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Abstract

This work is carried out by Statistics Netherlands in collaboration with the Netherlands
Institute for Transport Policy Analysis (KiM)/Rijkswaterstaat as an extension to the trend
series projects carried out in 2018-2023, in which time series multilevel models have
been developed for the estimation of mobility trends, accounting for the discontinuities
due to changes in measurement bias induced by various redesigns over this period. In
the current extension, new data from the Dutch Travel Survey (DTS) over 2023 are added
to the series.

Mobility was severely affected by the Covid-19 pandemic in the years 2020, 2021 and to
a lesser extent 2022. This complicated the estimation of the discontinuities associated
with the latest DTS redesign that led to the current design as of 2018. Even though Covid
is no longer directly affecting mobility, there are some lasting effects, for example
because many people work more often from home. For these reasons, the models
developed include several Covid effects. This year the model has been updated to
represent Covid effects as a combination of (1) constant, lasting effects, (2) effects
proportional to the stringency of imposed Covid measures, and (3) attenuating effects
that are maximal at the start of the Covid pandemic and that exponentially decrease to
zero.

We describe the updated models for the two target variables considered so far: the
number of trip legs per person per day and the distance travelled per trip leg. In
addition, we now also estimate trend series for travel duration per trip leg. The model
that has been developed for duration per trip leg is analogous to the model for distance
per trip leg.

The models are specified in a hierarchical Bayesian framework and estimated using a
Markov Chain Monte Carlo simulation method. From the model outputs trend estimates
are computed at various aggregation levels for the mean number of trip legs per person
per day, the mean distance travelled per trip leg, and the mean duration per trip leg, as
well as for derived quantities such as the mean travel distance or duration per person
per day.
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Introduction

The Dutch Travel Survey (DTS) is a long-standing annual survey on mobility of residents
of the Netherlands. It is carried out by Statistics Netherlands (CBS), and important users
of the data are, among others, Rijkswaterstaat and The Netherlands Institute for
Transport Policy Analysis (KiM, Kennisinstituut voor Mobiliteitsbeleid), both part of the
Ministry of Infrastructure and Water Management.

Since 1985, the DTS survey has undergone several redesigns. The redesigns in 1999,
2004, 2010 and 2018 have caused major discontinuities in the time series of mobility
estimates. In 2004 the design actually remained largely unchanged, but its
implementation was transferred to another agency, causing several changes in the
observed series. For brevity, however, we will mostly also refer to this transition as a
‘redesign’.

For users of mobility estimates the changes due to redesigns are very inconvenient as
they hamper the temporal comparability. For the redesign of 1999 direct information
was available on the sizes of the discontinuities, based on a parallel conducted pilot
study. This has been used to correct the series of estimates prior to 1999 to the level of
the estimates under the new design. For the redesigns of 2004, 2010 and 2018 such
parallel studies have not been carried out, so in order to estimate the discontinuities a
time series model is needed, see van den Brakel et al. (2020). The time series models
developed in the current trend estimation project aim to account for the discontinuities
due to the redesigns, such that reliable series of trend estimates are obtained with good
comparability over time.

Another issue addressed in the trend estimation project is the fact that estimates are
desired for a breakdown into many domains, meaning that for each domain determined
by both person characteristics (sex and age class) and trip characteristics (purpose and
transportation mode) reliable time series of estimates are to be produced. So not only
the discontinuities in each of these series should be accounted for, but in addition the
amount of data directly relevant to an estimation domain in a specific year is often so
small that direct estimates are very noisy and unreliable. The time series of such direct
estimates display a lot of volatility caused by the large variances. The time series models
developed are able to reduce the noise and yield model estimates that are more precise
than the direct estimates by 'borrowing strength’ over time as well as over multiple
domains. Here the 'borrowing of strength’ over domains is brought about by using
multilevel time series models with random effects for several levels defining the
domains. Within the field of official statistics, the framework of using models to improve
on the accuracy of direct estimates for domains of interest is known as small area
estimation, see Rao and Molina (2015) for an overview.

The overall purpose of the mobility trends project has been described by the initiators of
the project (KiM, Rijkswaterstaat, CBS) as 'Development of a statistical methodology that
can derive reliable trend estimates from OVG-MON-OViN-ODiN sample data for the
most prevalent mobility data and that deals in a robust way with discontinuities due to
redesigns of the survey process and sample noise.” Here OVG, MON, OViN and ODiN
refer to the various names used for the DTS during periods with different survey designs.
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To achieve the purpose as described, time series multilevel models are employed to fit
the input data, consisting of direct estimates and estimated standard errors compiled
from the DTS survey data. The resulting trend estimates are used by KiM for example in
their publication ‘Mobiliteitsbeeld’!) containing actual figures, trends, and expectations
about mobility in the Netherlands. The trend estimates are also published on Statistics
Netherlands’ publication database StatLine, along with the regular annual output based
on the DTS. Starting from 2022 the trend estimates are corrected to the ODiN design
measurement level, where previously all estimates were corrected to the OViN design
measurement level. This means that many trend series of number of trip legs and
distance per trip leg are now estimated slightly higher than before 2022, since the
change-over from OViN to ODIN in general has had an upward effect on the
sample-based estimates. The same is found to be true of the new series for travel
duration per trip leg. One possible reason for these changes is that under the OViN
design there was more under-reporting of trips. Another reason might be that under
ODiN the definition shifted to also include domestic holiday mobility.

Starting from this year, three target variables are modelled using time series multilevel
models:

— number of trip legs per person per day (pppd)
— distance per trip leg (in hectometers)
— travel duration per trip leg (in minutes)

A trip for a certain purpose may consist of several trip legs characterized by different
transportation modes. In our definition of travel duration per trip leg, we include the
waiting time preceding the trip leg, if that trip leg is not the first leg of a (multi-leg) trip,
see Subsection 2.1 for more information regarding the travel durations observed under
the DTS.

Trend estimates for the three target variables are computed for domains defined by a
cross-classification of some or all of the following classification variables:

sex (male, female)

age class (6-11, 12-17, 18-24, 25-29, 30-39, 40-49, 50-59, 60-64, 65-69, 70+)
purpose ("Work”, "Shopping”, "Education”, “Leisure”, "Other”)

mode (”Car driver”, "Car passenger”, “Train”, "BTM (bus/tram/metro)”, ”Cycling”,
"Walking”, "Other”)

Age group 0-5 is no longer included, as this group is not observed under the ODIN
design, which started in 2018. This means that aggregate estimates now always refer to
the population of people aged 6 and over.

The time series multilevel models are defined at the most detailed level, corresponding
to the full cross-classification of sex, age class, purpose and mode, giving rise to

2 x 10 x 5 x 7 = 700 estimates for a particular year, although some of them such as
car-driving or working for young children are structurally zero.

As observed in an earlier project phase, modelling all discontinuities as fixed effects
generally results in overestimated discontinuities (Bollineni-Balabay et al., 2017). To
reduce the risk of overestimated discontinuities and overfitting in general, we model

1 https://www.kimnet.nl/mobiliteitsbeeld
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many effects including discontinuities associated with the design transitions as random
effects instead. In particular, a regularization method that employs non-normally
distributed random effects is used to suppress noisy model coefficients and at the same
time allow large effects sufficiently supported by the data. Outliers in the input series of
direct estimates are also modelled, either by adopting a sampling distribution with
broader than normal tails or by modelling them explicitly as additional random effects,
which are subsequently removed from the trend estimates.

In Boonstra et al. (2019, 2021, 2022); Boonstra and van den Brakel (2023) previous
results on model development and mobility trend estimates based on the DTS are
described. In this report we update these results after including the latest DTS data over
2023.

The effects that the Covid-19 pandemic has had on mobility in 2020 turned out to be too
sudden and too large for the time series models developed before 2021 to
accommodate. Therefore in Boonstra et al. (2021) the models have been extended by
including Covid effects for the year 2020. Omission of such effects would adversely affect
the estimation of smooth trend model components and discontinuities corresponding to
the ODIN redesign. The inclusion of ODiIN 2021 data made it clear that Covid had slightly
different (generally smaller) effects in 2021, making it necessary to differentiate between
Covid 2020 and 2021 effects in the model (Boonstra et al., 2022). Covid effects in 2022
were again different, and generally smaller. The model was therefore updated last year
(Boonstra and van den Brakel, 2023) to differentiate between Covid effects of 2020, 2021
and 2022. In 2023 there were no direct Covid effects on mobility in the sense that no
restrictive measures were imposed. However, the Covid pandemic has lasting effects on
mobility, e.g. an increase in working from home. We have therefore changed the Covid
effects modelling from year-specific effects to a parametrisation in terms of effects
proportional to a measure of the stringency of government-imposed restrictive
measures, diminishing ‘shock’ effects, and lasting effects. This way of modelling has the
expected advantage to obviate the need to introduce Covid effects for each new year,
which would hamper learning from the time-series data.

The remainder of this report is organized as follows. Section 2 describes the data sources
used including a brief overview of the different redesigns the DTS has undergone. In
Section 3 the computation of direct estimates and variance estimates from the DTS
survey data is discussed, along with transformations of direct estimates and the
Generalized Variance Function approach for smoothing the variance estimates, which
both improve model fitting. Section 4 describes the hierarchical Bayesian time series
multilevel modelling framework. The (updated) models for trip legs and distance, as well
as the new model for travel duration, are presented in Section 5. Section 6 provides a
discussion of the trend estimates based on the estimated models. The paper concludes
with a discussion in Section 7. The appendices contain figures of the estimated trend
series based on the models developed.
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Data sources

The DTS is an annual survey that attempts to measure the travel behaviour of the Dutch
population. Each year, a sample is drawn with sampling units being defined either as
households (before 2010), or persons (since 2010). The variables of interest considered
in this study are the number of trip legs, the distance traveled and travel duration. Direct
estimates for these quantities can be obtained using the survey weights that are
computed for each year’s response data. The survey weights account for the sampling
design and reduce bias due to non-response.

The DTS started in 1978, and originally was known under the (Dutch) name Onderzoek
Verplaatsingsgedrag (OVG). It started off as a face-to-face household survey where each
household member 12 years or older was asked to report his/her mobility for two days.
In 1985 the first large redesign took place. Interview modes changed to telephone and
postal, and respondents reported their mobility for one specific day. This redesign led to
discontinuities in the annual series of some of the statistics based on OVG. In 1994 the
sample size of the DTS was substantially increased and from that year on children under
12 years old have also been included in the surveyed population of interest. In 1999, the
DTS went through a second major redesign that featured some response motivation and
follow-up measures. In preparation to this redesign a pilot based on the new design was
conducted in 1998 in parallel with the survey under the old design. Based on the parallel
surveys, correction factors were computed to correct the 1985-1998 OVG to the level of
the new OVG. In 2004, the data collection for the survey was transferred to another
agency. The survey design remained largely unchanged except for smaller sample sizes
and some methodological changes. This 2004 transition also gave rise to discontinuities
in some of the series, notably those disaggregated by purpose. The DTS during the
period from 2004 until the next major redesign in 2010 is referred to as MON
(Mobiliteitsonderzoek Nederland). Since 2010 the DTS has been conducted by Statistics
Netherlands again. In 2010 the survey changed to a person survey, and a sequential
mixed mode design with face-to-face, telephone and web modes was established. This
changeover led to sizeable discontinuities in many series. The years 2010 to 2017
constitute the OViN (Onderzoek Verplaatsingen in Nederland) period of the DTS. For
more information on the history of the DTS and the changes resulting from the
redesigns, we refer to Konen and Molnar (2007), Molnar (2007) and Willems and

van den Brakel (2015).

Starting from 2018 the current design, named ODiN (Onderweg in Nederland), is in
place. In ODIN several changes have been adopted, most of which can have systematic
effects on the level of the observed mobility characteristics. Among the most important
changes are

— The questionnaire has been completely redesigned.

— Children aged 0-5 are no longer surveyed.

— The definition of ‘regular’ mobility, which is the definition used in most DTS-based
publications, has changed, and now includes domestic holiday and professional
mobility. Flight trips are no longer observed in ODIN.

— ODiN is a web-only survey, where OViN used a sequential mixed-mode web -
face-to-face/telephone interviewing strategy. To boost response rates incentives in
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2.1

the form of (a chance to win) electronic gadgets are used.
— A new weighting scheme is used to better account for the changed composition of
the response due to the design changes, including changes in regional oversampling.

The DTS only considers mobility within the Netherlands. Also, the DTS uses the concept
of regular mobility, which until 2017 excluded holiday mobility as well as professional
transport mobility. As mentioned, however, the definition of regular mobility has
changed under the ODIiN redesign and now includes both domestic holiday and
professional mobility. In the case of professional mobility, the data allow to identify such
trips, and it was decided to exclude professional mobility, to be more consistent with the
definition of mobility used previously in the trend estimation project. However, the
ODiN questionnaire design does not easily allow to remove the observed domestic
holiday mobility. This means that the ODiN discontinuities will include the effects of this
change in mobility definition.

For the OViN years the data contain a small number of trips for children under the age of
12 with purpose "Work”, and we have changed this to purpose "Other”. Flight trips are
also removed from the data, because they are no longer reported in ODiN and because
they gave rise to some unstable estimates of distance travelled for mode "Other”. Since
2022 trend estimates are no longer produced for age group 0-5 years, since it is no
longer observed under the ODIN design. It would be possible to still use the older
estimates for this age class and keep extrapolating, while also borrowing some strength
from neighbouring age class 6-11, but the resulting time series would become more and
more uncertain.

Even though the DTS dates back to 1978, it was decided in Boonstra et al. (2019) to only
use DTS data starting from 1999, the first year of the new OVG survey. This turned out to
be sufficient for the purpose of obtaining reliable trends over the last 15 years or so. It
also means that the large discontinuities arising from the 1999 redesign do not need to
be modelled.

It is considered important that mobility trend estimates based on the DTS are in line with
external data sources on mobility. Such information has been used in a plausibility
analysis, and a few external sources have also been considered for use as auxiliary
information in the time series models used for trend estimation. One such source is a
time series of annual total passenger train kilometers based on passenger surveys run by
the Dutch railways NS. These series also include data on train rides by other private
companies active in the Netherlands. Another relevant data source is the time series of
car-kilometres compiled by Statistics Netherlands based on data from Nationale Autopas
(NAP). Also, annual figures of a set of weather characteristics collected by the Royal
Netherlands Meteorological Institute (KNMI) have been considered as additional
auxiliary series. Of these, the annual number of snow days is currently used in the trend
model for the number of trip legs.

Travel duration

Starting from this year, trend series are also estimated for travel duration. Travel
duration has been observed in the DTS similarly to distance, though there are some
differences. The most notable difference is that travel durations per trip leg have been
completely observed for all respondents only starting from 2015. Before 2015, travel
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durations for each leg were only observed for a sub-sample of multi-leg trips with main
transportation mode BTM (bus/tram/metro) or train, i.e. public transport. Note that in
all cases total travel duration per trip has been observed, so there is only a missing data
problem for (part of) the multi-leg trips, which amount to a small but non-negligible and
select fraction of all trips. An additional complication is that of possible waiting times
between trip legs, which affect total travel duration. These waiting times in between legs
of multi-leg trips are observed in the DTS, but again incompletely before 2015.

It has been decided to include waiting times in the definition of duration per trip leg. So
the travel duration for a leg of a multi-leg trip is defined as the waiting time before that
leg plus the duration of the subsequent displacement in a particular mode. Note that
only waiting times between legs are recorded, so any waiting times for single-leg trips or
before the first leg of a multi-leg trip, by any definition, are disregarded. One reason for
including waiting times was that this way discontinuities between the different DTS
design periods appeared to be smaller.

In order to address the (partial) incompleteness of duration data, an additional
imputation step has been carried out as a preparatory step for deriving direct estimates
as input for the trend series modelling. First the missing trip leg durations in the years
before 2015 have been imputed. For this purpose, the mean speeds over all observed
multi-leg trip legs in a year for each of the seven modes (”Car driver”, “Car passenger”,
"Train”, ”BTM (bus/tram/metro)”, "Cycling”, ”Walking”, “Other”) are computed. Each
missing trip leg duration is then imputed by the (always observed) distance of the trip
leg divided by the computed mean speed corresponding to the mode of the trip leg.
Second, each missing waiting time preceding a trip leg has been imputed by a median
waiting time corresponding to the particular mode and year. As there are some quite
influential outlying observed waiting times in some years, we use the median instead of
mean, computed over the same set of observed multi-leg trips by mode and year.
Finally, the (imputed) waiting times preceding a trip leg are added to the (imputed)
durations, to obtain the duration per trip leg according to the desired definition.

Direct estimates

To base a time series model for mobility trends directly on the micro-data from all years
would require a rather complex model that must account for sampling design,
non-response, different aggregation levels of interest, discontinuities, time trends, etc.,
all at once, which would pose significant computational challenges. Instead we follow a
two-step estimation procedure often used in small area estimation. In the first step
estimates and variance estimates of the target variables are obtained directly from each
year’s micro-data, at the most detailed aggregation level of interest. Here we make use
of the existing survey weights, accounting for sampling design and non-response. In the
second step these so-called ‘direct estimates’ serve as input for a time series model,
which can be used to compute improved estimates of mobility accounting for possible
discontinuities caused by the redesigns. This section outlines the computation of the
direct estimates from the OVG-MON-OViN-ODiN survey data, see also Boonstra et al.
(2019).
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3.1

The direct estimates are computed for all years from 1999 until 2023 for trip legs pppd,
distance per trip leg, and now also for duration per trip leg. This results in three tables of
700 series of direct estimates at the most detailed breakdown level considered.

Point estimates

Point estimates are readily computed using the existing survey weights. First consider
the number of trip legs, and let , denote the number of trip legs reported by person 7
for the surveyed day. The average number of trip legs pppd is then estimated by
Zies w; [

Zies wzfz 7
where the sums run over the set s of respondents, w; are person weights satisfying
Zies w; = N with N the total population size, and f; is a so-called vacation factor. The
latter take values slightly less than 1, and are used to account for vacation mobility. The
vacation factors are based on estimates obtained from the CBS Holiday Survey (CBS
Vakantieonderzoek, abbreviated CVO). The vacation factors have been used for official
publications based on OVG, MON and OViN. In ODiN the vacation factors are no longer
used, since a correction for non-response bias regarding vacation mobility is now

R= (1)

integrated into the person weights w; by using estimated population totals from CVO in
the weighting scheme directly.

For the other two target variables of interest, distance and duration, means are
estimated per trip leg, according to

Zies w; f;a;
Zies w, fir;

where a, denotes either the total distance or duration for person ¢ for all trip legs.

A= (2)

For estimates by mode and/or purpose, each particular category defines specific
variables r and a referring only to the trip legs in that category, so that equations (1) and
(2) still apply. For (further) subdivisions with regard to the person characteristics sex and
age class, it is convenient to introduce a dummy variable ¢, for each combination of sex
and age class, being 1 if person ¢ belongs to this group and 0 otherwise, and then write
instead of (1) and (2),

. Zies w; f;0;7;

ZiES w; f:0; ’ (3)
A- Zies w, f;0;a; .

ZiES w; f;0;7;

By using d, also in the denominator of R we obtain estimates of the means per sex, age
class combination. Note that the denominator of R does not depend on any selection of
purpose or mode.

As mentioned in the Introduction, at the most detailed level, each target variable gives
rise to a set of 700 estimates per year, corresponding to the full cross-classification of
person characteristics sex and age class and trip characteristics purpose and mode.
Some of the 700 domains are, however, non-existent. We refer to these domains as
structural zeros, since the number of trips in these domains is zero by definition. This
concerns the following domains: age 6-11 in combination with mode “Car driver” or
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3.2

purpose "Work” and age 12-17 mode car driver before 2011. Starting from 2011 it is
possible to drive a car from age 17, and this can be seen in the data. Distances or
durations per trip leg corresponding to structural zero trip legs are undefined, and
therefore missing in the set of direct estimates. Other occasional zeros for number of
trip legs and missings for distance or duration per trip leg occur in some years for ‘rare
domains’ such as education for the elderly. These accidental zeros and missings will be
filled in by the predictions based on the time series models.

Variance estimates

For variance estimation we distinguish between person surveys (OViN, ODiN) and
household surveys (OVG, MON). For the latter, the household is the unit of sampling.
Observations from persons from the same household cannot be regarded as
independent. For example, distances travelled by young children and their parents are
often correlated, depending on purpose and mode. Variance estimates should account
for the dependence between persons clustered within households.

First write estimates (1) and (2) in the general form
Eies wlyl
D ies Wi%i

which is a ratio of two population total estimates based on person weights w,. For the

Y = (4)

average number of trip legs pppd, y; = f;r; and z; = f;; for the average distance or
duration per trip leg, y; = f;a; and z; = f;r;.
We first consider variance estimation for the case of the person surveys. Basic estimates
of the sampling variances of Y that ignore variation of the weights, finite population
corrections and the variance of the denominator, are given by
2
UO(}?) — %Ni
(Zi@ w;2;)* n

where n is the number of respondents, S?(y) = =5 > (y; — i)? is the sample

S2(y), (5)

variance of y, with y = % Zies y; the sample mean of y.

These variance estimates are improved by taking into account (i) the variance of the
denominator, (ii) the variance inflation due to variation of the weights (Sarndal et al.,
1989), and (iii) the variance reducing effect of some covariates used for stratification or
weighting. The variance estimates incorporating all three improvements are computed
as (see e.g. Sarndal et al. (1992))

~ n

v(Y) = ———55%(we), (6)
(ZiES wz‘zi)

where S?(we) is the sampling variance of w;e;, where e¢; = e/ — Y'eZ are generalized

residuals, defined in terms of regression residuals e? for y and e? for z. The latter are
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associated with regressions on vectors of covariates z;,

:yi_I;6y7

z /1 Qz
e; =z, —x; 5%,

—1
By = (Z xﬂ;/%) Z%yi/uw (7)

€S 1ES

-1
5 = (Z%J«";/Uz> inzi/uw

€S €S
where u; are positive variance factors. For the person survey case all u,; are taken equal
to 1, whereas for the household surveys they are taken equal to the household size.

For the regressions defining the residuals in (7), the following covariate model is used:
hhsize 4+ province + sex * ageclass + urbanisation + month + weekday + fuel

in which hhsize is the number of persons in a household (truncated at 10), ageclass is
as defined in the Introduction, urbanisation is the degree of urbanisation of the
residential municipality in 5 classes, month is the survey month, weekday the day in the
week the response refers to, and fuel is the fuel type of the car used by the respondent
in three classes: petrol, other or none if the respondent doesn’t use a car. These
covariates represent an important subset of variables that have been used for
stratification and weighting of the survey data over the years.

The variance formulas (6), (7) can be used for any variables y and z in (4) so it applies to
all estimates by any combination of trip characteristics purpose, mode and person
characteristics sex and age class.

We have compared the simple variance estimates computed with (5) with the refined
ones based on (6), (7), and observed that the differences are mostly modest but not
generally negligible. The most important refinement turns out to be the variance
inflation due to the variation of weights. This clearly increases the variance estimates for
domain estimates based on widely varying weights.

For the years before 2010, when the surveys were conducted as household surveys, the
same formulas can be used, with the understanding that the unit index i refers to
households. In that case y;, z; refer to weighted household totals, the weights w, to the
average of the person weights within a household, and x; to household totals of the
weighting covariates. The regression variances u; are taken equal to the household size,
and n in (6) becomes the number of responding households.

We refer to Boonstra et al. (2018) for further details as well as for plots of the direct
estimates and their standard errors for trip legs and distance at several aggregation
levels. These plots show that for ‘common domains’ such as purpose "Work” for age
classes 30-39, 40-49, standard errors are stable and rather small. For rare domains the
standard errors are on average much larger, and, like the point estimates, volatile and
sometimes missing. Boonstra et al. (2018) also contains a short discussion about the
covariances/correlations between the direct estimates within each year. Most of these
cross-sectional correlations are small, but there are some large positive and negative
ones. The largest positive correlations occur between estimates for modes that are often
combined in a single trip, like “Walking” and "Train”, while most negative correlations
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3.3

3.4

occur between modes that are rarely combined such as “Car driver” and "Cycling”.
Furthermore, in OVG/MON years, there are some more positive correlations induced by
the household clustering, for example between estimates for parents (”Car driver”) and
children (”Car passenger”) and purpose "Shopping” or "Other”. The effect of the
cross-sectional correlations on the (standard errors of) the trend estimates was tested
using a simplified multilevel time series model and found to be quite small in that case.
Due to computational issues we have not been able to use the full correlation matrices
of the input estimates in the full time series models used to compute the trend
estimates, although we expect to see only a small effect there as well.

Transformations of input series

The direct estimates and standard errors of the number of trip legs and the distances
and durations serve as input for the multilevel time series models used to obtain more
accurate and robust trend series. In Boonstra et al. (2019) it was found that instead of
directly modelling the direct estimates it is better to first apply a transformation to these
input estimates. Using a square-root transformation for trip legs and a
log-transformation for distance was seen to improve both model fits as well as the
convergence of the simulation-based model fitting procedure. These transformations
also reduce the dependence between direct point estimates and standard errors,
thereby making the use of normal or Student-t distributions more appropriate. The
same has been found for the log-transformation in the case of the newly added
estimates for duration. After fitting the model the inverse transformation is applied to
produce the trend estimates, as detailed in Subsection 5.3.

Let }A/it denote the direct estimate for year ¢t and domain ¢ of the number of trip legs,
distance, or duration. For the trip legs variable a square-root transformation is used:

}7;“” = \/?z't- A first-order Taylor linearisation yields approximated standard errors

se(Y) = se(?;t)/@\/ffjt). Note that these standard errors are undefined for
domains without observed trips (zero point estimate and standard error), but this is no
problem as they are imputed using a Generalized Variance Function (GVF) smoothing
model, as described below.

For the distance and duration variables a logarithmic transformation is used:

?;'t"g = log Y}, which is well-defined as all distance and duration input estimates are
positive. Standard errors for the transformed data are approximated by first-order Taylor
linearisation: se(Y,%8) = se(Y;,)/Y;.

Smoothing the standard errors of the direct estimates

The time series models considered regard the (transformed) direct point estimates as
noisy estimates of a true underlying signal. However, the accompanying variance
estimates are largely treated as fixed, given quantities by the model. As the variance
estimates can be very noisy due to the detailed estimation level, it is wise to smooth
them before using them in the model. That way they better reflect the uncertainty of
the direct estimates. The most obvious defect of the estimated standard errors is that
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they are zero in case of zero or one contributing sampling unit.? This is correct for the
structural zero domains, but it does not reflect the actual uncertainty about the
accidental zero estimates for number of trip legs. For distance and duration, the most
problematic estimates are the zero variance estimates in case of a single contributing
sampling unit. If there are no contributing sampling units for a certain domain then the
direct distance estimate is treated as missing.

The models considered for smoothing the variance estimates are simple regression
models relating the variance estimates to a few predictors such as sample size, design
effects, and point estimates. Such models are known as Generalized Variance Function
(GVF) models in the literature, see Wolter (2007), Chapter 7. As in Boonstra et al. (2019)
the GVF smoothing models are applied to the transformed standard errors. The
predictions from the GVF models are then used as (smoothed) standard errors
accompanying the transformed direct estimates as input for the time series multilevel
models. In particular, this yields reasonable standard errors for domains with no
observed trips.

Let ?tt[]kl denote either the sqrt-transformed direct estimates for trip legs or the
log-transformed estimates for distance or duration, for year ¢, sex ¢, age class j, purpose
k and mode [. For all three target variables we use the same GVF smoothing model

log Se(f/;ttirjkl) = a+ flog ?;tzr]kl + vlog(my; .y + 1) + 0 log(deffy; ;1)) + €1 s (8)
where my; ;. is the number of sampling units (households or persons, depending on the
survey year) contributing to domain (4, j, k, 1) in year ¢, and
Uar(w)tijkl

5 : (9)
tijkl

deffy;, =1+ Z
is the design effect of the survey weights, in which the second term is the squared
coefficient of variation of the weights of the contributing units to a specific year and
domain.?) This factor accounts for the variance inflation due to the variation of the
weights. Since we cannot trust the direct estimates for very small m,; ;;;, the f/tt;]kl on
the right hand side of (8) are simple smoothed estimates

tr t vt

Yitia = Nijin Yeiji + (1 — Mijr) Y i »

\ O My (10)
tigkl — ’

“ My + 1

where }A/t;kl denotes the mean of )A/tt{]k

replaces the estimate by the mean over year and sex for the same age class, purpose

and mode. For m,;;;; = 1 the average of this mean and the estimate itself is used, and

for large m,, ;,, essentially the original point estimate is used.

; over the years and sexes. For m,, ., = 0 this

The regression errors €,,;,; are assumed to be independent and normally distributed
with a common variance parameter o2. The GVF models are fitted to the non-zero
standard errors of the transformed direct estimates. Summaries of the estimated model
coefficients for trip legs, distance and duration are given in Tables 3.1, 3.2, and 3.3. The

2 This means that there is at most one unit (person or household) in a specific sex, age class domain, who

reported a trip leg for a specific purpose, mode combination.
3 In case of 0 or 1 contributing units we have defined deff to equal 1.
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3.5

predicted (smoothed) standard errors based on the fitted models are

~

S€pred (Y;ftzr]kl) =

gkl = ) ) (11)
exp (a + Blog Yl + Y 10g(my; 5 + 1) + dlog(deff,; ;1) + 02/2) ,

where ¢ is 0.11 for trip legs, 0.43 for distance, and 0.43 for duration. The R-squared
model fit measures for both models are quite high: 0.89 for trip legs, 0.62 for distance
and 0.59 for duration. Note that the exponential back-transformation in (11) includes a
bias correction, which here has only a small effect.

predictor coefficient estimate se
1 « -0.623  0.010
> t
log }Q‘Z‘ﬁl I3 0.956 0.003
Iog(mtijkl +1) ~y -0.507 0.001
Iog(defftijkl) ) 0.357 0.006

Table 3.1 Estimated coefficients of GVF model (8) for number of trip legs.

predictor coefficient estimate se
1 Q -0.931  0.019
log ¥7%,, 8 0.203  0.010
Iog(mtijkl +1) 0% -0.335  0.002
log(deff,; ;1) ) 0.117  0.025

Table 3.2 Estimated coefficients of GVF model (8) for distance per trip leg.

predictor coefficient estimate se
1 «@ -1.035 0.025
&
log Y% B 0.136  0.019
Iog(mtijkl +1) ¥ -0.330 0.002
log(deff,, ;z;) B 0.103  0.026

Table 3.3 Estimated coefficients of GVF model (8) for duration per trip leg.

Bias correction

Direct estimates are usually constructed to be approximately unbiased. However, by
applying a non-linear transformation, the estimates become slightly biased. Previously,
we corrected for this bias in the back-transformation to the original scale (Boonstra

et al., 2021). For the log transformation, a bias correction %sepred(ffi'fg)Z was added to
the predictions at the log-scale, and then the exponential back-transformation was
applied, similar to the bias correction in (11), see also Fabrizi et al. (2018). On average,
this indeed largely removed the small negative bias due to the log transformation.
However, in several small domains this bias correction gave rise to visible small
irregularities over time caused by variation in the (smoothed) standard errors at the log
scale. To avoid such irregularities, we incorporate the bias correction already in the
transformed input estimates. That is, for distance or duration per trip leg, to which a log
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transformation is applied, we define our input estimates as

. .1 .
Y8 = log YV + isepred(Y"’g)2 , (12)

where sepred(?bg) are the GVF smoothed standard errors as discussed in Subsection 3.4
(here we simplify notation by suppressing subscripts). This way, any remaining
irregularities in sepred(f/i'fg) will mostly get filtered out by the model, while on average
the small negative bias is still largely removed.

For trip legs, where a square root transformation is applied, we can similarly incorporate
a bias correction in the transformed input estimates, instead of in the
back-transformation of the model predictions. The bias correction is derived from the
fact that the design expectation of the direct estimates can be written as

B(¥) = B(V%)2) = E((n + =)2) = o + 2B(e) + B((e)?)
— ,'72 + Sepred (qurt)2 ,
where 7 denotes the model predictions at the square root scale, and €% is the vector of
sampling errors after transformation, assumed to be normally distributed with (GVF
smoothed) standard errors se, .q(Y*9"). Here, the bias correction is not additive at the

transformed scale, so in order to incorporate it in the input estimates we need to make a
further approximation,

1= ET) — sepreal T2 =\ B(V) — L seprea( P92 1\ B(T), (13)

justified by the fact that sepred(f/f‘q”)2 is relatively small compared to Y. If we replace
E(Y) in the second term by Y, we can use this term as a bias correction in the
transformed input estimates, so that

R ~ 1 R -
ysart = /Y 4 55 (752 /7 . (14)

pred
For domains with incidental zero estimates, Y = 0, this does not work. For those
domains we replace the bias correction term in (14) by a smoothed version, computed
using the predictions obtained by GVF model (8) applied to the target variable
sepred(qu”)z/\/;/. We verified that the bias correction term is always relatively small

compared to \/17/, and that to a large extent it removes the small negative bias due to
the square root transformation, without introducing irregularities in the final trend
estimates that can be seen when the bias correction is instead incorporated in the
back-transformation.

Time series multilevel modelling

The time series multilevel models considered are extensions of the popular basic area
level model proposed by Fay and Herriot (1979). The models are defined at the most
detailed level, i.e. the full cross-classification of sex, age class, purpose, mode and year.
Let us again denote by )A/Ztt' the transformed direct estimates for trip legs, distance or
duration in year t and domain 7. Here domain i refers to a particular combination of sex,
age class, purpose and mode, so that ¢ runs from 1to M; = 700 and ¢t from 1 to T’
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4.1

corresponding to the years 1999 to 2023. We further combine these estimates into a
vector Y = (Y, ... ?Mdl, Yo, ?MdT)’. Note that Y is a vector of dimension
M= M,T.

Structural zero domains are not modelled, and it is implicitly understood that they are
removed from all expressions. The number of modelled initial estimates is thereby
reduced from M = M ;T = 700 x 25 = 17500 to a total of 16830. For distance and
duration per trip leg there are some additional domains without initial estimates due to
the (coincidental) absence of observed trips. The total number of available initial
distance or duration estimates is 16152. For both target variables model estimates are
eventually produced for all 16830 non-structurally-zero domains.

Model structure

The multilevel models considered take the general linear additive form

YU =XB+ ) Z@@ e, (15)
(e}

where X is a M x p design matrix for a p-vector of fixed effects 3, and the Z(®) are

M x ¢'® design matrices for ¢'®-dimensional random effect vectors v(®). Here the sum
over « runs over several possible random effect terms at different levels, such as
transportation mode and purpose smooth trends, white noise at the most detailed level
of the M domains, etc. This is explained in more detail below. The sampling errors

e = (€11, € 15 - €pr,r) are taken to be normally distributed as

e~ N(0,%) (16)

where ¥ = diag (Sepred(ﬁtirjkl)2>' i.e. a diagonal matrix with values equal to the square
of the smoothed standard errors computed as discussed in Subsection 3.4.

Equations (15) and (16) define the likelihood function
p(Y¥[n,2) =N (Y¥[n, %) , (17)

wheren = X3+ Z(@)y(@) is called the linear predictor. A Student-t distribution for
the sampling errors in (16) has been considered instead of the normal distribution to
give smaller weight to more outlying observations. This is a traditional approach for
handling outliers in Bayesian regression, see e.g. West (1984). Eventually, the
transformed direct trip leg estimates are modelled using a normal distribution and the
transformed distance and duration series using a Student-t distribution. We allow the
degrees of freedom parameter of the Student-t distribution to be inferred from the data.
It has been assigned a Gamma(2, 0.1) prior distribution, which was recommended as a
default prior in Judrez and Steel (2010).

The fixed effect part of 7 contains an intercept and main effects and possibly the
second-order interactions for linear trends, discontinuities and the breakdown variables
sex, age, purpose and mode. The vector (3 of fixed effects is assigned a normal prior
p(B) = N(0,1001), which is very weakly informative as a standard error of 10 is very
large relative to the scales of the transformed direct estimates and the covariates used.

The second term on the right hand side of (15) consists of a sum of contributions to the
linear predictor by random effects or varying coefficient terms. The random effect
vectors v@ for different «v are assumed to be independent, but the components within
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a vector v(® are possibly correlated to accommodate temporal or cross-sectional
correlation. To describe the general model for each vector v'%) of random effects, we
suppress superscript « in what follows.

Each random effects vector v is assumed to be distributed as
v~ NO,AQV), (18)

where V and A are ¢y, x ¢y and g4 X g4 covariance matrices, respectively,and A ®@ V
denotes the Kronecker product of A with V. The total length of vis ¢ = ¢y,q4, and these
coefficients may be thought of as corresponding to g, effects allowed to vary over g4
levels of a factor variable, e.g. purpose effects (¢;, = 5) varying over time (¢4 = 25
years). The covariance matrix A describes the covariance structure among the levels of
the factor variable, and is assumed to be known. Instead of covariance matrices,
precision matrices Q , = A~! are actually used, because of computational efficiency
(Rue and Held, 2005). The covariance matrix V for the gy, varying effects is parametrised
in one of three different ways:

— an unstructured, i.e. fully parametrised covariance matrix
— adiagonal matrix with unequal diagonal elements
— adiagonal matrix with equal diagonal elements

The following priors are used for the parameters in the covariance matrix V:

— In the case of an unstructured covariance matrix the scaled-inverse Wishart prior is
used as proposed in O’Malley and Zaslavsky (2008) and recommended by Gelman
and Hill (2007).

— In the case of a diagonal matrix with equal or unequal diagonal elements, half-Cauchy
priors are used for the standard deviations. Gelman (2006) demonstrates that these
priors are better default priors than the more common inverse gamma priors for the
variances.

The following random effect structures are considered in the model selection procedure:

— Random intercepts for the M ; domains obtained by the full cross classification of
age, gender, purpose and mode. In this case A = IMd and V is a scalar variance
parameter, and the corresponding design matrix is the M x M indicator matrix for
domains. This can be expanded, e.g., to a vector of random domain intercepts,
random slopes for linear time effects and discontinuities due to the redesigns in
2004, 2010 and 2018. In that case V is a 5 x 5 covariance matrix, parametrised by
variance parameters for the intercepts, linear time slopes and the coefficients for the
level interventions, and possibly 10 correlation parameters.

— Random effects that account for outliers. The data for some years appear to be of
lesser quality. This is the case especially for data on the number of trip legs in 2009.
In order to deal with such less reliable estimates, random effects can be used to
absorb some of the larger deviations in such years. The corresponding effects are
removed from the trend prediction. This is an alternative to the use of fat-tailed
sampling distributions such as the Student-t distribution for dealing with outliers.

— Random walks or smooth trends at aggregated domain levels (e.g. purpose by
mode). See Rue and Held (2005) for the specification of the precision matrix ) 4 for
first and more smooth second order random walks. A full covariance matrix for the
trend innovations can be considered to allow for cross-sectional besides temporal
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4.2

correlations, or a diagonal matrix with equal or different variance parameters to
allow for temporal correlations only.

— White noise. In order to allow for random unexplained variation, white noise at the
most detailed domain-by-year level can be included. In this case A = I, and V a
scalar variance parameter, and the design matrix is Z = I,,.

We also investigate generalisations of (18) to non-normal distributions of random
effects. Relevant references are Carter and Kohn (1996) in the state space modelling
context, Datta and Lahiri (1995), Fabrizi and Trivisano (2010) and Tang et al. (2018) in the
small area estimation context, and Lang et al. (2002) and Brezger et al. (2007) in the
context of more general structured additive regression models. In particular, the
following distributions are considered for various random effect terms:

— Student-t-distributed random effects

— Random effects with a so-called horseshoe prior (Carvalho et al., 2010).

— Random effects distributed according to the Laplace distribution. This corresponds to
a Bayesian version of the popular lasso shrinkage, see (Tibshirani, 1996; Park and
Casella, 2008).

These alternative distributions have fatter tails allowing for occasional large effects. The
Laplace and particularly the horseshoe distribution have the additional property that
they shrink noisy effects more strongly towards zero.

Model estimation and comparison

The models are fitted using Markov Chain Monte Carlo (MCMC) sampling, in particular
the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). See Boonstra
and van den Brakel (2018) for a specification of the full conditional distributions. The
models are run in R (R Core Team, 2015) using package mcmcsae (Boonstra, 2024). The
Gibbs sampler is run in parallel for three independent chains with randomly generated
starting values. In the model building stage 1000 iterations are used, in addition to a
"burn-in’ period of 500 iterations. This was sufficient for reasonably stable Monte Carlo
estimates of the model parameters and trend predictions. For the selected models we
use a longer run of 5000 burn-in plus 10000 iterations of which the draws of every fifth
iteration are stored. This leaves 3 x 2000 = 6000 draws to compute estimates and
standard errors. The convergence of the MCMC simulation is assessed using trace and
autocorrelation plots as well as the Gelman-Rubin potential scale reduction factor
(Gelman and Rubin, 1992), which diagnoses the mixing of the chains. For the longer
simulation of the selected models all model parameters and model predictions have
potential scale reduction factors below 1.1 (only a few parameters have diagnostic
values > 1.02) and sufficient effective numbers of independent draws.

Several models of the form (15) have been fitted to the data. For the comparison of
models using the same input data we use the Widely Applicable Information Criterion or
Watanabe-Akaike Information Criterion (WAIC) (Watanabe, 2010, 2013) and the
Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). The models are also
compared graphically by assessing the plausibility of their model fits and trend
predictions at various aggregation levels. In earlier stages of the model building process
more extensive model evaluations based on posterior predictive checks, residual
analyses and revision analyses have been carried out, see Boonstra et al. (2019).
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Model building, selected models,
and model prediction

The transformed direct estimates for the 700 domains over the 1999-2023 period along
with their smoothed standard errors, as described in Section 3, serve as input data for
the time series models. Note that these input estimates already include a small bias
correction to counter the small biasing effect of the non-linear transformation. The
variables defining the domains (sex, ageclass, purpose, mode) and the years (yr) have
been used in the model development in many ways, e.g. using different interactions of
various orders. Some additional covariates have been constructed in order to model the
discontinuities that occur as a result of the change-over to MON in 2004, to OViN in
2010, and ODiN in 2018, as well as to reduce the influence of some lesser quality 2009
input estimates. For the MON discontinuities in 2004, a level intervention variable
br_mon is introduced taking values 1 between 2004 and 2009, and 0 otherwise. Since
MON discontinuities appear to be substantial only for purposes ‘Shopping’, ‘Leisure’ and
‘Other’ we also introduce the variable br_mon_SLO, equal to br_mon for these three
purposes only, and 0 for purposes ‘Work’ and ‘Education’. For the OViN discontinuities in
2010 a variable br_owvin is defined, taking values 1 for the years 2010 and later and O
otherwise. Likewise, for the ODIiN discontinuities in 2018 a variable br_odin is defined,
taking values 1 from 2018 and 0 otherwise. A slight modification of the intervention
variables was necessary in order not to introduce artificial discontinuities in the age
12-17 car driver domains, which are structurally zero domains before 2011. Also, for
year 2009 a dummy variable dummy_2009 has been created being 1 only for year 2009
and 0 otherwise. The year variable itself is also used quantitatively to define linear time
trends, and for that purpose we use a scaled and centred version denoted yr.c.

To account for the effects of the Covid pandemic on mobility, several Covid variables
have been used in the models. So far, a variable covid defined to take the value 1
starting from the first Covid year 2020, and separate Covid dummy variables for each
subsequent year have been used in the models. This was necessary to accommodate the
different sizes of these effects in the years 2020, 2021 and 2022. It would not be tenable
to keep introducing new Covid variables and effects specific to each year, as this would
reduce the time series models’ ability to borrow information over time. Therefore, we
now use a different set of three Covid variables, which for the years 2020 - 2022
corresponds to a reparametrisation of the previous Covid variables, and which should
avoid the need to introduce new Covid variables/effects for subsequent years. The first
of these three Covid variables, denoted covid_string, is the Covid stringency indicator
for The Netherlands as compiled and disseminated for all countries by the Oxford
COVID-19 Government Response Tracker (Hale et al., 2021), for our purposes aggregated
to the annual level. This indicator is based on several underlying indicators about such
measures as school closing, workplace closing, public transport restrictions, restrictions
on gatherings, etc. On its own this indicator is not a good enough predictor for the
relative annual Covid effects on mobility. Where the stringency indicator shows stronger
measures on average in 2021 compared to 2020, the data show that effects on mobility
are mostly smaller in 2021. For 2022 the indicator also seems too high compared to the
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size of Covid effects. A possible explanation is that the compliance with Covid measures
might have eroded over time. Furthermore, this indicator is zero for 2023, while there
are still effects of Covid remaining, such as due to an increase in working from home. So,
a second variable covid_struc is used to accommodate the lasting, structural, Covid
effects on mobility. This variable is defined as taking the value 1 starting from 2020 and 0
before. And the third variable covid_shock is defined as a diminishing numerical series
starting from 1 at 2020, and multiplied by a factor 1/2 for each subsequent year. Other
factors haven been tried, but a factor of 1/2 worked fine in the models for all three
target variables.

Some other covariates extracted from other sources like Statistics Netherlands’ Statline
and KNMI meteorological annual reports have also been used as candidate covariates in
the model development. The weather variables considered concern annual averages at a
central measurement location in The Netherlands (De Bilt). From these weather
variables only a variable snowdays representing the number of snow days by year is
used in the selected trip legs model. In Boonstra et al. (2019) an administrative variable
km_N AP representing annual registered car kilometers collected from Nationale
Autopas (NAP) was used in the distance model. As this variable is usually not available in
time for producing new mobility trend estimates it is no longer considered for inclusion
in the models.

The variables mentioned above are used in different parts of the model, with associated
fixed effects as well as random slope effects. The following subsections discuss time
series models developed for the number of trip legs, distance per trip leg, and duration
per trip leg. Along the way, we emphasize the differences with the previously developed
models for trip legs and distance as described in Boonstra and van den Brakel (2023),
which have been taken as a starting point. Due to the similar nature of the duration
variable as compared to the distance variable, the model for distance has also been used
as starting point for the development of a model for duration per trip leg. In Subsection
5.3, it is described how the target trend estimates are derived from the fitted models.
The models are expressed as time series multilevel models in a hierarchical Bayesian
framework and fit using a Markov Chain Monte Carlo (MCMC) simulation method, as
described in Section 4.

Time series multilevel model for the number of trip legs

As described in Section 3, we model the square-root-transformed direct estimates
(including bias correction) of the number of trip legs pppd, using the corresponding
transformed and GVF-smoothed standard errors to define the variance matrix X of the
sampling errors. Here we describe the model that resulted from the model building
process.

The model parameters in (15) are separated in fixed and random effects. The fixed
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effects specification for the updated model is

sex * ageclass + purpose x mode + mode * snowdays
+ purpose * br_mon_SLO
+ (purpose + mode) * (br_odin + covid_string + covid_struc + covid_shock)
+ covid_string_shopping_walking + covid_struc_shopping_walking
+ covid_string_leisure_walking + covid_struc_leisure_walking
(19)

Compared to the model described in Boonstra and van den Brakel (2023) the auxiliary
variables covid, covid2021 and covid2022 have been replaced by covid_string,
covid_struc and covid_shock. Where interactions with purpose ‘Leisure’ and mode
‘Walking’” were previously included for all three variables covid,covid2021 and
covid2022, in the new parametrisation it turns out to be sufficient to include these
interactions only for covid_string and covid_struc, but not for covid_shock. So the
fixed effects part has become slightly more parsimonious.

The random effects part of the model for number of trip legs consists of the components
listed in Table 5.1. The first component 'V_2009’ is included to account for some very
influential outliers in 2009. It uses a horseshoe prior distribution, which turned out to
work well as for most domains the outlier effects are negligible, but for a few domains,
notably those for children and purposes ‘Shopping’ and ‘Other’, they are very large, as
can be seen from Figure A.22. The variable dummy_2009_SO is a limited version of
dummy_2009, and only equals 1 for year 2009 in combination with age class 6-11 and
purposes ‘Shopping’ or ‘Other’. Associated with dummy_2009_SO the variable
dummy_2009_classes is the categorical variable with classes defined by the
cross-classification of sex, age class, mode and purpose classes for which
dummy_2009_S50 is non-zero, all other classes being grouped into a single remainder
category.

The random effects component ’V_BR’ includes MON, OViN and ODiN discontinuity
random effects, as well as random intercepts, linear time trends, and covid effects,
varying over all domains (the cross-classification of sex, age class, purpose and mode).
Compared to the 2022 model, the Covid variables are now covid_string, covid_struc
and covid_shock. The full covariance matrix V' in (18) is a 8 x 8 matrix parametrised in
terms of standard deviation and correlation parameters. Here too the variable
br_mon_SLO indicates that MON breaks are only considered for purposes 'Shopping’,
‘Leisure’ and ‘Other’. This component uses a Laplace prior distribution for the random
effects, which shrinks noisy effects more while large significant effects are shrunk less.
Note also that the effects follow an AR1 autoregressive process as a function of ordered
age class. This way of exploiting the order of age classes further helps to improve the
(difficult) estimation of discontinuities. A notable change compared to last year’s model
is that the AR1 autocorrelation parameter is now inferred from the data, starting from a
uniform prior. Previously, the autoregressive parameter was fixed at 0.75, a value arrived
at by grid search.

The next two model components are time trend components. The component
"RW1AMM’ adds a local level trend component (or first order random walk) for each age
class, purpose, mode combination. Component 'RW2MM'’ represents smooth trends (or
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5.2

Model Variance . Number
Component Formula VV Structure Factor A Prior of Effects
V_2009 dummy_2009_S0O scalar dummy_2009_classes | horseshoe 25
1+yr.c+
br_mon_SLO +
. , . SEex *
V_BR br_qmn +, br_odin + unstructured AR1(ageclass) Laplace 5600
covid_string + * purpose * mode
covid_struc + purp
covid_shock
RW1AMM ageclass scalar RW1(yr) normal 8750
purpose x mode
RW2MM purpose unstructured | sex * mode x RW2(yr) normal 1750
WN_MM mode unstructured purpose x yr normal 875
sex * ageclass *
WN 1 scalar purpose x normal 16830
mode * yr

Table 5.1 Summary of the random effect components for the updated model

for trip legs. The second and third columns refer to the varying effects with
covariance matrix V' in (18), whereas the fourth and fifth columns refer to the
factor variable associated with A in (18). The last column contains the total
number of random effects for each term.

second order random walks) for each combination of sex, mode and purpose, where

different variances corresponding to different degrees of smoothness as well as

correlations are allowed among the 5 purposes distinguished. The 'RW1AMM’

component only uses a single (’scalar’) variance parameter and can be interpreted as a

correction to the 'RW2MM'’ trends, allowing for differences between age classes.

The component "WN_MM'’ allows non-gradual time dependence at the mode-purpose

level. It is modelled with a general covariance matrix among the modes. The motivation
for this term is that it prevents the smooth '/RW2MM’ component to become too volatile.

Finally, the white noise component named "WN’ in Table 5.1 accounts for remaining

variation of the true average number of trip legs pppd over the domains and the years.

For analyses that focus on long-term evolutions it can be useful to compute specific

smooth trends by excluding non-gradual time-dependent components "WN’, "WN_MM’
as well as (perhaps) the explicit snowdays effects.

Time series multilevel model for distance and duration per trip

leg

Here we discuss the models developed for both distance per trip leg, and for the newly

considered series for duration per trip leg. It turns out that the same model structure

works well for both target variables. For both variables we model the log-transformed

direct estimates of distance or duration per trip leg, including bias correction, using the
corresponding transformed and GVF-smoothed standard errors discussed in Section 3 to

define the variance matrix X of the sampling errors. The use of Student-t distributed

sampling errors for these quantitative variables succeeds in reducing the influence of

outliers sufficiently. The degrees of freedom parameter of the Student-t distribution is

assigned a weakly informative prior and is inferred from the data.

Similar to the model for number of trip legs pppd, only main effects and second order
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5.3

interaction effects are used in the fixed effects part of the selected model. In the model,
updated from last year’s model for distance per trip leg, the following fixed effects
components are included:

sex * ageclass + purpose x mode + mode x yr.c + br_ovin_walking+
(purpose + mode) * (br_odin + covid_string + covid_struc + covid_shock)

The term mode * yr.c represents linear time trends by mode. The term
br_ovin_walking represents a single OViN discontinuity fixed effect for mode "Walking’,
and is included because the overall discontinuity for mode 'Walking’ appears to be too
large to model by random effects only. Here too the previously used annual Covid
variables have been replaced by covid_string, covid_struc and covid_shock.

Higher order interactions are modelled as random effects. The components included in
the updated model are listed in Table 5.2.

Model Formula V' Variance Factor A Prior Number
Component Structure of Effects
14+ yr.c+
br_mon +
i . sex *
V_BR br_qvm + br_odin + unstructured ARI1(ageclass) Laplace
covid_string + * purpose x mode
covid_struc + purp
covid_shock
RW2MM purpose unstructured | sex * mode x RW2(yr) | normal
WN_MM mode unstructured purpose x yr normal
sex * ageclass x
WN 1 scalar purpose x normal
mode * yr

Table 5.2 Summary of the random effect components for the selected model
for distance per trip leg. The second and third columns refer to the varying
effects with covariance matrix V in (18), whereas the fourth and fifth columns
refer to the factor variable associated with A in (18). The last column contains
the total number of random effects for each term.

The Covid variables in the ‘V_BR‘ component have been replaced by their new versions.
Here too the AR1 parameter is no longer fixed at 0.75, but instead inferred from the data
starting from a uniform prior. The components '/RW2MM’, "WN_MM’ and "WN’ are the
same as in Table 5.1. The distance and duration models do not include a component for
outliers, since there are no such extreme outliers in 2009 as in the series for number of
trip legs. Moreover, any outliers in these series are dealt with by the Student-t sampling
distribution. Also, the distance/duration model does not include the ’'RW1AMM’
component of Table 5.1 to prevent overfitting the more noisy input series.

Trend estimation and derived estimates

The trend estimates of main interest are computed based on the MCMC simulation
results as follows. First, simulation vectors of model linear predictions are formed, i.e.

n = X810 4 Z Zla)ylenr) (20)
«

where superscript 7 indexes the retained MCMC draws, and each 17(” is of dimension M.
Consequently, the level break effects are removed or added, depending on the choice of
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benchmark level.

Since 2022 the trend estimates are computed at the measurement level of the most
recent design, i.e. the ODIN design, which is in place since 2018. There are currently 6
years of ODiN data available, so it is expected that ODiN break effects can now be
estimated with sufficient accuracy. However, the estimation of these effects is hampered
by the Covid pandemic and the necessary introduction of Covid effects in the model, but
we do not expect the ODIN break effect estimates to change significantly anymore when
new ODIiN datasets become available.

Given the way the level break dummies are coded, benchmarking to the ODiN level
means that we need to add all ODiN break effects to the predictions referring to the
OVG, MON and OViN years, add the OViN effects to the predictions of pre-OViN years,
and in addition need to remove the MON effects from the predictions referring to the
MON vyears. Also, the dummy effects for outliers ('"V_2009’ component in the model for
trip legs) are removed. Covid effects are not removed, since they have a real effect on
mobility. We further note that the survey errors e in (15) are absent from the linear
predictor (20). The simulation vectors of linear predictors thus obtained are

ﬁ(r) _ X’ﬁ(r) + Z Z(a)v(a,r) ’ (21)

where X and Z(® are modified design matrices that accomplish the stated correction
for level breaks and possibly outlier effects. Back-transformation of these vectors to the
original scale yields the MCMC approximation to the posterior distribution of the trends.
For the square root transformation as used for modelling the number of trip legs pppd,
the back-transformation amounts to

o) = (5)2. (22)

For the log transformation, as used in modelling distance per trip leg and duration per
trip leg, back-transforming 77“") to the original scale yields the MCMC approximation to
the posterior distribution of the distance or duration trends. In these cases, the
back-transformation is

0 = ei” (23)

The means over the MCMC draws 6(") are used as trend estimates, whereas the
standard deviations over the draws serve as standard error estimates.

Recall that 7 and 6 are vector quantities with components for all year-domain
combinations. We have computed the trends at the most detailed level, but also for
aggregates over several combinations of the domain characteristics. Aggregation of
distance per trip leg involves the number of trip legs, and so requires combining the
MCMC output for both target variables. By multiplying the distance per trip leg results
by the number of trip leg pppd results we obtain the results for distance pppd. In the
same way, estimates for travel duration pppd are obtained. Note that aggregation
amounts to simple summation over trip characteristics purpose and mode, and to
population weighted averaging over person characteristics sex and age class. Inference
for other derived quantities like total number of trip legs per day, total distance per day
or total travel duration per day at different aggregation levels can also be readily
conducted using the simulation results for the modelled target variables.
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6.1

Results

The appendices contain a rather complete set of time series plots for the number of trip
legs pppd (A.4), distance per trip leg (A.5), distance pppd (A.6), duration per trip leg (A.7)
and duration pppd (A.8) at different aggregation levels, with the exception of the most
detailed levels, based on the models for number of trip legs pppd, distance per trip leg
and duration per trip leg, described in Section 5. In addition, trend estimates of total
number of trip legs per day at overall, purpose and mode levels are shown in Figures A.1,
A.2, and A.3, respectively, in Appendix A.1. For total distance per day, these plots are
shown in Figures A.4, A.5, and A.6 in Appendix A.2, and for total travel duration per day
in Figures A.7, A.8, and A.9 in Appendix A.3. The plots for (average) total trip legs and
distance/duration per day also involve the effects of changes in population sizes of all
distinguished demographic subgroups (the sex, ageclass combinations) over the years.

In all these plots the black lines correspond to the series of direct estimates, the red lines
to the model fit based on all model components, i.e. the back-transformation of (20),
and green lines are derived from the trend series (22) or (23) at the level observed under
the latest ODIN survey design. So the green lines correspond to the trends benchmarked
to the measurement level of ODiN with the effect of some strong outliers for trip legs in
2009 removed, but including the Covid effects on mobility, as explained in Subsection
5.3. (Note that it would also be possible to compute ‘Covid-corrected’ trends by
removing the Covid effects.) Finally, note that the vertical dashed lines in the plots
indicate the years where survey redesigns took place.

In the following sub-sections, the trend estimates obtained for number of trip legs,
distance and duration are discussed.

Trip legs
Trend estimates of number of trip legs per person per day are given in Appendix A.4.

Almost all trend series show clear Covid effects in 2020. In 2023 the overall number of
trip legs seems almost back at the pre-Covid level, see Figure A.10. However, this is not
the case for purposes ‘Work’ and ‘Education’ and not quite for the public transport
modes ‘Train’ and ‘BTM’, which are still at a lower level, while the series for mode
‘Walking’ and purpose ‘Leisure’ are now at a somewhat higher level (Figures A.11 and
A.12).

MON discontinuities are visible most clearly in Figure A.11. The trend estimates correct
for these relatively large and opposite discontinuities for purposes ’Leisure’ and ‘Other’.
Apart from these large effects that suggest some sort of classification issue, MON
discontinuities are generally smaller than OViN and ODiN discontinuities. This is
consistent with the fact that the OVG and MON designs are largely the same except that
they were carried out by different data collection organisations.

If we disregard the large drop due to Covid, the overall OViN level for number of trip legs
is lower than the levels observed during MON, OVG and ODiN design periods, as is clear
from Figure A.10. The lower OViN level is especially clear for modes “Car driver”, "Train”
and "Cycling”, see Figure A.12.

There are some noteworthy differences in discontinuities between men and women
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trend lines, particularly for 30-39 and 40-49 age groups, see e.g. Figure A.26. In these
particular cases the differences in the levels of the direct estimates between men and
women are much larger during the OViN period. The particular OViN measurement
errors for purpose “Education”, female, age groups 30-39 and 40-49 are perhaps due to
incorrect purpose assignment for mothers taking their children to school. The ODIN level
for these domains seems to revert to approximately the OVG-MON level. Relatedly, an
opposite movement can be discerned for purpose "Other”. From this perspective it is an
improvement that the trend estimates are benchmarked to the ODiN instead of OViN
level.

Since the trends are defined at the ODIN level, the outcomes during the preceding OVG,
MON and OViN design periods are corrected for the discontinuities induced by the
redesigns relative to the ODiN design. It implies that due to the uncertainty of the
estimated discontinuities the standard errors for the trend estimates in these periods
are larger than in the ODIN period. The standard errors of the trend estimates in
especially OVG and MON periods are therefore often larger than the variances of the
direct estimates, which only measure sampling variation. See for example Figure A.10
for estimates at the overall level and Figures A.11 and A.12 for estimates by purpose and
mode.

The input estimates for children, purposes “Shopping” and “Other” in 2009 are very
different from those in other years, as can be seen from Figure A.22. There is a clear
exchange between both purposes in 2009 for children, presumably due to systematic
classification errors in the 2009 data. These effects have been captured by the random
effect term 'V_2009’ of the model for trip legs. The trend lines show that the 2009
‘outliers’ are indeed neutralized by excluding the 'V_2009’ effects. This effect is even
larger for the youngest children aged 0-5, but as mentioned before this group is not
modelled anymore because it is no longer observed under ODiN.

Tables 6.1, 6.2 and 6.3 list the posterior means and standard errors of several variance
components of the trip leg model. It is to be noted from Table 6.1 that some correlation
parameters are large and negative, i.p. between random intercepts and OViN break and
Covid effects, between linear random slopes (yr.c) and OViN, ODiN discontinuities as
well as structural Covid effects, between MON and ODiN discontinuities and MON
discontinuities and Covid shock effects. Some of these dependencies might indicate that
it is not easy to disentangle the corresponding effects, which is to be expected of series
with relatively few observations per design period, and final years affected by the Covid
pandemic. The autoregressive parameter of the AR1 dependence over age groups in the
‘V_BR‘ model component has posterior mean 0.798 and standard error 0.014. This is
slightly higher than the value 0.75 which has been used hitherto as a plug-in estimate.

Table 6.2 shows that the smooth trend components '/RW2MM’ are most flexible for
purpose 'Leisure’. The correlation parameters for this model component turn out to be
non-significant. Table 6.3 shows that the white noise component at purpose-mode level
"WN_MM’ is most volatile for modes ‘"Walking’, ‘Cycling’ and 'Car driver’. This model
component can explain some of the irregularities of especially the walking and cycling
series of direct estimates, which given their relatively small standard errors are not well
described by smooth trends, see figures A.12 and A.13. Note also the strong positive
correlation parameter between ‘Car driver’ and ‘Car passenger’.
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6.2

The differences in volatility by purpose and mode are clearly visible in Figure A.13.
Where the series for cycling and purpose ‘Leisure’ is highly volatile, which may be a real
phenomenon caused e.g. by weather effects, other domains display more smooth
trends despite volatile direct estimates, as for example ‘Train’ for purpose 'Leisure’. As
the direct standard error estimates are much larger in this case, the model chooses a
smoother trend series.

(Intercept)  yr.c br_mon_SLO  br_ovin br_odin covid_struc  covid_string  covid_shock
(Intercept)  7.6(0.3) 7.2(6.2) 23.4(9.0) -47.8 (4.6) -24.8(5.9) -38.6 (6.3) -51.1(8.1) -46.8 (9.8)
yr.c 1.3(0.1) 4.2(11) -44.3(6.3) -31.8(7.8) -55.4 (7.3) -19.6 (14.0) -1.1(16)
br_mon_SLO 1.2 (0.1) 13.9(9.9) -33.6(11.5) -10.6(13.4) -16.8(15.5) -39.9(16.6)
br_ovin 2.2(0.1) 10.9 (8.5) 34.1(8.5) 35.1(12.9) 9.9 (16)
br_odin 1.3(0.1) 28.7(9.9) 25.0(12.5)  26.5(15.3)
covid_struc 1.2 (0.1) 46.5 (15.1) 27.7 (17.0)
covid_string 0.7 (0.1) 31.9(22.4)
covid_shock 0.7 (0.1)

Table 6.1 Estimated standard deviations and correlations (x100) for the
'V_BR’ component. Numbers in parentheses are posterior standard errors.

Work Shopping Education Leisure Other
Work  0.023 (0.016) 10.9 (43.4) 27.9 (38.6) 18 (37.8) 28.3(39.1)
Shopping 0.031(0.020)  26.0(41.2) 40.5 (34.4) -4.2 (41.5)
Education 0.027 (0.015)  29.4(34.2) 19.8 (37.3)
Leisure 0.083(0.019) 9.7 (33)
Other 0.053 (0.022)

Table 6.2 Estimated standard deviations and correlations (x100) for the
'RW2MM’ component. Numbers in parentheses are posterior standard errors.

Car driver Car passenger  Train BTM Cycling Walking Other
Cardriver  0.59(0.07) 80.7 (8.6) 0.8 (35) 3.4 (31) 51.5(11.9) 40.8(14.0) 0.5(32)
Car passenger 0.44 (0.06) -1.0(36) 9.4 (32) 55.5(12.2) 54.1(13.2) 9.7(33)
Train 0.13(0.07) 25.1(34.2) -3.6(31) 5.4 (33) 2.2 (34)
BTM 0.18 (0.08) 3.9(28) 35.2(28.9) 20.1(32.3)
Cycling 0.68 (0.07) 50.0(12.0) 15.7(28.0)
Walking 0.70(0.08)  33.2(28.4)
Other 0.17 (0.08)

Table 6.3 Estimated standard deviations and correlations (x100) for the
"WN_MM’ component. Numbers in parentheses are posterior standard errors.

Distance

Plots of trend estimates of mean distance per trip leg and mean distance per person per
day are given in Appendices A.5 and A.6, respectively.

The direct estimates of distance per trip leg are rather volatile, even at the most
aggregated level, see Figure A.42 (note the scale of the y-axis though). The distance
variable is also more affected by outliers, which occur in all years, and usually for
domains with few observed trips. Therefore a Student-t distribution is used to fit the
(log-transformed) distance variable. The posterior mean of the degrees of freedom
parameter of the t distribution is 3.9 with a standard error of about 0.1.

Due to the noisier data, it is harder to detect fine changes in the underlying distance
trends. In order to avoid overfitting, the model for distance is more parsimonious than
that for the number of trip legs. One exception is that the distance model includes a
fixed effect for the OVIiN discontinuity for mode '"Walking’. This effect was required to
capture the very pronounced discontinuity in 2010 for mode 'Walking’, as shown in
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6.3

Figure A.44, and is most likely due to the fact that from 2010 onwards walks are more
often classified as single tours instead of consisting of a go and return trip.

Tables 6.4 - 6.6 list some parameter estimates (posterior means and standard errors) for
the fit of the selected model described in Subsection 5.2. The 'V_BR’ component
containing varying coefficients by domain for intercept, linear slope over time, MON,
OViN and ODiN breaks, and Covid effects, displays, as in the trip legs model, several
negative correlations. There are also some strong positive correlations between ODIN
discontinuities and Covid effects. The diagonal values of Table 6.4 show that the
variation of OViN and ODIiN discontinuities is large relative to that of the MON
discontinuities and Covid effects. The autoregressive parameter of the AR1 dependence
over age groups in the ‘V_BR’ model component has posterior mean 0.815 and standard
error 0.018. This is somewhat higher than the value 0.75 which has been used hitherto
as a plug-in estimate.

The 'RW2MM’ component has a relatively large variance component for purpose ‘Other’
(Table 6.5). Table 6.6 shows that the mode-dependent scales of the "WN_MM’ effects
are quite diverse. These effects are most pronounced for mode ‘Other’.

(Intercept)  yr.c br_ovin br_mon br_odin covid_struc  covid_string  covid_shock
(Intercept)  16.3 (0.9) 10.7 (13.5) -19.9(10.8) 18.3(18.2) -20.0 (9.6) -36.9 (16.7) 3.2 (22) 9.7 (22)
yr.c 3.7 (0.6) -31.8(15.7) 30.2(24.8)  -15.4(17.5) -45.8(22) -14.3(31.2)  -12.3(27.8)
br_ovin 9(1.1) -12.6(25.6) -13.6(15.4) 12.7(26.1) -3.0(29) -3.3(27)
br_mon 1.9(0.8) -37.0(25.1) -33.8(29.1) -18.8(33.8) -23.7(32.4)
br_odin 8.0 (0.9) 33.5(25.4) 35.8 (31.9) 43.1(29.6)
covid_struc 2.6 (1.0) 12.9 (36.5) 8.3 (35)
covid_string 1.9(1.1) 15.8 (33.1)
covid_shock 3.2 (1.4)
Table 6.4 Estimated standard deviations and correlations (x100) for the

'V_BR’ component. Numbers in parentheses are posterior standard errors.

Work Shopping Education Leisure Other
Work  0.155(0.106) 2.2 (40) -0.7 (40) 0.5 (40) 10.0 (38.4)
Shopping 0.129 (0.102)  -1.1(43) 6.6 (40) 20.5 (40.8)
Education 0.166 (0.131)  -0.2 (40) -0.2 (41)
Leisure 0.095 (0.076) 4.8 (41)
Other 0.721 (0.241)

Table 6.5 Estimated standard deviations and correlations (x100) for the

'RW2MM’ component. Numbers in parentheses are posterior standard errors.

Car driver Car passenger  Train BTM Cycling Walking Other
Cardriver  1.45(0.52) 62.4(23.7) -17.9 (44.0) -0.3(30) 46.5 (34.6) 24.0 (24.6) 52.6 (22.9)
Car passenger 2.52(0.73) -13.8(43.2)  9.9(27) 38.0(36.1) 15.0(24.8)  55.6(19.5)
Train 1.1(0.76) 18.0(32.9) -16.4(41.7) -16.9(33.3) -19.0(38.5)
BTM 4.06 (1.03) -4.6(32) -12.4(22.3) -10.0(23.0)
Cycling 0.71(0.39) 29.9 (29.2) 31.5(33.2)
Walking 2.88 (0.49) 11.0(19.4)
Other 8.96 (1.29)

Table 6.6 Estimated standard deviations and correlations (< 100) for the
"WN_MM’ component. Numbers in parentheses are posterior standard errors.

Travel duration

Plots of trend estimates of mean duration per trip leg and mean duration per person per
day are given in Appendices A.7 and A.8, respectively.
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The duration per trip leg is somewhat similar in nature to the distance per trip leg, and
the same model structure as used for distance was also found to be adequate for
duration. The discontinuities associated with the introductions of the OViN and ODiN
designs are very pronounced for duration, and of the same sign. See Figure A.106, but
note the scale of the y-axis. As is the case for distance, the OViN discontinuity is
relatively large especially for mode 'Walking’, see Figure A.108.

The duration variable is also affected by outliers. Therefore, as for distance, a Student-t
distribution is used to fit the (log-transformed) duration variable. The posterior mean of
the degrees of freedom parameter of the t distribution is 7.5 with a standard error of
about 0.3. This is higher than that for the distance variable suggesting that outliers for
duration per trip leg are fewer and less severe.

Tables 6.7 - 6.9 list some parameter estimates (posterior means and standard errors) for
the fit of the selected model for duration per trip leg as described in Subsection 5.2. The
"V_BR’ component containing varying coefficients by domain for intercept, linear slope
over time, MON, OViN and ODiN breaks, and Covid effects, displays several negative
correlations. There are also some strong positive correlations, e.g. between MON and
OViN discontinuities. The diagonal values of Table 6.7 show that the sizes of OViN
discontinuities are relatively large. The autoregressive parameter of the AR1
dependence over age groups in the ‘V_BR’ model component has posterior mean 0.844
and standard error 0.017, which is a little higher than for the number of trip legs and
distance models. Compared to fixing this value at 0.75, this had the effect that estimated
trends became slightly more smooth with a smaller noise component "WN_MM’,
especially for mode train, and somewhat larger estimated OViN discontinuities.

As was the case for the distance variable, the ’'/RW2MM’ component has a relatively large
variance component for purpose ‘Other’ (Table 6.8), whereas the "WN_MM’ component
has a relatively large variance component for mode ‘Other’ (Table 6.9).

(Intercept)  yr.c br_ovin br_mon br_odin covid_struc  covid_string  covid_shock
(Intercept) 12.4(0.9) 34,7 (17.4) -49.1(8.5) -44.9 (9.9) -3.1(12) -69.6 (17.0) 3.8 (42) 35.9 (26.4)
yr.c 2.5(0.6) -65.8 (12.6)  -25.1(19.5) 40.1(19.6) -42.7 (26.1) 25.1(41.2) 33.1(31.6)
br_ovin 10.3 (1.1) 54.1(9.7) -45.7(13.2) 32.5(26.6) -26.4(423)  -44.7 (29.6)
br_mon 4.2 (0.5) -35.3(15.2) 18.9 (26.8) -23.7 (38.3) -52.9 (23.6)
br_odin 5.4 (0.6) 2.3(26) 37.7(35.8)  43.2(29.6)
covid_struc 2.1(0.6) -5.6 (44) -28.5(34.3)
covid_string 1.0 (0.7) 9.2 (43)
covid_shock 2.3(1.0)

Table 6.7 Estimated standard deviations and correlations (x100) for the
'V_BR’ component. Numbers in parentheses are posterior standard errors.

Work Shopping Education Leisure Other
Work  0.175(0.111) 5.4 (43) 30.9 (40.3) 14.2 (44.4) 12.0 (40.5)
Shopping 0.075 (0.061) 5.1 (43) 5.3 (42) -0.3 (40)
Education 0.353 (0.165)  20.0 (44.3) 8.1(41)
Leisure 0.090 (0.069) 0.2 (42)
Other 0.210 (0.138)

Table 6.8 Estimated standard deviations and correlations (x100) for the
'RW2MM’ component. Numbers in parentheses are posterior standard errors.
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Car driver Car passenger  Train BTM Cycling Walking Other

Cardriver 0.63(0.37) 27.8(42.9) -0.3(45) 16.2 (44.3) 443(37.3) 30.7(32.0) 42.9(35.1)

Car passenger 0.68 (0.47) 5.3 (43) 18.3(42.1) 32.3(42.0) 15.9(35.4) 28.3 (40.6)
Train 1.03(0.76) 11.0(42.9) 7.1 (46) -12.5(36.2) 1.3 (45)

BTM 1.09(0.74) 24.3(43.4) -3.4(36) 17.6 (41.2)

Cycling 1.05(0.49) 26.4(27.9)  52.7(29.6)

Walking 3.43(0.57) 25.3(22.8)

Other 4.36 (1.03)

Table 6.9 Estimated standard deviations and correlations (x 100) for the
"WN_MM’ component. Numbers in parentheses are posterior standard errors.

Discussion

In Boonstra et al. (2019, 2021, 2022) and Boonstra and van den Brakel (2023) multilevel
time series models have been developed to estimate mobility trends based on the Dutch
Travel Survey (DTS). This report provides an update on the model development as well as
on the resulting trend estimates. Compared to the previous report, data over 2023 have
been added, which means that the length of the time series has increased to 25 years, of
which the last six years correspond to data observed under the ODiN implementation of
the DTS. In addition a model for travel duration is developed.

From 2020 the mobility figures have been strongly influenced by the Covid pandemic. It
turned out (Boonstra et al., 2021) necessary to add explicit Covid effects to the model, to
prevent the large changes (mostly declines) in mobility to adversely affect the estimation
of some trend components as well as level break estimates, especially those associated
with the transition to ODIN. Until last year, for each new year under the Covid period
separate effects were added to the model, to account for the differences in effect sizes
over the years. However, it is not tenable to keep introducing separate Covid effects for
each new year, since that would reduce the ability of the time-series model to learn over
time. So with 2023 data added, we have changed the parametrisation of the Covid
effects to one based on 1) government-imposed restrictive measures (stringency
effects), 2) lasting effects on mobility (structural effects), and 3) shock effects, i.e.
initially large and diminishing effects. This way we did not need to introduce separate
new effects for 2023, and it is hoped that this new parametrisation will remain valid in
the coming years. However, depending on how fast and to what extent mobility will
return to pre-Covid levels, it may be necessary to further tune the attenuation rate of
the shock effects over the next few years.

Until this year, the target variables modelled have been the number of trip legs per
person per day and the distance per trip leg, for domains that are defined by a
cross-classification of sex, age, purpose, and transport mode at a yearly frequency. This
year new series for travel duration per trip leg are added for the same set of domains.
Preparation of the DTS data for duration per trip leg turned out to be more involved than
for distance, as durations of individual legs of multi-leg trips are observed only for a
subsample of respondents before 2015. Moreover, waiting times also play a role in
multi-leg trips. Missing trip leg durations have been imputed based on recorded trip leg
distances and average speeds computed by mode and year, and waiting times preceding
legs of multi-leg trips have been included for a more complete definition of travel
duration.
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Estimation of the trend series takes place in two stages. In the first stage direct estimates
as well as their standard errors are compiled from the DTS data by means of the general
regression estimator. The direct estimates are input for the time series models and are
first transformed to better meet normality assumptions. For the number of trip legs a
square-root transformation is used and for distance and duration a log transformation.
The standard error estimates are also transformed and subsequently smoothed using a
generalized variance function (GVF) model. In the second stage, the resulting direct
estimates at the level of the aforementioned cross-classification are used as input for the
multilevel time series models, which are fitted using MCMC simulations.

The models account for discontinuities due to three redesigns: the change-over from
OVG to MON in 2004, the change-over from MON to OViN in 2010 and the change-over
from OViN to ODiN in 2018. Discontinuities are predominantly modelled as random
effects to reduce the risk of overestimation. The DTS time series are also affected by
outliers. The model for trip legs contains random effects to absorb the most dominant
outliers in 2009, while the models for distance and duration assume a Student-t
distribution for the sampling errors. The models further contain random intercepts
(levels) and time slopes, as well as several trend components at different levels of the
hierarchy defined by the sex, age, purpose and mode variables. Some of the random
effects are assigned non-normal priors to induce a stronger form of regularization while
also allowing occasional larger effects. Fixed effects included in the models consist of
main effects and some second-order interactions of the domain variables sex, age,
purpose and mode, as well as an effect for the annual number of snow days in the model
for trip legs.

As mentioned above, the models for trip legs and distance have been adapted regarding
the specific Covid effects. The stringency, shock and structural Covid effects are included
in the model in the same way as the ODIN discontinuities. Fixed main effects by mode
and separately by purpose capture some of the large effects at these aggregate levels,
while strongly regularised random effects are included at the most detailed level.
Moreover, fixed effects for structural and stringency Covid effects for mode '"Walking’ in
combination with purposes ‘Shopping’ and 'Leisure’ are included in the model for trip
legs to accommodate some large interaction effects, especially the high number of
leisure walking trips since 2021.

For travel duration per trip leg, it was found that the same model as used for distance
can be used. This seems reasonable as the duration and distance series are closely
related. A small additional update to the models is that the autoregressive AR1
parameter that models the dependence of levels, slopes and discontinuities over
ordered age-classes is now inferred from the data, where before a fixed plug-in value
was used that was based on a grid search. This further improved the model fits and
discontinuity estimates, especially for the duration variable.

Model predictions and trends for the number of trip legs per person per day,
distance/duration per trip leg, and distance/duration per person per day are obtained at
different aggregation levels of the cross-classification by aggregating the model
predictions and trends at the most detailed level. Until 2021 (when the series extended
up to 2020), the trends (for trip legs and distance) have been estimated at the OViN
measurement level. From 2022 onwards, trends are instead estimated at the ODIN
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measurement level. This means that trends are derived from the model predictions
including ODIN discontinuities and excluding the MON and OViN discontinuities.
Whereas the trend estimates are adjusted to the measurement level of ODIN, the Covid
effects on mobility are real and so the trends are not corrected for them. Nevertheless,
the explicit modelling of Covid effects allows to estimate Covid-corrected trends, i.e.
trends that would likely have been observed if there were no pandemic. With the new
parametrisation of Covid effects it would now also be possible to correct only for
temporary Covid effects, leaving the structural effects as part of the trends.

Measured by the estimated standard errors, the trend series are most accurately
estimated for the design period whose measurement level is used as the benchmark
level. As discussed, this is now the ODIN level. The standard errors of the trend
estimates during the preceding OVG, MON and OViN periods are larger, as a result of the
uncertainty of ODiN discontinuities. This is especially true for OVG and MON periods as
some large OViN discontinuity estimates also add to their uncertainty. Often, the
standard errors in these periods are even larger than the design-based standard errors
of the direct (untransformed) input estimates. This is because the latter do not account
for (relative) measurement errors.

Potential improvements to the trend models that may be investigated in a follow-up
study include adaptations of the GVF models for smoothing of input variance estimates.
A shortcoming of the current GVF models is that variance estimates for zero trip leg
estimates sometimes appear to be too small. Fixing this should hardly affect aggregate
level estimates, but it may further improve trend series for some domains with few
observations. A related option that might be explored is to model input estimates and
their variance estimates simultaneously. Such a model would not only account for the
uncertainty in input point estimates, but also for uncertainty in the input variance
estimates. Finally, as distance and duration variables are strongly related, another
potential improvement might be to combine the models for distance and duration per
trip leg into a bivariate time series multilevel model. By exploiting correlations among
both series, this might increase the accuracy of the model predictions for both variables.
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Appendix A Time series plots model-based
and direct estimates

A.1 Total number of trip legs per day
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Total number of trip legs per day
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Figure A.1 Direct estimates (black), model fit (red) and trend estimates
(green) for total number of trip legs per day with approximate 95% intervals.
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Number of trip legs per day by purpose
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Figure A.2 Direct estimates (black), model fit (red) and trend estimates
(green) for total number of trip legs per day by purpose with approximate
95% intervals.
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Number of trip legs per day by mode
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Figure A.3 Direct estimates (black), model fit (red) and trend estimates
(green) for for total number of trip legs per day by mode with approximate
95% intervals.
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A.2 Total distance per day
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Total distance per day
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Figure A.4 Direct estimates (black), model fit (red) and trend estimates
(green) for total distance per day with approximate 95% intervals.
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Total distance per day by purpose
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Figure A.5 Direct estimates (black), model fit (red) and trend estimates
(green) for total distance per day by purpose with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024 43



Total distance per day by mode
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Figure A.6 Direct estimates (black), model fit (red) and trend estimates
(green) for total distance per day by mode with approximate 95% intervals.
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A.3 Total duration per day
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Figure A.7 Direct estimates (black), model fit (red) and trend estimates
(green) for total duration per day with approximate 95% intervals.
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Total duration per day by purpose
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Figure A.8 Direct estimates (black), model fit (red) and trend estimates
(green) for total duration per day by purpose with approximate 95% intervals.
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Total duration per day by mode
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Figure A.9 Direct estimates (black), model fit (red) and trend estimates
(green) for total duration per day by mode with approximate 95% intervals.
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A.4 Number of trip legs per person per day
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Figure A.10 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose
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Figure A.11 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024

10/

Buiddoys

uoneonpg

ainsiaT]

1BYI0

51



Number of trip legs pppd by mode
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Figure A.12 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by mode and purpose
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Figure A.13 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose, for mode Car driver
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Figure A.14 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose, for mode Car passenger
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Figure A.15 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose, for mode Train
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Figure A.16 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose, for mode BTM
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Figure A.17 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose, for mode Cycling
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Figure A.18 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose, for mode Walking
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Figure A.19 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose, for mode Other
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Figure A.20 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024

10/

Buiddoys

uoneonpg

ainsiaT]

1BYI0

60



Number of trip legs pppd by ageclass and sex
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Figure A.21 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 6-11
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Figure A.22 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 12-17
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Figure A.23 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 18-24
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Figure A.24 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 25-29
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Figure A.25 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 30-39
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Figure A.26 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 40-49

Male Female

1.25-

1.00-

0.75-

0.50-

1.2-

1.0-

0.8-

0.16-

0.12-

0.08-

0.04-

nr of trip legs pppd

0.00-

' ' ' ' ' ' ' ' ' '
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
year

Figure A.27 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 50-59
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Figure A.28 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 60-64
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Figure A.29 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 65-69
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Figure A.30 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by purpose and sex, age 70+
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Figure A.31 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by mode and sex, age 6-11
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Figure A.32 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by mode and sex, age 12-17
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Figure A.33 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024

Bunjrepn BulpAo N1g urel| l1abuassed 1ed J1aAup 1ed

18Uy10

73



Number of trip legs pppd by mode and sex, age 18-24
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Figure A.34 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by mode and sex, age 25-29
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Figure A.35 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by mode and sex, age 30-39
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Figure A.36 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Figure A.37 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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nr of trip legs pppd

Number of trip legs pppd by mode and sex, age 50-59
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Figure A.38 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by mode and sex, age 60-64
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Figure A.39 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by mode and sex, age 65-69
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Figure A.40 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Number of trip legs pppd by mode and sex, age 70+
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Figure A.41 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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A.5 Average distance per trip leg
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Overall average of distance per trip leg
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Figure A.42 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose
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Figure A.43 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode
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Figure A.44 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024

Bunjrepn BulpAo N1g urel| l1abuassed 1ed J1aAup 1ed

18Uy10

85



Distance per trip leg by mode and purpose

Work Shopping Education Leisure Other

urel| l1abuassed 1ed J1aAup 1ed

ANES|

distance per trip leg
Bunjrepn BulpAo

18Uy10

' Ll ' ' Ll ' ' Ll ' ' Ll ' ' Ll '
2000 2010 2020 2000 2010 2020 2000 2010 2020 2000 2010 2020 2000 2010 2020
year

Figure A.45 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose, for mode Car driver
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Figure A.46 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose, for mode Car passenger
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Figure A.47 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose, for mode Train
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Figure A.48 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose, for mode BTM
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Figure A.49 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose, for mode Cycling

45-

40-

10/

35-

22-

20~

Buiddoys

18-

35-

uoneonpg

30-

25-

distance per trip leg (in hectometers)

60-

50-

ainsiaT]

40~

27.5-

25.0-

22.5-

1BYI0

20.0-

17.5-

' ' ' '
2000 2005 2010 2015 2020
year

Figure A.50 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose, for mode Walking
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Figure A.51 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose, for mode Other
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Figure A.52 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by ageclass and sex
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Figure A.53 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose and sex, age 6-11
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Figure A.54 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose and sex, age 12-17
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Figure A.55 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Distance per trip leg by purpose and sex, age 18-24
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Figure A.56 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Distance per trip leg by purpose and sex, age 25-29
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Figure A.57 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose and sex, age 30-39
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Figure A.58 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose and sex, age 40-49
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Figure A.59 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose and sex, age 50-59
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Figure A.60 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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distance per trip leg

Figure A.61 Direct estimates (black), model fit (red) and trend estimates
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Distance per trip leg by purpose and sex, age 65-69
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Figure A.62 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by purpose and sex, age 70+
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Figure A.63 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 6-11
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Figure A.64 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 12-17
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Figure A.65 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Figure A.66 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 25-29
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Figure A.67 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 30-39
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Figure A.68 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 40-49
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Figure A.69 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 50-59
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Figure A.70 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 60-64
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Figure A.71 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 65-69
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Figure A.72 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance per trip leg by mode and sex, age 70+
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Figure A.73 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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A.6 Average distance per person per day
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Overall average of distance pppd
400-

350~

300-

distance pppd (in hectometers)

250-

2000 2005 2010 2015 2020
year

Figure A.74 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose
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Figure A.75 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode
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Figure A.76 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and purpose
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Figure A.77 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd leg by purpose, for mode Car driver
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Figure A.78 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd leg by purpose, for mode Car passenger
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Figure A.79 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd leg by purpose, for mode Train
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Figure A.80 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd leg by purpose, for mode BTM
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Figure A.81 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd leg by purpose, for mode Cycling
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Figure A.82 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd leg by purpose, for mode Walking
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Figure A.83 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024 125



Distance pppd leg by purpose, for mode Other
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Figure A.84 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by ageclass and sex
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Figure A.85 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 6-11
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Figure A.86 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 12-17
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Figure A.87 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 18-24
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Figure A.88 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 25-29
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Figure A.89 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 30-39
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Figure A.90 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 40-49
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Figure A.91 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 50-59

Male Female
250 -

200~

150~

10/

100-

50-

Buiddoys

distance pppd
uoneonp3

175-

150-

ainsiaT]

1BYI0

100-

50-

' ' ' ' ' ' ' ' ' '
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
year

Figure A.92 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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distance pppd

Distance pppd by purpose and sex, age 60-64
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Figure A.93 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 65-69
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Figure A.94 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Distance pppd by purpose and sex, age 70+
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Figure A.95 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 6-11
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Figure A.96 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 12-17
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Figure A.97 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 18-24
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Figure A.98 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 25-29
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Figure A.99 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 30-39
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Figure A.100 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 40-49
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Figure A.101 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 50-59
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Figure A.102 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 60-64
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Figure A.103 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 65-69
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Figure A.104 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Distance pppd by mode and sex, age 70+
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Figure A.105 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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A.7 Average duration per trip leg
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Overall average of duration per trip leg
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Figure A.106 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose
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Figure A.107 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode
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Figure A.108 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and purpose
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Figure A.109 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose, for mode Car driver
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Figure A.110 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose, for mode Car passenger
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Figure A.111 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose, for mode Train
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Figure A.112 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose, for mode BTM
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Figure A.113 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose, for mode Cycling
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Figure A.114 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose, for mode Walking
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Figure A.115 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose, for mode Other
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Figure A.116 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by ageclass and sex
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Figure A.117 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 6-11
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Figure A.118 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 12-17
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Figure A.119 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 18-24
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Figure A.120 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 25-29
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Figure A.121 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 30-39

Male Female
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Figure A.122 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 40-49
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Figure A.123 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 50-59

Male Female
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Figure A.124 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 60-64
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Figure A.125 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 65-69
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Figure A.126 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by purpose and sex, age 70+
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Figure A.127 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 6-11
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Figure A.128 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024 171



Duration per trip leg by mode and sex, age 12-17
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Figure A.129 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 18-24
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Figure A.130 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 25-29
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Figure A.131 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 30-39
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Figure A.132 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 40-49
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Figure A.133 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 50-59
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Figure A.134 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 60-64
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Figure A.135 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 65-69
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Figure A.136 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration per trip leg by mode and sex, age 70+
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Figure A.137 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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A.8 Average duration per person per day
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Figure A.138 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose
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Figure A.139 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode
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Figure A.140 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and purpose
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Figure A.141 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd leg by purpose, for mode Car driver
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Figure A.142 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd leg by purpose, for mode Car passenger
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Figure A.143 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd leg by purpose, for mode Train
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Figure A.144 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd leg by purpose, for mode BTM
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Figure A.145 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd leg by purpose, for mode Cycling
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Figure A.146 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd leg by purpose, for mode Walking
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Figure A.147 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd leg by purpose, for mode Other
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Figure A.148 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by ageclass and sex
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Figure A.149 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose and sex, age 6-11
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Figure A.150 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose and sex, age 12-17
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Figure A.151 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose and sex, age 18-24
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Figure A.152 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose and sex, age 25-29
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Figure A.153 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024 197



Duration pppd by purpose and sex, age 30-39
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Figure A.154 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose and sex, age 40-49
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Figure A.155 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024 199



Duration pppd by purpose and sex, age 50-59
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Figure A.156 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose and sex, age 60-64
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Figure A.157 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose and sex, age 65-69
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Figure A.158 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by purpose and sex, age 70+
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Figure A.159 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, age 6-11
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Figure A.160 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024 204



Duration pppd by mode and sex, age 12-17
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Figure A.161 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, age 18-24

Male Female

(@)
o
=3
2
[}
O
)
el
)
[72]
(]
3
Q
[}
=
o
3
e}
o
o
o @
c
S E
S
=]
©
20.0-
17.5-
9
15.0- s
:
«Q
12.5-
10.0-
5
=,
3
«Q
(@]
5
[0}

' ' ' ' ' ' ' ' ' '
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
year

Figure A.162 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, age 25-29
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Figure A.163 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, age 30-39
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Figure A.164 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, age 40-49
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Figure A.165 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, age 50-59
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Figure A.166 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, age 60-64
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Figure A.167 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.

CBS | Discussion paper | November 4, 2024 211



Duration pppd by mode and sex, age 65-69
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Figure A.168 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, age 70+
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Figure A.169 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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Duration pppd by mode and sex, Work, age 12-17
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Figure A.170 Direct estimates (black), model fit (red) and trend estimates
(green) with approximate 95% intervals.
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