terms of occurrence, the predominant structures are 𝑚 = 1
(predominant) and 𝑚 = 4. These types are associated with open triads with one supplier and
two users or one user and two suppliers, which leaves the commodity vulnerable to both user
and supply shocks in the event of bankruptcy. In weighted terms, there is a high concentration of
money on many types, namely 𝑚 = 1, 𝑚 = 3, and 𝑚 = 13, without a single type
predominating. It is noteworthy that there is a relatively high concentration of money in totally
reciprocal cycles, i.e. where suppliers are also users and supply and use cyclically in triadic
formation in a bi‐directional manner.

When comparing the empirical system with the null models in Fig.4.9(b), we find that only binary
motifs arise. Specifically, there are two motif (𝑚 = 6 and 𝑚 = 13) and three anti‐motifs (𝑚 = 8,
𝑚 = 9, and 𝑚 = 12). However, both negative and positive z‐score are very close to the interval
(−2, 2) at the 5% significance level.

At the same time no weighted motifs or anti‐motifs are present in Fig.4.9(d), i.e. the statistical
null model is able to recover the amount of money on different triads from node‐specific
properties.
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4.4.4 Cocoa/Chocolate
The fourth commodity layer that we choose for our testing is the ’Cocoa/Chocolate’ layer,
consisting of suppliers and users of the aforementioned product, as representative of Food
commodities. This layer consists of 28 suppliers and 29 users, making it a very small layer for
number of industries involved.

Figure 4.10 (Top‐Left) Counter‐cumulative distribution of out‐degrees and
in‐degrees for the different industries in the layer ’Cocoa/Chocolate’, with (Top‐Right)
the top 5 ranked industries in terms of binary activity (𝑘𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑘𝑖;𝑜𝑢𝑡 or
𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛). (Bottom‐Left) Counter‐cumulative distribution of supply and use
volumes for the different industries in the layer ’Cocoa/Chocolate’, with
(Bottom‐Right) the top 5 ranked industries in terms of supply/use activity
(𝑠𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑠𝑖;𝑜𝑢𝑡 or 𝑠𝑖;𝑖𝑛/ ∑𝑖 𝑠𝑖;𝑖𝑛). In all cases, both binary and weighted and both
supply and use, there is a monopolizing industry, i.e. ’Man. of chocolate and
confectionary’.

In Fig.4.10 the counter‐cumulative distribution for out‐degrees and in‐degrees (on the top‐left
panel) and supply and use (bottom‐left panel) are depicted. For ’out’ statistics the distribution is
plotted in blue, while the analogue for ’in’ statistics are plotted in orange. In both cases, the
statistics of interest is normalized by the sum across industries in the commodity layer.

Given the low number of industries in this commodity layer, the distributions contain only a small
number of points. The out‐degree and in‐degree distributions have a similar behaviour, implying
a similar concentration of in‐degree and out‐degree activities across industries. Taking the top 5
ranked industries (for activity) we see that they accommodate a number of suppliers ranging
from 7.2% to 15.1% and a number of users ranging from 5% to 16.5% of the total. In both cases
the monopolizing industry is ’Manifacturing of chocolate and confectionary’. The same industry
monopolizes also supply and use volumes with a 36% of supply activity and a 37.9% of use
activity.
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Figure 4.11 (a) 𝑁𝑚 and (b) binary triadic pattern detection for the commodity
’Cocoa/Chocolate’. (c) 𝐹𝑚 and (b) weighted triadic pattern detection for the same
commodity. While triads of type 𝑚 = 1 and 𝑚 = 4 occur with a high amount, their
occurrence is within expectations according to the null model. The same happens for
𝑚 = 6 in terms of money concentration on triads.

In Fig.4.11(a) the number of triadic occurrences 𝑁𝑚 and (c) amount of triadic fluxes 𝐹𝑚 on the
connected triples are depicted. In terms of occurrence the predominant structures are 𝑚 = 1
and 𝑚 = 4, the latter formed by two suppliers connected to the same user. Instead, in weighted
terms, the largest concentration of money lies on 𝑚 = 6, formed by a bi‐directional connection
between two industries that are both suppliers of one user. The presence of a bi‐directional
connection signals the presence of suppliers that are also users in the same commodity layers. A
possibility that is discarded when approximating commodity layers with business sectors, as
usually done in abscence of survey data.

When we compare the empirical system with the null models in Fig.4.11(b) and (d), we show that
no motif arise for triadic occurrences and triadic fluxes. The heterogeneous profile of 𝑁𝑚 and
𝐹𝑚 is hence well predicted by both RBCM and RBCM+CRWCM, i.e. input/output tendencies of
single micro‐industries on reciprocated and non‐reciprocated links totally describe the
mentioned statistics.

4.4.5 Other Road Transport & Pipelines
The commodity layer ’Other Road Transport & Pipelines’ comprises micro‐industries that supply
or use transport services that are not exclusively related to Tram, Bus or Taxi services. This
commodity layer consists of 33 suppliers and 476 users.
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Figure 4.12 (Top‐Left) Counter‐cumulative distribution of out‐degrees and
in‐degrees for the different industries in the layer ’Other Road Transport & Pipelines’,
with (Top‐Right) the top 5 ranked industries in terms of binary activity
(𝑘𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑘𝑖;𝑜𝑢𝑡 or 𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛). (Bottom‐Left) Counter‐cumulative distribution of
supply and use volumes for the different industries in the layer ’Other Road Transport
& Pipelines’, with (Bottom‐Right) the top 5 ranked industries in terms of supply/use
activity (𝑠𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑠𝑖;𝑜𝑢𝑡 or 𝑠𝑖;𝑖𝑛/ ∑𝑖 𝑠𝑖;𝑖𝑛).

In Fig.4.12 the counter‐cumulative distribution for out‐degrees and in‐degrees (on the top‐left
panel) and supply and use (bottom‐left panel) are depicted. For ’out’ statistics the distribution is
plotted in blue, while the analogue for ’in’ statistics are plotted in orange. In both cases, the
statistics of interest is normalized by the sum across industries in the commodity layer.

A very limited number of suppliers are connected to a plethora of users. On the top‐left panel we
can see a large number of users with a relatively very small number of connections. Conversely,
the out‐degree distribution has a fatter tail. On the bottom‐left panel the out‐strength and
in‐strength distributions are very similar for low values of the statistics, while they differ for high
values, where a large number of industries have higher supply volumes.

In both use and supply (both binary and weighted) the industry taking the largest activity is
’Freight tranport by road’, taking into account all firms that transport exclusively on the road. The
number of its users is the 39% of the total, with the 75% in supply volume activity. Conversely,
its number of suppliers is the 1.2% of the total, with the 14% for use volume activity. In terms of
supply its activity constitutes a quasi‐monopoly where the second ranked is the industry ’Moving
Transport’ with the 22.1%(compared to 39%) in out‐degree activity and a mere 10.2%(compared
to 75%) in supply volume activity.
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Figure 4.13 (a) 𝑁𝑚 and (b) binary triadic pattern detection for the commodity
’Other Road Transport & Pipelines’. (c) 𝐹𝑚 and (b) weighted triadic pattern detection
for the same commodity. while the ϐingerprint is typical in terms of absolute
measures, the proϐile given after discounting reciprocity via null models is not trivial.
RBCM signals twomotifs, namely 𝑚 = 9 and 𝑚 = 10, i.e. the looped triad and its
modiϐied version with a bi‐directional link. Instead, in weighted terms,
RBCM+CRWCM signals only motif for 𝑚 = 1, i.e. the open triad with one supplier and
two users. For this commodity, a triadic type such as 𝑚 = 1, that is not a motif in
binary terms it is signiϐicatively so in weighted terms.

The triadic measures 𝑁𝑚 and 𝐹𝑚 in Fig.4.13(a) and (c) describe the predominance of 𝑚 = 1, i.e.
formation with one supplier connected to two users, and the almost totally abscence of the
other type of triadic formations.

While the empirical values of occurrences and fluxes is as trivially expected formed by a high
number of (and weight on) open triads, such as 𝑚 = 1, the z‐score profiles obtained when
comparing to the statistical null model are not trivial. Specifically in Fig.4.13(b) various motifs
and anti‐motifs are shown, namely motif 𝑚 = 9 and 𝑚 = 11 and anti‐motifs 𝑚 = 8 and 𝑚 = 12.
Motif 𝑚 = 9 has been described in terms of financial networks, and has been proven to be a
significant actor in determining crisis, in fact it represents a cyclical loop, a formation that is
vulnerable to attacks on each node. In weighted terms, instead, as shown in Fig.4.13(d), only
𝑚 = 9 is signalled as motif having an unexpected amount of money on it. This result, further
increase the vulnerability of micro‐industries in this commodity layer. While it is not clear how an
industry can be totally taken out of the picture, an exogeneous shock to a firm in an industry
taking part in formation 𝑚 = 9 can clearly result in a systemic propagation towards other
industries because of cyclical relationships.

4.4.6 Tax Consultancy
Now let us discuss the commodity taking into account services in Tax Consultancy. This
commodity layer consists of 68 suppliers and 822 users.
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Figure 4.14 (Top‐Left) Counter‐cumulative distribution of out‐degrees and
in‐degrees for the different industries in the layer ’Legal & Accountancy: Tax
Consultants’, with (Top‐Right) the top 5 ranked industries in terms of binary activity
(𝑘𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑘𝑖;𝑜𝑢𝑡 or 𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛). (Bottom‐Left) Counter‐cumulative distribution of
supply and use volumes for the different industries in the layer ’Legal & Accountancy:
Tax Consultants’, with (Bottom‐Right) the top 5 ranked industries in terms of
supply/use activity (𝑠𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑠𝑖;𝑜𝑢𝑡 or 𝑠𝑖;𝑖𝑛/ ∑𝑖 𝑠𝑖;𝑖𝑛).

In Fig.4.14 the counter‐cumulative distribution for out‐degrees and in‐degrees (on the top‐left
panel) and supply and use (bottom‐left panel) are depicted. For ’out’ statistics the distribution is
plotted in blue, while the analogue for ’in’ statistics are plotted in orange. In both cases, the
statistics of interest is normalized by the sum across industries in the commodity layer.

In the top‐left panel the in‐degree distribution presents a very low activity for all industries,
consider that the top 5 ranked industries show an activity of around 0.4%. The out‐degree is
instead very heterogeneous for median activity but homogeneous around the top 5, with an
activity ranging from 7.1% to 7.8%. In both cases the leading industry is ’Accounting Offices’
followed by ’Law Firms’, for the number of users, and ’General Government Administration’, for
number of suppliers. The latter is the leading industry in use volumes with an activity of 12.5%,
slightly above the second ranked ”Organizational consultancy firms” with 7.6%. Contrarily, in
terms of supply volumes there is higher heterogeneity in the top 5, with the leading industry
’Accounting Offices’ taking 33% of activity with respect to the second ranked ’Law Firms’ with
12%.
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Figure 4.15 (a) 𝑁𝑚 and (b) binary triadic pattern detection for the commodity ’Legal
& Accountancy: Tax Consultants’. (c) 𝐹𝑚 and (b) weighted triadic pattern detection for
the same commodity. RBCMwell describes the triads, no motifs are present when
reciprocity of connections is taken into account. Instead, for what regards the total
intensities of input/output relationships, 𝑚 = 1 is a signiϐicative motif, i.e. an
unexpected large amount of money lies on this type of triads according to the
reciprocal model.

Fig.4.15 clearly shows a predominance of 𝑚 = 1 both regarding occurrences (and hence 𝑁𝑚)
and regarding triadic fluxes (and hence 𝐹𝑚). The measure for triadic fluxes also shows a
relatively high concentration of money on 𝑚 = 3 and 𝑚 = 6.

When comparing empirical measures with statistical null models, no motifs are discovered for
occurrences when taking into account both direction and reciprocity of links, as shown in
Fig.4.15(b). Instead, an analysis on triadic fluxes, shows that 𝑚 = 1 is clearly a weighted motif,
i.e. an unexpectedly high amount of money is concentrated on triadic structures with one
supplier and two users. The commodity layer, is hence, vulnerable to attacks on suppliers of Tax
Consultancy services.

4.4.7 Electricity
Finally, we discuss the ”Electricity” commodity layer, where industries are suppliers or users of
such commodity. This layer consists of 28 suppliers and 797 users.
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Figure 4.16 (Top‐Left) Counter‐cumulative distribution of out‐degrees and
in‐degrees for the different industries in the layer ’Electricity’, with (Top‐Right) the
top 5 ranked industries in terms of binary activity (𝑘𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑘𝑖;𝑜𝑢𝑡 or 𝑘𝑖;𝑖𝑛/ ∑𝑖 𝑘𝑖;𝑖𝑛).
(Bottom‐Left) Counter‐cumulative distribution of supply and use volumes for the
different industries in the layer ’Electricity’, with (Bottom‐Right) the top 5 ranked
industries in terms of supply/use activity (𝑠𝑖;𝑜𝑢𝑡/ ∑𝑖 𝑠𝑖;𝑜𝑢𝑡 or 𝑠𝑖;𝑖𝑛/ ∑𝑖 𝑠𝑖;𝑖𝑛). A high
concentration of supply volumes is around ϐirms capable of producig electricity using
thermal, nuclear, combined heat and power plants, namely the 52.7%. Instead use is
scattered across a multiplicity of industries, leaded by ’Supermarkets’ in number of
suppliers and ’Manifacturing of Tobacco Products’ in use volumes.

In Fig.4.16 the counter‐cumulative distribution for out‐degrees and in‐degrees (on the top‐left
panel) and supply and use (bottom‐left panel) are depicted. For ’out’ statistics the distribution is
plotted in blue, while the analogue for ’in’ statistics are plotted in orange. In both cases, the
statistics of interest is normalized by the sum across industries in the commodity layer.

’Electricity’ is a utility, a commodity of first necessity and as such accommodates a large number
of users connected to few suppliers, having the capability of producing this resource. The top 5
ranked industries for out‐degree activity (number of users) are ’Production of electricity by
thermal, nuclear and combinaed heat and power plants’ with 9%, followed by ’Production of
electricity through wind energy’ with 8.2%. Understandingly enough also firms in ’Cultivation of
apples and pears’ are able to produce energy, reasonably from biomass, with an activity of 7.1%.
While the out‐degree activity in the top 5 is rather homogeneous, ranging from 5.7% to 9%, the
same cannot be said about the supply volume activity ranging from 3% to 52.7%, with a clear
supplying monopoly of firms producing electricity from thermal, nuclear, combined heat and
power plants.

From the side of use, instead, the figure is relatively homogeneous. In‐degree activity (number of
suppliers) is aroud 0.3% for all of the industries in the top 5, namely ’Supermarkets’,
’Restaurants’, ’Flower Shops’, ’Fast Food Restaurants and Cafeterias’ and ’Keeping Dairy Cattle’. In
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terms of volumes, the top 5 have an activity ranging from 1.6% to 4.5% with as leading industry
the ’Manifacturing of Tobacco Products’.

  

Triadic Types

Figure 4.17 (a) 𝑁𝑚 and (b) binary triadic pattern detection for the commodity
’Other Road Electricity’. (c) 𝐹𝑚 and (b) weighted triadic pattern detection for the same
commodity.

In Fig.4.17 we see the profile of values of 𝑁𝑚 (on the left) and 𝐹𝑚 (on the right) for ’Electricity’.
Structure 𝑚 = 1 is the triadic formation dominant both in terms of occurrences and in terms of
triadic fluxes.

When passing to a description in terms of z‐scores, we discover a collection of motifs and
anti‐motifs. Specifically, in binary terms in Fig.4.17 (left), 𝑚 = 8 and 𝑚 = 12 are anti‐motifs
while 𝑚 = 9 and 𝑚 = 11 are motifs. Even if 𝑚 = 9 is not overly present in the data (almost
absent), its value is unexpectedly high, i.e. also in electricity it exists a problem in case of
bankrupcy of a single industry. More so, the z‐score profile for triadic fluxes in Fig.4.17(Right)
shows a motif 𝑚 = 9, so the commodity layer in ’Electricity’ is twofold vulnerable: industries in
𝑚 = 9 structures can be broken when a single industry goes bankrupt (motif in binary terms), i.e.
has a huge economic crash, or even when it has a significant reduction in input/output (motif in
weighted terms).

5 Discussion

From the point of view of NSI’s in general there are two main reasons to the systematic study of
reconstruction techniques for networks. The first reason is that in many countries the necessary
data at microlevel is not available to be able to track supplier‐user relationships. As noted in the
introduction, for countries where VAT data is registered per transaction between firms the data
can be a great resource, although even there, a substantial data‐cleaning effort is still required.
However, for the Netherlands there is no such system unless a transaction involves cross‐border
traffic.

For a modest sample of companies supply‐use relationships are collected using external
datasuppliers, and totals in terms of turnover per firm are also known. These are certainly
important constraints but they do not provide the necessary detail by themselves. Purely from
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the point of view of traditional National Accounting, the turnovers might be considered to be
sufficient. However, there is an increasing awareness that National Accounts are inadequate for
economic planning, for economic risk assessment, and for supply chain accountability in the
context of environmental footprints, money laundering, or exploitation of labour. In all of these
policy areas, there is a demand for reliable and comprehensive facts to support the decision‐ and
policy‐making process. All of these purposes require a much more fine‐grained view of
supplier‐user relationships.

The ideal situation does remain to be that a ground truth of microlevel data is available,
preferably at the level of the volume and/or value of exchange of goods or services between
firms. Currently, the deterministic modelling that is implemented at Statistics Netherlands is a
form of model‐based (mass) imputation. A set of stylized ‘rules’ has been compiled, using expert
economic insights and also empirically established correlations using as examples countries
where transactional (VAT) data are available. As with imputation on a large scale in other
socio‐economic subject areas, there are reservations in using this for general‐purpose statistical
output because for any particular use the quality of the output might well suffer from biases that
are poorly understood.

At the very least, as has been pointed out in previous CBS discussion papers on network
reconstruction (Rachkov et al. 2021, Kayzel and Pijpers 2023), the deterministic reconstruction
must continue to be confronted and contrasted with the results from a very different approach.
Also, since the output of any reconstruction method is ultimately a model of the real
(unobserved) network, from the point of view of goodness of fit it is of course crucial that the
real network is given positive likelihood by the reconstruction method itself. This has vanishing
probability to happen via a deterministic method, while probabilistic methods that admit all
possible networks as outcomes automatically ensure a positive likelihood for the real one.
Clearly, the challenge for probabilistic methods is that of producing informative probability
distributions that are sufficiently concentrated around the real network. As is demonstrated in
this paper, the unbiased maximum‐entropy reconstruction method is perfect for this purpose,
once it uses informative constraints as input.

Compared with the recent CBS papers (Rachkov et al. 2021, Kayzel and Pijpers 2023) one very
important extension is introduced in the modelling. Explicit account is taken not only in the
direction of the supply‐use relationship, but also whether there is a reciprocity in such
relationships. Especially for a reconstruction per commodity layer but between industries, rather
than individual firms, as is done here, the expectation is that there is substantial reciprocity,
which in fact should increase for increasing aggregation towards entire sector level. This is
sufficiently robust for networks that advantage can be taken of the fact in adding further
constraints to the reconstruction, and hence construct more precise and accurate network
realisations that are genuinely closer to the true network.

In addition to the improvement in accuracy of the reconstruction, leading to smaller margins of
uncertainty on any statistical measure of network properties, there is a benefit in using the
network null model to identify empirical deviations from it, gaining an understanding of
unexpected structural properties.

From the previous section, and also the tabular summary of results for each commodity layer
shown in appendix C, it is clear that for many commodity layers there is no significant deviation
at all from the null model. In by far the most commodity layers there are at most a few motifs;
i.e. significant deviations from the null model for a few types of triads. This demonstrates that as
a framework for structure of industry‐to‐industry relationships at the SBI5 classification level, the
null model is indeed useful and informative. As one would expect, there are nevertheless also a
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substantial number of commodity layers that have a distinctive pattern of motifs. This is an
indication that the structuring of these layers is distinctive and require further investigation.
There are multiple potential causes that could underlie such structures. For instance, it may be
that the structure of these layers is different because there is a very commodity specific use that
imposes that structure. On the other hand, in analogy with the financial markets where this
model has previously been applied, it can indicate that there are structural inefficiencies or
vulnerabilities in the industries where that class of commodities play a central role. Perhaps, they
could indicate frictions between legislative and market forces, or interactions with international
firm‐to‐firm trade, for example. It is precisely the fingerprint of motifs for those commodity
layers that help in identifying which industries are most of interest and why. Hence the network
reconstruction technique is a very important addition to the analysis toolbox for structural
economists.

Over the past few years there has been an increasing interest from the point of view of
environmental policy, sustainability, and also exploitation of labour to understand the
interdependencies in manufacturing and the combined footprints of goods and services supplied
to end‐users. In the absence of a full ground truth it is important to have reliable reconstruction
methods that can, at least in a statistical sense, map out the most likely footprint in any of these
aspects for any given commodity. By monitoring the network structure it also becomes feasible
to monitor the effects that for instance the ”Green Deal” policies are having on these structures
and hence help in judging how effective those policy measures are and which (unintended) side
effects become visible through trade relationships. In this sense a suite of much more targeted
statistical indicators comes within reach, that illuminate how the economy functions rather than
merely describing (collectively) the properties of the actors: static snapshots of what is
intrinsically a dynamic process.

As a next step for Statistics Netherlands, the reconstruction techniques are to be made available
as tools to the economic division to assist in targeting detailed analysis of the structure of the
economy. Eventually, the combination of expert knowledge and the industry‐to‐industry (and
potentially firm‐to‐firm) network motifs will provide the link between the motifs and the
functioning in terms of resilience, redundancy, competition, and circularity, to name but a few,
for all Dutch industry sectors. This might lead to enabling using the motif‐fingerprint directly as
an indicator for which policy risk or benefits are being incurred, and whether and what particular
policy might be most beneficial to each in order to reach societal or policy goals.

6 Conclusion

The main contribution of this paper is in a comprehensive mapping of triadic motifs per industrial
sector in the Netherlands, using appropriate null models for the interfirm network as outlined in
the paper Di Vece et al. 2024. Triadic motifs are the smallest interconnected building blocks of
complex networks, such as production networks. They can be detected as over‐occurrences with
respect to null models that only consider pairwise interactions.

The results of this paper show that, while the aggregate industry‐to‐industry network (where
industries are linked by trade in any possible commodity) exhibits so many deviating triadic
motifs that it would be impossible to use the reconstruction method to any degree of reliability,
the individual commodity‐specific layers of the industry‐to‐industry network show either no
deviating motifs or at most a few of them. This basically indicates that different commodities can
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be characterized in terms of very simple fingerprints of deviation (if any) from the null model. The
detected existence of significant motifs in some, but certainly not all, industrial sectors can be
economically important. If they act as amplifiers of shocks and hence increase vulnerabilities but
also if they in fact act to dampen out shocks and increase resilience. It could even be that some
motifs, in combination with production delays, could act a endogenous generators of economic
‘noise’ or shocks (see e.g. Moran et al. 2024). The comprehensive sectorial analysis presented
here identifies some sectors of particular interest, which should be the focus of such research.

It is worthwhile using the reconstructed network as a starting point, for instance for agent based
modelling to test out the behaviour of the economic system under supply or demand shocks or
random endogenous delays in production chains. Such research would then also identify which
indicators or aggregates of network properties would be most suitable for policy makers as they
would be economically the most influential and distinctive for the performance of the system.
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Appendix A MLE for Binary Null Mod‐
els

Let us tackle the problem of Maximum Likelihood Estimation for the RBCM. Its distribution for
the adjacency matrix is given by Eq.24. We define the Log‐Likelihood ℒ𝑏 = ln(𝑃 (𝐴)), which after
simple algebra can be rewritten as

ℒ𝑏 = − ∑
𝑖

(𝜃→
𝑖 𝑘→

𝑖 + 𝜃←
𝑖 𝑘←

𝑖 + 𝜃↔
𝑖 𝑘↔

𝑖 ) − ∑
𝑖,𝑗<𝑖

ln(1 + 𝑥→
𝑖 𝑥←

𝑗 + 𝑥←
𝑖 𝑥→

𝑗 + 𝑥↔
𝑖 𝑥↔

𝑗 ), (A.1)

where the 𝑥⋅
𝑖 represent the exponentiated version of the Lagrange parameters, as already

discussed in the main paper.

The first‐order equations needed to estimate the set of 3𝑁 parameters {𝜃→
𝑖 , 𝜃←

𝑖 , 𝜃↔
𝑖 } is given by

the partial derivatives of ℒ𝑏 onto the mentioned parameters:

⎧{
⎨{⎩

𝜕𝜃→
𝑖

ℒ𝑏 = −𝑘→,∗
𝑖 + ⟨𝑘→

𝑖 ⟩
𝜕𝜃←

𝑖
ℒ𝑏 = −𝑘←,∗

𝑖 + ⟨𝑘←
𝑖 ⟩

𝜕𝜃↔
𝑖

ℒ𝑏 = −𝑘↔,∗
𝑖 + ⟨𝑘↔

𝑖 ⟩,
(A.2)

equating the empirical set of non‐reciprocated and reciprocated degrees to their expected
values.

The model is optimized using the Newton‐Raphson method implemented in the python package
NuMeTriS available on Pypi and GitHub.

Appendix B GLE forWeightedNullMod‐
els

Let us consider now the problem of Maximum Generalized‐Loglikelihood Estimation (GLE) for the
CRWCM. As already stated in the main paper it is possible to factorize the conditional weight
distribution 𝑄(𝑊|𝐴) in a reciprocated 𝑄(𝑊|𝐴→) and a non‐reciprocated part 𝑄(𝑊|𝐴↔). The
model assumes that we know the type of the connection established between each dyad, i.e. we
know 𝐴 completely.

For convenience, we treat here only the problem for the non‐reciprocated component, the
reciprocated one follows the exact same principles.

The function 𝑄(𝑊|𝐴→) follows equation Eq.35 and hence the relative log‐likelihood
ℒ𝑤 = ln(𝑄(𝑊|𝐴→)) can be written as

ℒ𝑤 = − ∑
𝑖

(𝛽→
𝑖 𝑠→

𝑖 + 𝛽←
𝑖 𝑠←

𝑖 ) + ∑
𝑖,𝑗≠𝑖

𝑎→
𝑖𝑗 (𝛽→

𝑖 + 𝛽←
𝑗 ) , (B.1)
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a term including the constraints weighted by their Lagrange parameters and minus the logarithm
of the ’partition function’ 𝑍𝐴, describing how probabilities are partitioned in all available states.
A parameter estimation done on this functional restricts the available configuration as those
compatible with the specific empirical realization 𝐴∗. If, instead, we want our estimation to be
consistent with the binary model, allowing for the model‐dependent noise, we can substitute the
connection probability to the empirical adjacency matrix component, i.e. 𝑎→

𝑖𝑗 → (𝑝→
𝑖𝑗 )𝑚𝑜𝑑𝑒𝑙,

defining a Generalized Log‐Likelihood 𝒢𝑤

𝒢𝑤 = − ∑
𝑖

(𝛽→
𝑖 𝑠→

𝑖 + 𝛽←
𝑖 𝑠←

𝑖 ) + ∑
𝑖,𝑗≠𝑖

𝑝→
𝑖𝑗 (𝛽→

𝑖 + 𝛽←
𝑗 ) . (B.2)

The use of GLE requires the choice of a binary model to which the CRWCM is estimated on. In
order to take into account reciprocation of links, a natural choice is to mix CRWCM with RBCM.

The estimation of the set of 2𝑁 parameters {𝛽→
𝑖 , 𝛽←

𝑖 , } follows by deriving 𝒢𝑤 on them

{𝜕𝛽→
𝑖

𝒢𝑤 = −𝑠→,∗
𝑖 + ⟨𝑠→

𝑖 ⟩
𝜕𝛽←

𝑖
𝒢𝑤 = −𝑠←,∗

𝑖 + ⟨𝑠←
𝑖 ⟩

(B.3)

where 𝑠⋅,∗
𝑖 are the empirical non‐reciprocated strength sequences and ⟨𝑠⋅

𝑖⟩ are the related
ensemble average according to the RBCM+CRWCM, e.g.

⎧{{
⎨{{⎩

⟨𝑠→
𝑖 ⟩ = ∑𝑗≠𝑖

(𝑝→
𝑖𝑗 )𝑅𝐵𝐶𝑀

(𝛽→
𝑖 + 𝛽←

𝑗 )

⟨𝑠←
𝑖 ⟩ = ∑𝑗≠𝑖

(𝑝←
𝑖𝑗 )𝑅𝐵𝐶𝑀

(𝛽←
𝑖 + 𝛽→

𝑗 )
.

(B.4)

The GLE estimation of the RBCM+CRWCM is available on the NuMeTriS package, using the
Newton‐Raphson method, on Pypi and GitHub.

Appendix C SummaryofPatternDetec‐
tion Analysis

In the following table each commodity layer is described in terms of binary motifs (anti‐motifs)
and weighted motifs (anti‐motifs). For each 𝑚 triadic subgraph‐type two symbols are depicted,
the first for binary motifs and the second for weighted motifs. If a motif (higher occurrence or
concentration of money than expected) is present, it is represented by a ’+’ symbol. If an
anti‐motif (lower occurrence or lower concentration of money than expected) is present, it is
represented by a ’‐’. If no motifs or anti‐motifs are present, than this event is represented by a
dot ’⋅’. For example, the commodity ’Cereals’ is characterized by no motifs for all 𝑚 triadic types,
and is hence characterized by a double dot, respectively for binary and weighted motifs, for each
type. Instead, the third commodity in the table, i.e. ’Potatoes’, is characterized by a weighted
motif for 𝑚 = 2, represented by the symbol ’⋅+’ (no binary motif and a weighted motif), a
weighted anti‐motif in 𝑚 = 5, represented by the symbol ’⋅ ‐’, and likewise for 𝑚 = 12.
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Motif profile
Commodity 1 2 3 4 5 6 7 8 9 10 11 12 13
Cereals ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oil‐bearing Seeds ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Potatoes ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅
Seeds ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Vegetables ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Flowers ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Other Arable Crops ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Fruit ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Bulb/Plant/Cutting ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Beef/Veal ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Raw Milk ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Pigs/Piglets ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅
Poultry ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Eggs ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Other An. Products ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Agr. Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Forestry Prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Fresh Fish ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Petrolium ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Natural Gas ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Minerals ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Mining Svcs. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Veal/Beef Meat ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Pork ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Poultry Meat ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Meat ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Processed Fish ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Potato Prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Fruit/Veg. Juice ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Fruit/Veg. prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oils/Cattle ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Edible Fats ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Drinking Milk ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Milk Powder ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Butter/Butter Oil ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Cheese ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Dairy Prods. ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Motif profile
Commodity 1 2 3 4 5 6 7 8 9 10 11 12 13
Rice/Grain Prods. ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Starch Prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Bakery Prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅
Cocoa/Chocolate ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Coffee/Tea ⋅ ⋅ ⋅+ ‐ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Food ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Animal Feed ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Wine/Liquors ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Beer/Malt ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Non alcoholic beverages ⋅+ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Te⋅tile raw mat. ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Clothing ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Wood (plates) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Wood Prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Paper/Cardboard/Pulp ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Paper/Cardboard
Prods.

⋅+ +⋅ ‐ ⋅ ⋅ ⋅ ‐ ⋅ +⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ‐ ⋅ +⋅

Printing ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. oil, coal prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅
Gasoline ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Jet Fuel ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Diesel ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Heavy Fuel Oil ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Liquid Com‐
bustibles

⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Chemical Processing:
Raw Materials

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Organic Raw Materials ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Fertilizer ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Synthetic Resins ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Pest Control ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Paint/Varnish/Ink ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅
Soap/Polish/Perfume ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Chemical Prods. ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅
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Motif profile
Commodity 1 2 3 4 5 6 7 8 9 10 11 12 13
Pharmaceutical RawMa‐
terials

⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Pharmaceutical Prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Rubber Bands & Oth.
Rubber Prods

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Plastic Sheeting ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅+ ‐+ +⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅
Plastic Packaging ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Plastic Construction
Goods

⋅ ⋅ ⋅+ +⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Oth. Plastic Prods. ⋅+ +⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ++ ‐ ‐ ⋅ ⋅
Oth. Building Material ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅
Glass Prods. ⋅ ⋅ +⋅ ‐ ‐ ⋅ ⋅ ‐ ‐ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Cement and Ceramic
Prods.

⋅+ ⋅+ ⋅ ⋅ ⋅+ ⋅+ ⋅+ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅

Concrete Prods. ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Ferrous Sheeting & Tub‐
ing

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Non‐Ferrous metals and
prods.

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Oth. Metal Prods. ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅
Metal Components for
Doors & Windows

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ‐ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ +⋅

Electrical Components ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Computer, Peripherals,
Components

⋅+ ++ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Transmitter/Telephone ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Radio/TV/Video ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Measurement Devices ⋅+ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ +⋅ ‐ ‐ ⋅ ⋅
Photo Devices ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Electrical Devices ⋅+ ++ ⋅ ⋅ +⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅
Household Devices ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅
Oth. Machine Devices ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Motif profile
Commodity 1 2 3 4 5 6 7 8 9 10 11 12 13
Oth. Car & Bus Semitrail‐
ers

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Auto Components ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ‐ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅
Ships/Floating Materials ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Planes & Components ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Motorcycles & Oth.
Transport & Compo‐
nents

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅

Furniture & components ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅
Oth. Goods ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ‐ ⋅ ⋅ ⋅
Repair, Installation,
Maintenance

⋅+ ⋅ ⋅ ⋅+ +⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Electricity ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ++ ⋅ ⋅ +⋅ ‐ ⋅ ⋅ ⋅
Gas/Hot Water/City
Heating

⋅+ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Net and Land Energy ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Water ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Environmental Service
Government

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Environmental Service
Commercial

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Cleaning & purification
concessions

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Waste Metal/Slag ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Other & Dang. Waste ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Constr: New Housing ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Constr: Building Mainte‐
nance

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Constr: Tunelling, Wa‐
terways, Roads

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Spec. Constr: New
Housing

⋅+ ⋅+ ⋅ ⋅ ⋅+ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Spec. Constr: House
Maintenance

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Spec. Constr: New
Building

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ‐ ‐ ⋅ ⋅ ⋅ ⋅

Spec. Constr: Building
Maintenance

⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Spec. Constr: Tunelling,
Waterways, Roads

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Motif profile
Commodity 1 2 3 4 5 6 7 8 9 10 11 12 13
Installation Insulation
House

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Installation Insulation
Other Buildings

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Installation Maint.
Tunelling, Waterways,
Roads

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Maintenance Cars &Mo‐
torcycles

⋅+ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅

Trading Services ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Train Transport Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Tram & Bus transport
Services

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Oth. Road Transport &
Pipelines

⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Taxi Services/Oth. peo‐
ple transport

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Shipping Services ⋅ ⋅ +⋅ ‐ ⋅ ⋅+ ‐ ‐ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ‐ ⋅ ⋅ ⋅
Airline Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Transport‐related
services

⋅+ ⋅ ⋅ ⋅ ⋅ ⋅+ ‐ ⋅ +⋅ ⋅ ⋅ ‐ ⋅ ‐ ⋅ ‐ ‐ +⋅ ⋅ ⋅ +⋅

Postal Services ⋅+ ++ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Courier Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Catering Hospitality Ser‐
vices

⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Catering Food & Drink ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(E‐)Books/Calendars ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Ads ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅
Magazine/Newspapers ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Printed Matter & Online ⋅+ ⋅+ ⋅ ⋅ ++ ‐+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Software/Games ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Film/Cinema/Sound ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Music on Carrier or Pa‐
per

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Radio& TV: state& Com‐
mercial

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Telecomm. Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅+ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅
Computer Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ‐ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Motif profile
Commodity 1 2 3 4 5 6 7 8 9 10 11 12 13
Web Services/News
Agencies

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Commission Financial In‐
stitution

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

FISIM ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Non‐Life Insurance ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Financial Emergency
Services

⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ‐ ⋅ ⋅ ‐ ‐ ⋅ ⋅

Estate Agents ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Rent Commercial Build‐
ing

⋅+ ⋅ ⋅ ‐ ⋅ ‐ ⋅ ‐ ⋅ +⋅ ‐ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ++

Rent Commercial Build‐
ing (exempt)

⋅ ⋅ ⋅ ⋅ ‐ ⋅ ‐ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅

Legal&Accountancy: Ta⋅
Consultants

⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Intra‐Group Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅+ ⋅+
Economic & Manage‐
ment Consultancy

⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Engineer & Architecture
& Building Inspection

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅

R & D ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Advertising, Market &
Opinion Research

⋅ ⋅ ⋅ ⋅ ⋅+ ⋅+ ⋅ ⋅ ⋅+ ⋅+ ⋅+ ‐ ⋅ ‐ ⋅ ⋅+ ⋅+ ⋅+

Specialist Business Ser‐
vices

⋅+ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅

Veterinary Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Car Rental & Leasing ⋅+ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ +⋅
Licenses, Royalties, Agri‐
cultural

⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Rental of other real es‐
tate

⋅+ ⋅ ⋅ ‐ ⋅ ‐ ⋅ ⋅ ⋅ ++ ‐ ⋅ ‐ ⋅ ⋅ ⋅ ‐ ⋅ +⋅ ⋅ ⋅ ++

Temporary Workforce
agencies and intermedi‐
aries

⋅+ +⋅ ‐ ⋅ ‐ ⋅ ‐ ⋅ +⋅ ‐ ⋅ ‐ ⋅ +⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ +⋅

Travel Agency ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Travel Organization ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Info/Booking ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Motif profile
Commodity 1 2 3 4 5 6 7 8 9 10 11 12 13
Security & Detective Ser‐
vices

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Gardening, Landscaping,
Cleaning Services

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅

Oth. Commercial Ser‐
vices

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Health Care providers;
government

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Governmental Market
Services

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Education Services
(agencies)

⋅ ⋅ ⋅+ ⋅ ⋅ ⋅+ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Private/Commercial Ed‐
ucation

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Hospital Care ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Health Care ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Oth. Welfare Work ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Entertainment & Art ⋅+ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Cultural Institutions,
Museums, Libraries

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Sports Recreation ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ‐ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅
Social & Charitable or‐
ganisations

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Art conservation & re‐
pair

‐+ +⋅ ⋅ ⋅ +⋅ ‐ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Personal Services ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Intermediary Construc‐
tion (taxed)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Intermediary Construc‐
tion (exempt)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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