

Deep learning for
time series
forecasting and
nowcasting

Subtitle

In collaboration with Partner

Pim Ouwehand,
Sabine Krieg and
Rob Willems

August 2024

CBS | Discussion Paper | August 2024 2

Content

1. Introduction 4

2. Methods 6
2.1 Traditional time series analysis 6
2.2 Neural networks 6

3. Setup of empirical and simulation studies 15
3.1 Software 15
3.2 Datasets 15
3.3 Evaluation 17

4. Results 18
4.1 Instable estimation 18
4.2 Artificial series 20
4.3 Airline data 28
4.4 Consumption households 35
4.5 Nowcast of GDP 38

5. Conclusion 43

6. Literature 45

7. Appendix: results for artificial series with RNN and LSTM 48

CBS | Discussion Paper | August 2024 3

Summary
This study is an exploration of where we can expect added value for forecasting

and nowcasting time series in official statistics by using deep learning techniques,

as an alternative to classic time series models. We will compare several neural

network algorithms, identify the key differences with classic time series methods

and determine in what situations we can expect to benefit from these algorithms.

In an empirical study, the methods are applied to several time series. We find that

neural network algorithms can yield similar forecast and nowcast accuracy as

classic methods for univariate time series, but it requires some effort to achieve

this. When applied to a more challenging problem with several auxiliary variables

and a more volatile series, in our case the Long Short-Term Memory model gave

accurate results. This leads to the conclusion that deep learning can offer added

value compared to classical methods for specific problems, but more research is

needed.

Keywords
nowcasting, neural networks, deep learning, time series

CBS | Discussion Paper | August 2024 4

1. Introduction

Time series analysis is an important part of the statistical process in official

statistics. There are different purposes of such an analysis, for example:

– Seasonal adjustment. The aim is to separate the seasonal pattern from the

trend-cycle and the noise. By adjusting for seasonal effects, short-term

developments are easier to interpret. At Statistics Netherlands, the package

JDemetra+ is used (Eurostat, 2024).

– Improvement of accuracy. The accuracy of current figures is improved by using

estimates from the past about the same variable. At Statistics Netherlands, this

approach is applied for figures about the labour market, and for consumer

confidence (van den Brakel and Krieg, 2009, van den Brakel e.a., 2021). The

method is based on structural times series models (Durbin and Koopman,

2012). This can be seen as a kind of small area estimation (Rao and Molina,

2015).

– Nowcasting. This can be applied when there is no data available for the

reference period yet. In that case, historical information from the target series

is combined with historical and current information from auxiliary series, in

order to make an estimate for the reference period. In Zult e.a. (2023) a

method is developed which combines information from a monthly series and a

quarterly series about tax-turnover of selective subpopulations to a monthly

series about the entire population. Part of the method is nowcasting of the

quarterly series, as the last value of this series is not available on time for the

publication.

– Analysis of published figures. One example is the business cycle dashboard of

Statistics Netherlands (2024). There, the business cycle of different economic

indicators are visualized together. For this, time series methods are needed in

order to estimate the cyclical component of each series.

For part of the applications, it is necessary to estimate the time series components

such as the trend and the seasonal. For other applications only the prediction of

the next values is needed.

With the increased interest in machine learning (ML) approaches in official

statistics, the question arises whether these techniques have added value

compared to classic time series methods used in the applications above. ML is

often used for forecasting purposes. In order to obtain good predictions, many

algorithms use supervised learning. In this subclass of ML, the objective is to find a

mapping function from the input data to the output variable of interest. The

algorithm then learns the mapping function by feeding it with a large number of

examples. Supervised learning can be further grouped into classification and

regression problems. Some applications are aimed at classification problems,

where the objective is to predict the correct (discrete) class label of an object.

CBS | Discussion Paper | August 2024 5

Time series applications are an example of a regression problem. In time series

applications, we are interested in a continuous quantity, for which also many

supervised ML algorithms exist. These methods might especially be beneficial in

forecasting and nowcasting, where the objective is to produce out-of-sample

estimates of a time series at an early stage. Forecasting and nowcasting is an

important tool in producing timely official statistics (EU, 2017). For nowcasting,

commonly time series models are used that model the historical data of the target

variable and combine this with early available data sources related to the indicator

to be published. In some cases, there is a large dataset of auxiliary information

available, and data reduction or variable selection has to be applied to properly

model the problem. In this paper, we take some first steps in order to establish

whether ML techniques can serve as a suitable alternative to deal with time series

forecasting and nowcasting problems. While the main focus of the paper is on

predicting new values, we will also discuss ML methods that compute the

decomposition of a series into trend, seasonal and other components, albeit more

briefly.

In recent years, there has been some evidence that ML methodologies can

produce accurate time series forecasts. In some cases, they can outperform classic

methods, either as a hybrid approach that combines ML with statistical methods

(Makridakis et al., 2020) or as a pure ML approach (Makridakis et al., 2022). Also in

official statistics, where focus is more on nowcasting than complete extrapolation

(EU, 2017), there are examples (Hopp, 2022) where a ML method can give more

accurate predictions than a classic method.

In Section 2, ML methods for time series analysis are described. In the literature,

many ML methods are available. In this paper, we test several of them. In Section

3 the setup of the empirical study is described, and results follow in Section 4. The

conclusions can be found in Section 5.

The authors thank Tim de Jong and Marco Puts from Statistics Netherlands for

useful discussions and sharing their experience with ML and Tim de Jong for

reviewing this paper.

CBS | Discussion Paper | August 2024 6

2. Methods

In this section, we give an overview of ML methods that are suitable for time series

analysis. We found that especially deep learning (DL) methods, a subclass of ML,

are appropriate for our objectives. We first discuss the general principles behind

DL and how a time series can be modeled in a neural network. After that, we give

an overview of DL methods that are available. The overview is not complete as on

the internet, many methods and applications of ML for time series analysis can be

found. We have attempted to cover the most important methods.

Some of the methods described in this section are applied to our own series, the

results are discussed in Section 4. Other methods are only mentioned here, as they

look interesting for further research, but are not applied to a dataset.

2.1 Traditional time series analysis

In traditional time series analysis, models such as ARIMA (Box and Jenkins, 1976)

or structural time series models (Durbin and Koopman, 2012) are used. These

models assume that a time series consists of several components, the most

important ones being the trend, the seasonal pattern and the noise or irregular

component. For some applications, it is necessary to decompose the series into

these components (such as seasonal adjustment), while in other applications, it is

useful to make assumptions about the components in order to predict the next

values. As we will see below, most of the here considered DL approaches do not

attempt to describe the time series in terms of its components explicitly, but

rather try to estimate a mapping from the input values (the historical data) to the

output (the current or future values) by setting weights appropriately and thereby

learning the patterns present in the series.

2.2 Neural networks

Artificial neural networks (ANN) are inspired by the human brain. The output of an

ANN can be considered a function of the input: 𝑦 = 𝑓(𝑥). The neural network

connects the input values to the output via a collection of units (or nodes) which

are connected by edges. Typically, the units are organized in layers. The first layer

is the input layer where the input 𝑥 enters the network. 𝑥 can be a single number

or a vector of numbers. In traditional statistics, this is often called auxiliary or

explanatory information, while in data science, the term is features. Each edge has

a weight, which determines how the value of the next unit is to be computed. This

next unit combines weighted values of previous nodes, where the combination

function is possibly non-linear. In this way, the input is processed through the

network until the output layer is reached, where 𝑦 is found. 𝑦 can be a single

number or a vector of numbers.

CBS | Discussion Paper | August 2024 7

There is a vast array of possible ANN algorithms that can be used, and in this

paper, we will consider only a small subset of the available options. We will start

by describing the basic feed-forward ANN, and then move to RNN and LSTM

networks, and Neural Prophet.

A feed-forward ANN consists of an input layer, one or more hidden layers, and an

output layer. The hidden layer(s) consist of one or more nodes (called ‘neurons’)

that process the data from the previous layer. The data flow is thus unidirectional,

from input layer to output layer. All layers are fully connected, i.e. all neurons in

one layer are connected to all neurons in the next layer. A relatively simple ANN is

shown in Figure 2.1. In order to compute the value of a node (for example the first

node of the second layer), first a linear function of the values of the nodes of the

previous layer is computed. Then an activation function g(z) is applied to this linear

combination. This is described in more detail below.

Figure 2.1: feed forward neural network

The user of an ANN has to choose the structure of the ANN. This can be from

scratch, but it is also possible to use a structure which is proven to be useful from

the literature. The weights of the edges are computed in a training process. This

training starts with randomly chosen weights. The model is shown a collection of

input values (the so called training set) and computes the output values, based on

the weights. Then these computed output is compared with the true values, which

are known for the training set. Depending on the difference between output of the

model and true value the weights are adopted through a procedure called

backpropagation. This is repeated until the model converges based on some

criterion. Since the true values from the training set are used in the training

process, this process is called supervised learning.

Modeling time series in an ANN

Feed-forward ANN’s are not specifically designed for handling time series. Time

dependency of the input data is not supported by default. The network connects

the input layer with the output layer, and the supervised learning algorithm learns

the mapping between these two layers. Any time dependency in a feed-forward

network thus has to be addressed in the input layer and the choice of hidden

layers.

CBS | Discussion Paper | August 2024 8

First, we focus on preparing the input data. Let 𝑦𝑡 be our target variable at time t,

with t=1,…,T, and 𝑋𝑡 the auxiliary variables at time t. The matrix 𝑋𝑡 consists of m

auxiliary variables, all given for t=1,…,T as well. A nowcasting time series model

uses both the historical time series of the target variable and the auxiliary

variables to make a prediction, where the latter can be added to the model as

regressors. In order to translate this to a supervised learning problem, we use the

fact that any time series model is basically a function of historical observations and

auxiliary data:

𝑦𝑡   = 𝑓(𝑦𝑡−1, 𝑦𝑡−2,   … ,  𝑦𝑡−𝑛, 𝑥1,𝑡,   … , 𝑥𝑚,𝑡) + 𝜀𝑡 for t=1,..,T

In a classic time series model, we make assumptions about function f, such as that

it describes a trending or seasonal pattern in the series, and the goal is to find an

appropriate form of f such that it has good explanatory and predictive value. In

neural networks, we do not make any explicit assumptions, and rather let the

learning algorithm discover for itself which patterns are present in the data. The

algorithm only trains the network in order to give good predictions for the output

variable, and explanatory value of the model is not explicitly considered. We

therefore use as inputs the variables in the function above: the first n lags of

𝑦𝑡  :  𝑦𝑡−1, 𝑦𝑡−2,   … ,  𝑦𝑡−𝑛 , and the auxiliary variables for time t: 𝑋𝑡. Figure 2.2 gives

an example of these inputs in a feed-forward neural network with a single hidden

layer.

Figure 2.2: time series nowcasting model in a feed-forward neural network

After preparing the data and setting up the input layer, there are a couple of

aspects to further determine how the learning algorithm finds a good mapping

from input to output layer. The most important choice is the number of hidden

layers and the number of neurons in each layer. Although guidelines exist, this is

largely a matter of trial and error and depends on the application at hand.

Although not all neurons need to be connected with all neurons in the next layer,

we will assume this is the case. This is called a fully connected network (also dense

CBS | Discussion Paper | August 2024 9

neural network or DNN). Below, when we discuss the training of the network, we

will discuss how to gradually find an appropriate network design as we repeatedly

let the algorithm learn a mapping function. The way the algorithm converges gives

information about how to proceed.

Activation functions

In order to learn a mapping from inputs to output, some inputs should be given

lower weights than other inputs. This is done via the neurons in each layer. Each

neuron receives a number of inputs from the previous layer, suppose these are

𝑥 = 𝑥1, … , 𝑥𝑘. The neuron then first computes a weighted sum of these inputs:

𝑧 = 𝑤𝑥 + 𝑏 = 𝑤1𝑥1, … , 𝑤𝑘𝑥𝑘 + 𝑏

After computing this linear combination, an activation function g() is applied. The

activation function determines the output of the neuron and thus how the

network learns the training data. Many activation functions exist, and the most

appropriate one depends on the application at hand. The most important ones are

the linear activation function (which is just the weighted sum above), tanh (which

results in an output between -1 and 1), the ReLU (rectified linear unit) and the

sigmoid function. The latter two are applied in this paper, with their corresponding

functions given by:

ReLU: 𝑔(𝑧)  = max(0, 𝑧)

Sigmoid: 𝑔(𝑧)  =
1

1 + 𝑒−𝑧

Figure 2.3: ReLU and sigmoid activation functions

The figures show how the weighted sum z is transformed by the activation

function. The sigmoid, or logistic, function, for example, always returns a number

between 0 and 1, and therefore is often applied for classification problems. It can

also be applied to continuous variables, as long as data is scaled to lie in the

interval [0,1]. The ReLU always returns a nonnegative number, and therefore can

be useful for many time series applications. It is also used in order to obtain the

results in this paper. These activation functions are in principle only used for the

intermediate layers. For the output layer, the activation function is often chosen to

be the identity function so that the operation at the output stage remains linear.

CBS | Discussion Paper | August 2024 10

Training an ANN

To describe the organization of the training process we need some terms: epoch,

batch size, learning rate, loss function, optimizer. The training set is processed in

the model in relatively small portions which are called batches. After a batch is

processed, the weights are adjusted. Stochastic gradient descent is an iterative

method to optimize the loss of a predictive model for the training set. It uses the

first order derivative of the loss function. At each batch, it calculates in which way

the weights should be adjusted so that the loss can reach a minimum. The learning

rate parameter determines the size of this adjustment step at each iteration.

Through backpropagation, which calculates gradients for the weights, the loss is

transferred from one layer to another, and the weights are modified depending on

the loss. In our applications below, we will use the ‘Adam’ optimizer to perform

this task and vary the learning rate. Processing the entire training set once is called

an epoch. The loss-function determines how the difference between output of the

model and true value is computed. When the output is a real number, the mean

squared error is a an obvious choice.

A simple approach is to train a model with a predetermined number of epochs.

Another possibility is to apply ‘early stopping’, in which after every epoch the

model is applied on a validation set (this validation set is no part of the training set

and therefore not involved in the estimation of the weights) and compute the

validation loss. Then the training can stop when this validation loss does not

improve anymore for several epochs, and the weights with the smallest validation

loss can be used.

Types of ANN

In this paper we consider four types of ANN: Dense neural networks (DNN),

Recurrent neural network (RNN), Long short-term memory (LSTM) and Neural

Prophet. The first three ANN are based on the same principles, the only difference

is the structure of the units and edges. Neural Prophet is different from this, as it

also uses methods from the classic time series analysis. Here we describe some

general properties of DNN, RNN and LSTM. For information about Neural Prophet

see Section 2.2.4. In this section we shortly describe two other methods (deep

state space and N-Beats, see section 2.2.5 and 2.2.6). The application of these

methods is left for further research.

The methods DNN, RNN, LSTM discover for themselves whether there is a seasonal

pattern, this is not given in the model specification. The user can add this

knowledge about the seasonality take into account in the choice of the right values

from the past as features.

The DL-methods DNN, RNN, LSTM considered in this paper only predict future

values of the series without computing the components. When this decomposition

is necessary in a particular application, it could be possible to develop a method

which combines DL prediction with a traditional method. For example for seasonal

adjustment it is necessary to predict the series before the actual seasonal

adjustment can be carried out. Normally, ARIMA is used to compute the

predictions, this could be replaced by DL.

CBS | Discussion Paper | August 2024 11

2.2.1 DNN
There are many tutorials on the internet which demonstrate applications of DL for

time series. Yang (2020), is one of them which shows some relatively simple code

using the package Keras in Python to forecast time series. The figures in this

tutorial looks quite promising, so it is worth trying to reproduce this on our own

series. The first method of this tutorial is DNN. In the tutorial, the model consists

of the input layer, two hidden layers and the output layer. In our experiments, we

tried models with one, two, or three hidden layers and different numbers of units

in the layers.

2.2.2 RNN
RNN (Recurrent neural network) is the second method from Yang (2020). Whereas

the data flow in a DNN is unidirectional, in a RNN feedback loops are possible.

2.2.3 LSTM
LSTM (Long short-term memory) is the third method from Yang (2020). It is a

special kind of a RNN, consisting of quite complex so called LSTM-cells. See also

Hochreiter and Schmidhuber (1997). These cells are constructed especially for

sequence data such as time series. They makes it easier to remember important

information from periods in the past, and forget other information. Apart from an

input value, they take as input a long-term memory component (known as the cell

state) and a hidden state. The latter two are output of the previous LSTM cell.

Within the LSTM cell, these inputs are processed through filters which are each

their own neural network, updated by activation functions. These filters determine

which part of the long-term memory should be forgotten (given less weight), and

which part of the new input or hidden state should be added to the memory and

how the hidden state is altered.

2.2.4 Prophet and Neural Prophet
Prophet and Neural Prophet are two time series methods developed by Facebook

and published in 2017 and 2020 respectively. Prophet is the predecessor to Neural

Prophet, where the latter includes DL. Although not a ML method, we therefore

first discuss Prophet in this section.

Whereas the previous methods in this section (DNN, RNN and LSTM) only predict

the next value (or next values) in the series, Prophet and Neural Prophet are able

to decompose a series into different unobservable components.

The Prophet forecasting model

Prophet is a procedure for forecasting time series data developed by Facebook,

see Taylor and Letham (2017). Prophet allows for non-linear trends. The model is

fit based on traditional methods. The time series model that Prophet uses is the

following additive model

𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐻𝑡 + 𝑒𝑡 (1)

where

– 𝑦𝑡 is the observable

– 𝑇𝑡 is the trend

CBS | Discussion Paper | August 2024 12

– 𝑆𝑡 is the seasonal

– 𝐻𝑡 models the effects of holidays

– 𝑒𝑡 is the irregular term

Each summand of the right hand side of (1) is said to be a component and since it

cannot be directly observed (as opposed to 𝑦𝑡) it is an unobservable component.

The deviating parts of this model (as opposed to a standard component model, see

e.g. Durbin and Koopman, 2012) are therefore the absence of a business cycle and

the inclusion of a special holiday effect. The aim of Prophet now is to view the

forecasting problem as a curve-fitting problem and consequently solve the latter.

This is a fundamentally different approach from the standard approach of e.g.

Durbin and Koopman (2012).

We will now describe the three individual unobservable components in some more

detail. For more information, see Taylor and Letham (2017).

Prophet accepts two possible functions as trend: a continuous piecewise series

consisting of either non-linear saturating growth functions or an affine function. In

both cases turning points or change points must be specified. These are time

stamps between which the same particular function is valid. Prophet lets the user

either preselect these time stamps 𝑡1, … , 𝑡𝑙 or give an upperbound for 𝑙 (the

number of time stamps or change points) and let Prophet automatically select

them. The continuous piecewise nonlinear saturating growth takes growth in

natural ecosystems as an example (Hutchinson, 1978) and uses the following

function

𝑔𝑡 =
𝐶

1 + exp (−𝑘(𝑡 − 𝑚))
 (2)

with C the carrying capacity, k the growth rate and m an offset parameter. It is

subsequently modified to better suit growth in economic activities by allowing

both 𝐶 and 𝑘 to be time dependent. They can then be defined by the user. If not,

Prophet assumes all variables are constant and calculates fitting values, although

documentation does not give explicit details.

The continuous piecewise affine function has the simplicity of affine functions, yet

it is also adjustable enough to meet real-life problems due to having this property

not globally but piecewise. At each timestamp 𝑡1, … , 𝑡𝑙 the constituent functions

change slope. After fitting a trend based on a given past, the trend is extrapolated

for forecasting using the last function.

The seasonal function 𝑠𝑡 is modelled using standard Fourier series:

𝑠(𝑡) = 𝑎0 + ∑ (𝑎𝑛 cos
𝑛𝜋𝑡

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑡

𝐿
)

𝑁

𝑛=1

Where 𝐿 has to be chosen by the user according to the periodicity of the series.

There are 2𝑁 + 1 parameters to be estimated. The truncation number 𝑁 itself may

be chosen arbitrarily, but not too big (risk of overfitting) and not too small (risk of

mis-fitting) either. The preprogrammed values are 𝑁 = 10 for monthly seasonality

CBS | Discussion Paper | August 2024 13

(12 months within a year) and 𝑁 = 3 for daily seasonality (7 days within a week).

According to Taylor and Letham (2017) these “work well for most problems”. For

other periodicities, other values for 𝑁 should be chosen.

The user may identify a list of holidays per year. For each holiday 𝑖 there are 𝐷𝑖

corresponding dates. These too must be identified by the user. Prophet has a

predefined set of the holidays for a number of countries. Prophet estimates a 𝜅𝑖

for each holiday 𝑖, assuming an additive change 𝜅𝑖 for each element of 𝐷𝑖 on the

trend. This component is interesting for series of daily figures, where for each day

it can be decided whether it is a holiday or not. In the case of monthly figures, it

should be defined that an entire month is a holiday, which is generally not

appropriate. In this part, Prophet is less flexible than for example seasonal

adjustment with X13-ARIMA. The latter method can take into account that for

example the figure for March or April is influenced by the Easter holiday.

The fitting procedure for model parameters uses Limited-memory BFGS.

Neural Prophet

The time series model that Neural Prophet uses is the following additive model

𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐻𝑡 + 𝐹𝑡 + 𝐴𝑡 + 𝐿𝑡 + 𝑒𝑡 (3)
where

– 𝑦𝑡 , 𝑇𝑡 , 𝑆𝑡, 𝐻𝑡 and 𝑒𝑡 are defined in the same way as for Prophet.

– 𝐹𝑡 models regression effects for future known exogenous variables (future

regressors)

– 𝐴𝑡 models auto-regression effects

– 𝐿𝑡 models regression effects for lagged observations of exogenous variables

(lagged regressors)

As for Prophet, the summands of the right hand side of (3) are unobservable

components.

The deviating parts of this model (as opposed to Prophet proper) are

– 𝐹𝑡 , 𝐴𝑡 and 𝐿𝑡 all use the AR-Net. AR-Net is a simple autoregressive neural

network for time series developed by Meta (Facebook)

We see some differences of NeuralProphet compared to Prophet. First, there are

some more components. Second, NeuralProphet is trained with DL methods

(based on PyTorch). The makers of NeuralProphet claim that NeuralProphet

outperforms Prophet. Neural Prophet is furthermore based on PyTorch where

Prophet was based on STAN (a state-of-the-art platform for statistical modeling

and high-performance statistical computation).

The fitting procedure for model parameters of NeuralProphet uses mini-batch

Stochastic Gradient Descent.

– The loss function is the Huber loss, a loss function less sensitive to outliers in

data than the standard squared error loss.

https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Squared_error_loss

CBS | Discussion Paper | August 2024 14

– Regularization. The weight values are scaled in a predefined way, for details we

refer to Triebe et al (2021).

– Optimizer. The optimizer can be set by the user but the default value is the

AdamW optimizer

– The learning rate can be set by the user but a default value is calculated as well.

– The batch size can be set by the user but a default value is calculated as well.

– The number of epochs can be set by the user but a default value is calculated as

well.

– The learning rate scheduler is “Icycle”.

Further features:

– Automatic filling in of missing data

– Normalization of data is possible using a handful of preprogrammed options.

– Hyperparameters have defaults proven in practice

Pro’s and con’s for Prophet and Neural Prophet

Pro:

– They offer a free and (once correctly installed) relatively easy to use python

package with which a number of standard approaches to modeling and

forecasting are offered.

– Can handle large datasets

– Automatic selection of training related hyperparameters.

– Fourier term seasonality at different periods such as monthly, daily, weekly,

hourly.

– Plotting for forecast components, model coefficients and final predictions.

– (Only Neural Prophet) supports auto-regression, covariates, lagged and future

regressors

Con’s:

– as with many larger python packages, the interdependencies underlying the

main package may cause problems when installing

– the package is specifically designed for certain business problems and does not

address other issues (e.g. time dependent margins)

– the definition of trend is not based on a distribution of residuals but instead is

treated as a curve-fitting problem

– the number of default change points is so large that trends are approximated

unrealistically

2.2.5 Deep state space
The traditional structural time series models are sometimes also called state space

models. More precisely, a structural time series model has to be written in state-

space representation in order to be estimated.

A structural time series model assumes that the series consists of components like

trend and seasonal. These components are called state variables. Then a structural

time series model consists of two linear equations. The first equation, the

transition equation, describes how the state variables evolve over time. The

second, so called measurement equation, describes how the observed series

CBS | Discussion Paper | August 2024 15

depends on the state variables. When these two linear equations are replaced by

an ANN, the result is a deep state space model (Gedon e.a., 2021).

2.2.6 N-BEATS
Kafritsas (2021) describes relatively recent developments of deep time series

analysis. In this tutorial, four methods are mentioned. We restrict ourselves here

to the first one, N-BEATS (see also Peixeiro, 2022). This is a ready to use neural

network for time series forecasting, more sophisticated than the ones from Yang

(2020), see Section 2.2.1 – 2.2.3. In Oreshkin e.a. (2020), N-BEATS is applied on a

large set of time series of different length and different characteristics, with,

according to the paper, promising results.

3. Setup of empirical and
simulation studies

In the next section, we present the results of a simulation and an empirical study

of the performance of deep learning methods. Before presenting these results, in

the current section, we describe the setup of these experiments.

3.1 Software

For the empirical and simulation experiments we used Python and R (R Core Team,

2018). The deep learning models DNN, RNN and LSTM were programmed in

Python 3.9 with use of the packages Tensorflow, Keras and Scikit-learn. For the

experiments with Prophet and Neural Prophet the corresponding packages were

used. For modelling the ARIMA-models Python 3.9 with package Statsmodels was

used, while Structural times series models (STM) were computed in R with the use

of the KFAS package (Helske, 2017), which implements the models from Durbin

and Koopman (2012).

3.2 Datasets

In order to study the possible value of applying DL to time series problems, we

consider several datasets with different characteristics.

The first dataset consists of simulated data, and contains three artificial series. This

allows us to systematically vary the properties of the series, most importantly the

length. Empirical series are mostly relatively short for ML algorithms, which are

typically applied to large datasets. This simulation study also allows us to vary the

amount of noise present in the series, relative to the seasonal pattern, and the

CBS | Discussion Paper | August 2024 16

complexity of the neural network that is used. This study gives us some first ideas

on the situations in which DL may be beneficial for times series applications.

The three artificial series have a length of 5300 periods. As we will see, with this

length quite accurate predictions are possible. The last 300 periods are used as

test set, the other periods are available as training set. By selecting a larger or

smaller part of this set, the influence of the length of the training set is

investigated. We have the following three series:

– A trend (computed as moving average of a random walk) plus a large seasonal

pattern (of length 12, not changing over time) plus noise

– The same trend plus a similar but smaller seasonal pattern plus noise

– The same trend plus noise

The series are created using basic functions of Excel. These series are quite regular.

See the figures in Section 4 for an impression.

The first empirical dataset is the well-known airline series (Box et al., 1994). This

monthly time series was chosen since it shows a clear and 'predictable' seasonal

pattern and a smooth upward trend. Also, there are no outliers or other effects

that make fitting a model more difficult. This series can therefore be easily

modelled with classical methods, such as with the well-known airline ARIMA-

model (Box et al., 1994), and predicting future values should not be difficult. It is

therefore the first real data example to study how we can achieve plausible results

with ML, that have similar out-of-sample performance compared to classical

methods.

As a second empirical series, we use consumption of households. The monthly

series is available since 2000. We include the series until December 2019 (due to

the corona crisis). The seasonal pattern in this series is relatively regular,

compared with other real series. We test two auxiliary series for this real series.

First, we use the original series, slightly changed by adding some noise. Second, we

use consumption of clothes. In both cases, we use the value of period 𝑡 of the

auxiliary series to predict the target series for period 𝑡. This is in this situation not

realistic, it is meant as a demonstration of the method.

After gaining some insights from these datasets, we move to an actual nowcasting

problem. In this case, we will make a nowcast for Dutch GDP, which is a quarterly

series at a high level of aggregation, with no assumed working day pattern or

outliers. The GDP data itself is the series in constant prices (2015=100), running

from 1995Q1 to 2021Q1. In order to avoid estimation problems arising around the

observations affected by the Covid crisis, we will first truncate our dataset at the

first quarter of 2020, and later also study the series including that period. In order

to make nowcasts for a certain reference period, we use the historical data of the

GDP series and combine this with current information from auxiliary data. In our

case, the latter consists of a number of macro-economic series that show high

correlation with GDP and should help to improve the out-of-sample estimates of

the target series.

CBS | Discussion Paper | August 2024 17

Preprocessing is an important step in time series analysis. It can consist of steps

such as outlier detection (and removal), correcting for structural breaks, seasonal

adjustment, calendar adjustment, and detrending or transforming the data (in

order to make the series stationary). Whether all these steps are necessary,

depends on the applied method and on the time series. All of these steps involve

an explanatory time series model, or at least try to explicitly deal with a certain

effect. In ML, at least some preprocessing should be done in order help the

numerical optimisation, such as normalising the inputs. Preprocessing is a very

important step to obtain accurate results, as this determines the algorithm’s ability

to learn. We can also apply the techniques from classic time series analysis, and

effectively create a combined classic and ML approach. In this first study, the

amount of preprocessing was limited, in order to discover how robust the

algorithms are to the abovementioned problems.

3.3 Evaluation

The quality of the models is evaluated by looking at figures where the predictions

are compared with the true values. Furthermore, different indicators are

computed to compare different models. These are

– the Mean Error (ME), which measures the average difference between the

actual values and the predicted values. Ideally, on average positive and

negative errors should cancel out, and this measure should be close to zero.

– the Mean Absolute Error (MAE), which measures the average absolute

difference between the actual values and the predicted values.

– The Root Mean Squared Error (RMSE) is the square root of the MSE. The MSE is

the sum of the squared differences between the actual values and the

predicted values. The squaring (besides getting rid of negative numbers) also

“punishes” large errors, i.e. their impact on the mean is enlarged.

– The Mean Absolute Percent Error (MAPE) is the average absolute percent

difference between the actual values and the predicted values.

These indicators are computed as follows:

ME =
1

n
∑(yi − xi)

n

i=1

MAE =
1

n
∑|yi − xi|

n

i=1

RMSE = √
1

n
∑(yi − xi)

2

n

i=1

MAPE =
1

n
∑ |

yi

xi
− 1| ∗

n

i=1

100

CBS | Discussion Paper | August 2024 18

With n = total numbers of observation, yi = actual value for the ith observation

and xi = predicted value for the ith observation.

MAE and (R)MSE depend on the order of magnitude of the series and can only be

used to compare different models for the same data. Because of its relative

nature, The MAPE can also be used to compare results of different data sets.

4. Results

In this section we discuss our experiences with applying different methods. In the

first part of this section, we show the initial challenges to achieve acceptable

results. In Section 4.3 we show that by stepwise improvement of the parameters

the results can be improved substantially. Also in Section 4.5, the predictions are

quite accurate. These results are based on the experiences of the first part of this

section.

4.1 Instable estimation

When a neural network is trained, the program tries to find the optimal set of

weights. Generally, a local optimum is found. The training of the model starts with

randomly chosen weights, which are improved by the optimization procedure.

When the model is initialized again and the training is repeated, often another

optimum is found, due to the randomly chosen starting points and the complexity

of the models. In Figure 4.1, we show the predictions which are based on different

local optimums of exactly the same models (details about the figures will be

explained later). We see that the second local optimum is much better than the

first one. Note that there are different methods to choose the starting weights.

Comparing these methods is left for further research.

The fact that there are different local optima is not always a problem. The neural

networks are complex, and it is possible that the same (or a similar) accuracy can

be achieved with very different weights. But Figure 4.1 shows two solutions with

different accuracy. This problem could be a sign that the model is somehow miss-

specified. One kind of miss-specification is a too complex model given the size of

the training set. This is definitely the case in some of the cases which are described

later. However, the problem of different local optima also occurs when the

training set is larger or when the model is less complex, and is happens with RNN

and LSTM as well. All models are trained several times. In the continuation of this

section, we present the results based on the best training result, given the RMSE.

This problems with the local optimums are a serious problem when we want to

find out which model specification is to be preferred in a specific situation.

There are some other reasons for problems with local optimums, like a non-

optimal learning rate or not applying regularization methods for the weights. First

CBS | Discussion Paper | August 2024 19

steps in exploring these possibilities will be shown in the continuation of this

section. These possibilities can be investigated in more detail in further research.

Figure 4.1: result for DNN-model for artificial series with small seasonal pattern, for upper panel
the RMSE = 0.014, for the lower panel RMSE = 0.0055

One of the local optimums is found to be a constant, the mean of the training set.

Figure 4.2 shows such a result. We found that this happened quite often under

RNN, but sometimes also under DNN and LSTM. RNN’s are known to be difficult to

be trained, due to the so-called vanishing gradient problem, where the gradient

goes to 0 and the weights are no longer updated and thus the model stops

learning. Initializing and training the model again can sometimes (but not always)

help to find a better solution.

Figure 4.2: result for RNN-model for artificial series with large seasonal pattern

CBS | Discussion Paper | August 2024 20

4.2 Artificial series

4.2.1 Results for DNN, RNN and LSTM

Table 4.1 shows which parameters are tested on the DNN model for the three

artificial series, as well as the corresponding RMSE computed on the test series.

Column 2 of the table shows the length of the training series which is selected

from one of the three artificial series. This is the part of the series which is used to

create the training set. The number of elements in the training set is slightly

smaller since there is some “loss” as some periods are used as lag. The number of

lags is shown in column 3 of the table. Early stopping (where the algorithm is

stopped if it does not further improve the validation loss for a while, in this case 5

epochs) is used in all cases. The number of epochs before the training stops varies

between a few dozen and almost a thousand. A learning rate of 0.0005 is used

after some experiments. It is quite possible that this parameter can be improved.

The models consist of the input layer, one or two hidden layers and the output

layer. The number of units in the hidden layers is given in column 4 of the table.

When there are two values in this column, there are two hidden layers, otherwise,

there is only one hidden layer. In Figure 4.3, 4.4, and 4.5, the predictions for all of

the specifications in Table 4.1 are compared with the true values of the series. The

specifications of the models are given in the head of the figure (length of training

series 𝑛, lb for number of lags, and the number of units in one or two hidden

layers). The abbreviation lb stands for look-back which is another term for lags. For

the computations for the series with a large seasonal, we can conclude that with a

longer training series more accurate model predictions are possible. But even with

100 periods in the training series, the predictions follow the trend and the

seasonal pattern quite well. Including more lags (of 8 of 16) in the model seems to

let the model recognize the seasonal pattern better, but even with 2 lags, the

seasonal pattern is quite well-predicted (but too small). The estimates for the

seasonal pattern are also too small with 100 periods in the training series. There,

the development of the trend is also slightly underestimated.

When we look at the examples for the series with small seasonal, there seems to

be a large difference between 8 or 16 lags, combined with a training series of

length 1000 and 16 and 8 units in the hidden layers. This is, however, probably the

result of many attempts to train the model. Also for the model with 8 lags, mostly

a local optimum with an accuracy around the one of the other model (with 16 lags)

is found. Only once, the very accurate optimum is found which is shown in the

table and the figure. It is possible that there is a similarly accurate local optimum

also for the model with 16 lags, which is not found during the training attempts.

For a series without a seasonal pattern, there is a simple idea for prediction: just

use the value of 𝑡 − 1 to predict 𝑡. This should be quite accurate and can be found

without using an ANN. When the length of the training series is 5000, the model

predictions of the DNN are close to this simple idea. This changes when the length

of the training series is shorter. It seems plausible that this simple solution is easier

to find (among many other local optimums) when the model is parsimonious, i.e. a

few lags and a few units. For the length of 1000, this seems to be true, for the

CBS | Discussion Paper | August 2024 21

length of 100, it is not. This is, again, probably a result of many local optimums,

and which solutions are coincidently found.

It seems that a model with 2 lags could be appropriate for a series without a

seasonal pattern. For a series with a seasonal (monthly) pattern, a model with

more lags seems to be better. It is remarkable that it does not seem necessary to

have 12 lags (or at least the 12th lag) in this application with a monthly seasonal

pattern. The problem with local optimums makes that we cannot be sure about

this conclusion. Nevertheless, the figures show that the seasonal pattern is found

quite well, even with 2 lags.

Table 4.1: Results for DNN with artificial series

Series Length

training

series

lags units RMSE

Large seasonal 5000 8 16-8 0.0037

Large seasonal 1000 8 16-8 0.0091

Large seasonal 1000 2 4 0.017

Large seasonal 100 8 16-8 0.017

Large seasonal 100 16 16-8 0.016

Large seasonal 100 8 4 0.011

Small seasonal 1000 8 16-8 0.0031

Small seasonal 1000 16 16-8 0.013

Small seasonal 100 16 16-8 0.0100

Small seasonal 100 8 4 0.0055

No seasonal 5000 8 16-8 0.0012

No seasonal 1000 8 16-8 0.0061

No seasonal 1000 2 4 0.0013

No seasonal 100 8 16-8 0.0041

No seasonal 100 2 4 0.0068

CBS | Discussion Paper | August 2024 22

CBS | Discussion Paper | August 2024 23

Figure 4.3: results with DNN-model for series with large seasonal pattern

CBS | Discussion Paper | August 2024 24

Figure 4.4: results with DNN-model for series with small seasonal pattern

CBS | Discussion Paper | August 2024 25

CBS | Discussion Paper | August 2024 26

Figure 4.5: results with DNN-model for series without seasonal pattern

RNN and LSTM models are also applied to these artificial series. Detailed results

for RNN and LSTM can be found in the Appendix. We see that RNN is not

promising at all. The accuracy of LSTM is sometimes comparable with the one of

DNN, but not clearly better. In the continuation of the project, RNN is not used

anymore.

4.2.2 Results for Prophet

The series with large seasonal effect was also tested with Prophet and Neural

Prophet. For this, the first 3000 points of the total series were selected. Figure 4.6

(top) shows the original series (black), the model estimates for the series (trend

and seasonal) (blue) and predictions (red). This means that the part of the series

where black points are added is used as input of the model. The last 12 points are

predicted. This part of the originals series was not used by the model. The

predictions meet the original series quite well. In the lower figure the change

points (vertical red lines) and the estimated trend are visible. Here, we find an

MAE = 0.002189 and RMSE = 0.04679. This is, however, not entirely comparable

with the results in the previous section, since the predictions here are computed

given the original series with the last 12 points excluded, whereas in the previous

sections, one-step-ahead-predictions are computed.

T
ar

ge
t

va
lu

e

 Time

CBS | Discussion Paper | August 2024 27

Figure 4.6: Above: the original series in black and calculated signal in blue. Predicted values (n=12)
in red. Below: trend in solid red, change points at red dashed vertical lines

4.2.3 Results for Neural Prophet
The same series with large seasonal was also tested with Neural Prophet.

The model required 97 epochs to run in a few minutes. After the final epoch the

relevant performance numbers are MAE: 0.0424, RMSE: 0.0537, Loss: 0.00145.

This seems slightly worse than the results with Prophet. One example is not

sufficient to draw general conclusions, but at least we cannot confirm that Neural

Prophet always outperforms Prophet.

Figure 4.7: Original series in black, predicted values in blue

T
ar

ge
t

va
lu

e

T
ar

ge
t

va
lu

e

 Time

 Time

CBS | Discussion Paper | August 2024 28

Figure 4.8: Decomposition of series with large seasonal into trend and seasonal by neural prophet

4.3 Airline data

Since this time series behaves quite regular, with a slight upward trend and a

significant seasonal pattern, it should not be difficult for an ANN to discover these

patterns and make extrapolations. We will start with a simple DNN and increase

complexity and refine the model and parameters based on several accuracy

measures, which are measured over the entire training and test set. An important

tool in assessing the quality of the model is the learning curve. The learning curve

is a graphical representation of the loss function from epoch to epoch during

training. It informs us whether the algorithm has converged, and about the

performance (loss) of training and test set. Note that the learning curve was also

used in the previous section but in a more implicit way.

We start with a simple network architecture, namely a network with one or two

hidden layers, and one output layer, where the hidden layers consist of only a few

neurons. Our first attempt to model the airline data is to take as input only lags 1

to 5 of the target series, so 𝑋 = (𝑦𝑡−1, . . , 𝑦𝑡−5). For now, we ignore the seasonal

component and do not include any seasonal lags. The outcomes of the training

procedure should then inform us how we can improve the model. In order to

model this simple input, our network consists of one hidden layer with 2 neurons,

about half of the number of input variables, and a final output layer. We denote

this as an DNN(2,1) network. Further settings are: learning rate 0.001, epochs=200,

batch size=2, training set: 108 periods, test set: 24 periods. We did not apply early

stopping in this case.

The results of training the model are shown in Figure 4.9. If we study the learning

curves for the training and test set, we can see that there is no convergence yet,

since both curves are still declining. Results will improve if we increase the number

of epochs. Also, it is apparent that there is a clear gap between the learning curve

of the training and test set. The gap is called the generalisation gap, since it

Time

CBS | Discussion Paper | August 2024 29

informs us about how well the fitted model will perform on new data. At the end

of training procedure, the learning curve of the test set is therefore a bit higher

than the curve for the training set. Ideally, the gap should be small, so that we can

expect accurate out-of-sample predictions. In this case, the gap is quite large,

indicating that the model is (not surprisingly) probably underfit. If we look at the

resulting predictions in the graph on the right, the underfit of the model is

confirmed. The fitted values and predictions are slightly lagged, as can be expected

from a simple autoregressive setup with only the first couple of lags of the target

series.

Figure 4.9: learning curve (above) and fitted and predicted values (below) for a DNN(2,1) network
with as input lag 1-5 of target series.

In order to improve the model, we could try to add more informative data to the

model or increase the complexity of the network, i.e. add hidden layers and/or

neurons. In order to capture the seasonal pattern, we will use as input data lags 1

and 12 of the target series, so that 𝑋 = (𝑦𝑡−1, 𝑦𝑡−12). In Figure 4.10, the learning

curves are shown for two DNN’s. In the left panel, the learning curves for the same

DNN(2,1) as above are shown. We can see that the gap between the curves is

smaller already (Please note the y-axis is different than in the figure above).

However, the learning curve is still declining and the generalisation gap is

relatively large. In the panel on the right a slightly more complex network with two

hidden layers and 4 and 2 neurons respectively is shown. We denote this as an

DNN(4,2,1) network. This network architecture further improves the results, since

the learning curves are now very close after 200 epochs of training.

CBS | Discussion Paper | August 2024 30

The improvement over the first model with lags 1-5 is confirmed by the respective

RMSE’s in Table 4.2.

Table 4.2: Accuracy measures for the test set of 24 periods, network with 2

or 3 layers and 5 or 2 lags of the target variable

 lags RMSE

Training set

RMSE

Test set

DNN(2,1) 1-5 27.98 49.00

DNN(2,1) 1,12 17.96 27.61

DNN(4,2,1) 1,12 15.27 18.53

Figure 4.10: learning curves for fitted and predicted values for a DNN(2,1) (above) and DNN(4,2,1)
network (below) with as inputs lag 1 and 12 of the target series.

After some further refinements, we found a neural network that gives accurate

and stable results every time the training is repeated. In this case, we first rescale

the data (by simply dividing by 100) to lie around 1 for numerical stability. We take

as inputs lags 1-12 of the target variable and use a slightly more complex

DNN(16,8,3,1) network. Also, the learning rate was decreased in order to reach a

lower final value for the loss function, see Figure 4.11.

CBS | Discussion Paper | August 2024 31

Figure 4.11: learning curve (left) and fitted and predicted values (right) for an DNN(16,8,3,1)
network with as input lag 1-12 of target series.

We can now also compare the predictions to those of the classic time series

methods. As can be seen in Figure 4.12 and Table 4.3, the predictions at first

glance look similar. This is also reflected by the accuracy measures in the table

below, which have the same order of magnitude. The exact value of the accuracy

measures should only be seen as an indication that similar results can be obtained

from each method. The exact figures of course depend on specific choices made

for each type of model, and therefore the accuracy of individual methods could

probably be improved if we optimise further.

CBS | Discussion Paper | August 2024 32

Figure 4.12: one step ahead predictions for DNN, ARIMA and STM models.

Table 4.3: Accuracy measures for the test set of 24 periods

 RMSE MAPE ME

ARIMA(0,1,1)(0,1,1) 0.1722 3.06 -0.0173

STM (smooth trend + seasonal) 0.2592 4.32 0.1577

DNN(16,8,3,1) with lags 1-12 0.1503 2.71 0.0077

As we have seen in Section 4.1, one important aspect of ANN’s is that the results

from the training algorithms are stochastic in nature. This means that in order to

optimise the weights for the neural network the algorithm needs starting values of

these weights. If no prior information is available, it is common to use random

starting values. The consequence of this is that after training the final weights do

not reach a global optimum, and the predictions from the network are not

accurate. This, however, is not different from for example estimating a Structural

time series model, where starting conditions for the Maximum Likelihood

estimation of the hyperparameters are needed. The difference is that for Neural

networks the starting weights are usually drawn randomly, leading to different

outcomes each time the training process is repeated. It is too early to conclude

whether the problem is more or less substantial for Neural networks compared to

structural time series models, as we have not sufficient experience with Neural

networks yet.

In order to check to what extent this applies to our model, we repeated the

training procedure 25 times, and plotted the bandwidth of the predictions in

Figure 4.13.

CBS | Discussion Paper | August 2024 33

Figure 4.13: predictions for the test set based on 25 runs

For this final model, the predictions did not vary much (at least visually). In earlier

attempts (Section 4.1 and 4.2), there was much more variation. In this case the

following steps helped us get stable results: i) rescale the data in order to lie

around 1, ii) include several lags of the target variable, especially the seasonal lag,

while iii) increasing complexity of the network, iv) try several values for learning

rate, number of epochs and batch size.

Now that we know that our model yields relatively stable results if we repeat

training 25 times, how will the model perform if we repeatedly estimate the model

in a real-life setting. For this, we perform cross validation over the test set, in

which we make consecutive one-step ahead nowcasts, for which we re-estimate

the weights every time new data becomes available. The result is shown in Figure

4.14 and Table 4.4. Accuracy measures are slightly better than above, because

weights are now optimised every time step.

CBS | Discussion Paper | August 2024 34

Figure 4.14: Cross validation of the 24 one-step ahead forecasts.

Table 4.4: Accuracy measures for a cross validation over the test set of 24

periods

 RMSE MAPE ME

DNN(16,8,3,1) with lags 1-12 0.067 0.80 -0.0149

The Airline data is also investigated with Neural prophet. The model required 434

epochs to run in a few minutes. After the final epoch the relevant performance

numbers are MAE: 17.294933, RMSE: 22.160141, Loss: 0.001261. This is clearly

less accurate than the results with the DNN. Figure 4.15 shows that Neural Prophet

does not “see” that the seasonal effect is increasing.

CBS | Discussion Paper | August 2024 35

Figure 4.15: Prediction and actual values

Figure 4.16 Above trend, below seasonality computed by Neural Prophet for airline data

4.4 Consumption households

The next series we investigate is about consumption of households. Here, the

length of the training series is always around 192, it only varies due to the choice a

more or fewer lags). We only apply DNN-models and vary the specification of the

model (lags, number of units, mostly 1, sometimes 2 hidden layers), see Table 4.5,

Figure 4.17. Early stopping is used in all cases. The number of epochs before the

training stops vary between a few dozen and almost a thousand. The learning rate

of 0.0005 is used.

T
ar

ge
t

va
lu

e

 Time

 Time

CBS | Discussion Paper | August 2024 36

The smallest RMSE is found with 16 lags and one hidden layer with 6 units (as long

as no auxiliary series is involved). There, the model predictions follow the trend of

the true values quite well. Also the most pronounced part of the seasonal pattern

is recognized.

The artificial auxiliary series (the original series with noise) clearly improves the

accuracy of the model, see Figure 4.18. With real data, this is not the case (Table

4.5 and Figure 4.17, 4.18).

Table 4.5: results for real data with DNN

Auxiliary series Lags units RMSE

No 8 4 0.148054

No 12 6 0.110815

No 12 4 0.108904

No 12 6-2 0.146765

No 12 4-4 0.124539

No 16 6 0.077974

Clothes 15 4 0.145499

Original series with noise 15 4 0.056125

CBS | Discussion Paper | August 2024 37

Figure 4.17: results for prediction of consumption of households with different DNN models
without auxiliary series

CBS | Discussion Paper | August 2024 38

Figure 4.18: results for prediction of consumption of households with different DNN models with
auxiliary series (upper figure: Clothes, lower figure: original series with noise).

4.5 Nowcast of GDP

We now move to a more challenging problem, in which we want to nowcast a

target variable using several auxiliary variables. In this section we will also consider

LSTM models.

Although a large set of auxiliary variables is typically used for nowcasting GDP, e.g.

when applying Dynamic Factor models (e.g., Banbura et al., 2010), we restrict

ourselves to a smaller set of 9 variables. In this study the objective is to assess the

potential value of DNN and LSTM algorithms, and compare with classic time series

models. This relatively small subset will streamline the analysis process and avoid

potential complications. Dynamic factor models involve more steps to reduce the

amount of input data and deal with mixed frequencies. Typically, also, the series

are seasonally and calendar adjusted. In our case all auxiliary variables are

published figures with no further preprocessing, facilitating a direct comparison

with traditional time series models. Most of these variables are published at a

quarterly level already, a couple of them (consumer confidence and

unemployment) were aggregated to a quarterly frequency. All variables are

expected to be highly correlated with GDP and are released earlier than GDP itself,

making them suitable for including them in a nowcasting model. This setup will

enable us to circumvent issues associated with mixed frequency and ragged edges,

contributing to the comparison of the models under consideration.

For our neural network models, we use the first 4 lags as input variables. In

addition, we use auxiliary data from 9 indicators: Number of businesses, number

CBS | Discussion Paper | August 2024 39

of persons self-employed, labour participation, energy consumption, consumer

confidence, services price index, hospitality turnover, government expenditure,

job vacancies. These series have a starting date between 1995Q1 and 2007Q1.

Since our models require all variables to be available, this means the starting data

for our models is 2007Q1.

The same neural network as above was found to be suitable for this dataset, i.e. an

DNN(16,8,3,1) network. For this dataset we now compare this DNN model with a

network with 2 hidden LSTM layers and one output layer. After normalising the

data, the networks were trained with the following parameters, which were

established after some manual optimisation: learning rate 0.001, epochs=1000,

batch size=4 or 8, training set: 45 periods, test set: 8 periods (for series up to

2020Q1, see below) or training set: 41 periods, test set: 16 periods (for series up to

2021Q1, see below). We also applied early stopping in this case, with ‘patience’

parameter set to 200 epochs. This is more than usual, but in this application did

not cost a lot of computation time, and in some cases this improved the results. In

order to improve the smoothness of the learning rate, we optimised the batch size

and at the same time reduced the learning rate (while increasing the number of

epochs). Since the test set is relatively small, the learning curve for the test set

showed some fluctuations. Increasing the size of the test set to 16 periods (see

below) improved this and gave more stable results.

We first consider the target series up to the covid crisis, which clearly affected

many macroeconomic statistics. We therefore take a subsample of our dataset up

to 2020Q1, where we used the first 45 periods for training and the last 8 periods

as a test set. As we can see in Figure 4.19, the algorithm picks up the pattern in the

training set, and manages to extrapolate this to the test set.

CBS | Discussion Paper | August 2024 40

Figure 4.19: fitted and predicted values for an DNN(16,8,3,1) network with a test set of 8 periods.

Since the gradient descent algorithm has random starting weights, we repeat the

optimisation procedure 25 times, in order to get an indication of model stability.

As shown in Figure 4.20, model predictions for the test set did not differ much

under the given settings when we repeat estimation.

Figure 4.20: predictions for the test set based on 25 runs

CBS | Discussion Paper | August 2024 41

After calculating predictions with classic time series models as well as an LSTM

model, we see that all methods manage to pick up the seasonal pattern in a similar

way if we look at the graph below. When comparing accuracy measures, however,

we see that the DNN and the STM with smooth trend plus seasonal have the best

accuracy measures. The DNN also performs a bit better than the LSTM, which

should be more suitable for time series data. However, as with the airline series,

we did not optimise all model settings, and the test set is only 8 periods. Based on

this small experiment, we cannot clearly favour one method over the other.

Figure 4.21: one step ahead nowcasts for DNN, LSTM, ARIMA and STM models.

Table 4.6: Accuracy measures for the test set of 8 periods

 RMSE MAPE ME

ARIMA(0,1,1)(0,1,1) 0.0188 0.81 -0.0069

STM (smooth trend + seasonal) 0.0098 0.43 0.0039

DNN(16,8,3,1) 0.0097 0.43 -0.0007

LSTM 0.0117 0.55 -0.0001

In order see the potential differences of the methods a bit better, we now include

the observations that were affected by the covid pandemic, and increase the test

set to 16 periods. Our dataset now runs from 2007Q1 to 2021Q1. Since it is not

possible to predict the downturn in GDP, as a result of Covid, based on historical

data alone, we should now see the effect of adding the auxiliary data. Only if the

auxiliary series contain information on such a significant decline, we can expect a

nowcast to show this effect as well.

We perform a cross validation over the test set, where we gradually expand the

dataset, and the models are re-estimated every time as new data is added to the

series. Both the DNN and LSTM network give accurate predictions in the period

before the pandemic. Here, adequately modelling the historical time series pattern

is perhaps enough to obtain a reasonably accurate nowcast. Once the crisis has

started, the DNN fails to give accurate nowcasts, and the LSTM is significantly

CBS | Discussion Paper | August 2024 42

better. This also becomes apparent from the accuracy measures (Table 4.7), which

clearly favour the LSTM.

Figure 4.22: Cross validation of 16 one-step ahead nowcasts for DNN and LSTM models

Table 4.7: Accuracy measures for a cross validation over a test set of 16

periods

 RMSE MAPE ME

DNN(16,8,3,1) 0.0207 0.49 0.0016

LSTM 0.0087 0.18 0.0029

Since, when GDP is published, most attention goes to the growth rate, we repeat

estimation for the GDP quarter on quarter growth rate. All models and settings are

kept the same, except for the learning rate, which is now a bit smaller because of

the scale of the data. Again, we see that the DNN is not always accurate, and the

LSTM is very close to actual published figures (Figure 4.23). This is confirmed by

the accuracy measures (Table 4.8), which are better for the LSTM model than for

DNN.

DNN

DNN

CBS | Discussion Paper | August 2024 43

Figure 4.23: Cross validation of 16 one-step ahead nowcasts for DNN and LSTM models

Table 4.8: Accuracy measures for a cross validation over a test set of 16

periods

 RMSE MAPE ME MAE

DNN(16,8,3,1) 0.0132 0.2029 -0.0007 0.0093

LSTM 0.0120 0.1402 -0.0008 0.0065

5. Conclusion

Deep learning consists of powerful algorithms and could be interesting in many

fields within official statistics. In this exploratory study we investigated the

potential added value of deep learning algorithms when applied in times series

analysis. The main focus is the computation of forecasts and nowcasts. With some

of the considered methods times series can also be decomposed into components

like trend and seasonal.

CBS | Discussion Paper | August 2024 44

In our experiments, we used the raw time series as they are published, and did not

do a lot of pretreatment of the series as is usually done in time series analysis. We

chose to do this in order to see if the neural network algorithms can discover

patterns for themselves without leaning on classic time series methods. We saw

however, that preprocessing the data can have an impact on the estimates, and in

order to benefit from the full potential of ANN’s, this is an important step.

Although the ANN’s studied here managed to discover the most important

patterns in the series, many ANN’s are not especially designed to model time

series. A related issue is the choice of the network design, i.e. the number of

hidden layers and the neurons in each layer. There is no direct connection

between a classic time series model specification and an equivalent neural

network shape. The optimal shape is usually determined by trial and error. A more

complex dataset usually requires a more complex neural network, with a larger

depth or more nodes per layer. There are no common rules to determine the

optimal shape of the neural network, but there are some guidelines to these

choices and when gradually optimising the network a lot can be derived from the

learning curve (the loss reached after a certain number of epochs). After some trial

and error, we found networks that gave acceptable results. A last point concerning

the application of the algorithms is their stochastic nature. The algorithms applied

use random initialisation of the weights. This means that depending on where the

optimisation starts, the estimation routine may not converge or we may reach a

local optimum. If the algorithms give a different result each time we run it, this

could be an indication of a misspecified model, that the algorithm is not properly

parametrised, or needs more training examples.

Clearly, estimation is different from classic time series models. The size of the

training set is usually fixed in time series applications, i.e. it is not possible to

obtain more training examples. However, there exist techniques to augment the

training data that we did not consider yet. Another solution to this problem is

transfer learning. The idea is that a model is pretrained with other series, which

are somehow similar to the target series. This way, the total training set is larger,

which should improve the accuracy of the models. The added value of these

techniques for time series applications needs more research. In this paper we

restricted ourselves to a quite small set of relatively simple deep learning

methods. In the next steps of the project, more methods should be included. Some

of the methods are mentioned in Section 2, other interesting methods could be

convolutional neural networks of transformers. Another topic in the continuation

of the project could to further improve the learning process, and focus on aspects

such as regularization, the choice of hyperparameters like the learning rate and

batch size, methods for the optimization procedure, and the choice of the random

starting values for the weights.

An important characteristic with the algorithms studied in this paper, is the

explanatory value they offer and the level of insight they give in how the

predictions are influenced by different factors. For example, although we saw that

an ANN can adequately capture a seasonal pattern in a time series and make

accurate predictions, the seasonal pattern is not estimated explicitly, and we thus

cannot study the seasonal component directly. This also applies to other time

CBS | Discussion Paper | August 2024 45

series components. Some of the methods considered in this paper are able to

decompose time series into their components. Since the main focus of this paper

was forecasting, this was not investigated in detail.

The main conclusion is that neural network algorithms can produce similar results

(i.e., accuracy of predictions/nowcasts) if applied to univariate time series. In order

to achieve this, some effort is required in optimising parameters and further

settings of the algorithms, perhaps more than with classic methods. When applied

to a more challenging problem with several auxiliary variables and a more volatile

series, in our case the LSTM model, which should be especially suitable for time

series data, gave accurate results. This leads to the conclusion that deep learning

can be perhaps offer added value compared to classical methods for specific

problems. Some potential applications may be the following:

– Applications with large datasets. Deep learning algorithms are known to be

powerful techniques for large datasets. In time series analysis, we usually only

have a limited amount of data per series. However, if applied to time series

problems with a large amount of training data available, there may be added

value to classic techniques. Possible applications are problems with long time

series or a large number of time series, such as in (GDP) nowcasting as an

alternative for Dynamic Factor Models (Hopp, 2022a, 2022b). Another possible

application would be a situation where we have many subaggregate series

available in order to nowcast the aggregate series, such as in business statistics.

– Hybrid ML methods instead of pure ML. As we showed in the empirical study,

preprocessing is very important for ML algorithms. We could design a hybrid

method where some steps are done by classic methods (such as seasonal

adjustment, outlier removal, variable selection) and then combined with ML

techniques to make nowcasts.

6. Literature

Anders, U., O. Korn (1999), Model selection in neural networks, Neural Networks,

Volume 12, Issue 2, 309-323,

Banbura, M., D. Giannone, and L. Reichlin. 2010. Nowcasting. ECB Working Paper

1275. DOI: http://dx.doi.org/10.2139/ssrn.1717887.

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and

Control (revised edition), Holden Day, San Francisco.

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994) Time Series Analysis,

Forecasting and Control, 3rd edn. Englewood Cliffs: Prentice Hall.

Brownlee, J. (2020), Deep Learning for Time Series Forecasting: Predict the Future

with MLPs, CNNs and LSTMs in Python, Machine learning mastery.

http://dx.doi.org/10.2139/ssrn.1717887

CBS | Discussion Paper | August 2024 46

Van den Brakel, J.A. and S. Krieg (2009). Estimation of the Monthly Unemployment

Rate through Structural Time Series Modelling in Rotating Panel Design. Survey

Methodology, 35, 177-190.

Van den Brakel, J.A., S. Krieg and M. Smeets (2021). Estimating monthly indicators

for Consumer Confidence using Structural Time Series Models. Discussion paper,

Statistics Netherlands. https://www.cbs.nl/en-

gb/background/2021/46/estimating-consumer-confidence-using-time-series-

models

Durbin, J. and S. J. Koopman (2012). Time Series Analysis by State Space methods,

Oxford University Press.

European Union and the United Nations (2017), Handbook on Rapid Estimates

Gedon, D., N. Wahlström, T.B. Schön and L. Ljung (2021). Deep State Space Models

for Nonlinear System Identification. IFAC PapersOnLine 54-7, 481 – 486.

Eurostat (2024), JDemetra+, https://github.com/jdemetra

Harvey (1989), Forecasting, structural time series models and the Kalman filter,

Cambridge University Press.

Helske, J. (2017), KFAS: Exponential Family State Space Models in R. Journal of

Statistical Software, 78(10), 1-39, doi:10.18637/jss.v078.i10

Hochreiter, S., J. Schmidhuber (1997). Long Short-Term Memory. Neural Comput,

9 (8), 1735–1780. doi: https://doi.org/10.1162/neco.1997.9.8.1735

Hopp, D. (2022a), Benchmarking Econometric and Machine Learning

Methodologies in Nowcasting, UNCTAD Research Paper No. 83. Available at:

https://unctad.org/system/files/official-document/ser-rp-2022d3_en.pdf

Hopp, D. (2022b), Economic Nowcasting with Long Short-Term Memory Artificial

Neural Networks (LSTM), Journal of Official Statistics, Vol. 38, No. 3, 2022, 847–

873, http://dx.doi.org/10.2478/JOS-2022-0037

Hutchinson, G. E. (1978), An introduction to population ecology. Yale University

Press. New haven and London.

James, G., D. Witten, T. Hastie, R. Tibshirani, J. Taylor (2023), An introduction to

statistical learning: with applications in Python, Springer Texts in Statistics.

Kafritsas, N. (2021). The Best Deep Learning Models for Time Series Forecasting.

Internet tutorial on Towards Data Science,

https://towardsdatascience.com/the-best-deep-learning-models-for-time-series-

forecasting-690767bc63f0

https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.2478/JOS-2022-0037

CBS | Discussion Paper | August 2024 47

Makridakis, S., E. Spiliotis, V. Assimakopoulos (2020), The M4 Competition:

100,000 time series and 61 forecasting methods, International Journal of

Forecasting, Volume 36, Issue 1, 54-74.

Makridakis, S., E. Spiliotis, V. Assimakopoulos (2022), M5 accuracy competition:

Results, findings, and conclusions, International Journal of Forecasting, Volume 38,

Issue 4, 1346-1364.

Oreshkin, B., D. Carpov, N. Chapados and Y. Bengio (2020). N-BEATS: Neural basis

expansion analysis for interpretable time series forecasting. Published as

conference paper at ICLR 2020.

Peixeiro, M. (2022). The easiest Way to Forecase Time Series Using NBEATS.

Internet tutorial. https://towardsdatascience.com/the-easiest-way-to-forecast-

time-series-using-n-beats-d778fcc2ba60

R Core Team (2018). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/.

Rao, J.N.K. and I. Molina (2015). Small Area Estimation, 2nd edition. Wiley.

Statistics Netherlands (2024). Business cycle dashboard.

https://www.cbs.nl/en-gb/visualisations/economy-dashboard/business-

cycle/business-cycle

Taylor and Letham (2017). “ Forecasting at Scale," The American Statistician,

Taylor & Francis Journals, vol. 72(1), 37-45

Triebe, O., Hewamalage, H., Pilyugina, P., Laptev, N. P., Bergmeir, C. and Rajagopal,

R. (2021). NeuralProphet. Explainable Forecasting at Scale,

https://api.semanticscholar.org/CorpusID:244729652

Yang, L. (2020). A Quick Deep Learning Recipe: Time Series Forecasting with Keras

in Python. Internet tutorial on Towards Data Science,

https://towardsdatascience.com/a-quick-deep-learning-recipe-time-series-

forecasting-with-keras-in-python-f759923ba64

Zult, D., Krieg, S., Schouten, B., Ouwehand, P. and van den Brakel, J.. (2023). "From

Quarterly to Monthly Turnover Figures Using Nowcasting Methods" Journal of

Official Statistics, vol.39, no.2, 3923, 253-273. https://doi.org/10.2478/jos-2023-

0012

https://www.r-project.org/
https://www.r-project.org/
https://api.semanticscholar.org/CorpusID:244729652
https://towardsdatascience.com/a-quick-deep-learning-recipe-time-series-forecasting-with-keras-in-python-f759923ba64
https://towardsdatascience.com/a-quick-deep-learning-recipe-time-series-forecasting-with-keras-in-python-f759923ba64
https://doi.org/10.2478/jos-2023-0012
https://doi.org/10.2478/jos-2023-0012

CBS | Discussion Paper | August 2024 48

7. Appendix: results for artificial
series with RNN and LSTM

Early stopping is used in all cases. The number of epochs before the training stops

vary between a few dozen and almost a thousand. The learning rate of 0.0005 is

used for the RNN models and 0.001 for the LSTM models.

Table A.1 shows the results for the RNN-model. The table is similar as Table 4.1 in

Section 4. Preliminary attempts showed that RNN-models are more difficult to

train, therefore we restrict ourselves to the series with the large seasonal pattern

and without seasonal pattern. The model specification with two hidden layers with

10 units (RNN layer) and 3 units (Dense layer) is very difficult to train. In most

attempts, a straight line is found, similar as in Figure 4.2 above. For the example

with length of the training series of 100 and large seasonal, we found (after many

attempts) another solution which is shown in the table.

There might be better specifications of this model, but all together, this model

does not look promising, compared to the DNN-model discussed before.

Table A.1: Results for RNN with artificial series

Series Length

training series

Lags units RMSE

Large seasonal 1000 8 10-3 0.017

Large seasonal 100 16 16-8 0.021

Large seasonal 100 8 10-3 0.064

No seasonal 1000 2 3 0.0015

No seasonal 1000 8 10-3 Straight line

No seasonal 1000 16 16-8 0.0071

No seasonal 100 2 3 0.016

No seasonal 100 8 10-3 Straight line

No seasonal 100 16 16-8 0.012

Table A.2 shows the results for the LSTM model. When the series with large

seasonal are predicted, a model with 10 units and l 16 lags seems to be preferred

above a model with only 6 units and 8 lags. This is despite the fact that the model

with 10 units and 16 lags is very large, especially when the training series has a

length of 100. This is remarkable, as in this case with a short series and a large

model the risk of overfitting is quite large. As always, we cannot be sure whether

this result is caused by the local optima which are coincidentally found.

With the series with a small seasonal pattern, the smaller model seems to be

preferable, especially when the training series is short.

CBS | Discussion Paper | August 2024 49

For the series without seasonal pattern, all models are far less accurate than the

model which uses the value from 𝑡 − 1 as prediction for 𝑡. For the short training

series, a very parsimonious model seems to be preferable.

Table A.2: Results for LSTM with artificial series

Series Length

training series

Lags units RMSE

Large seasonal 1000 8 6 0.016

Large seasonal 1000 16 10 0.009

Large seasonal 100 8 6 0.095

Large seasonal 100 16 10 0.019

Large seasonal 100 16 16 0.033

Small seasonal 1000 8 6 0.015

Small seasonal 1000 16 10 0.017

Small seasonal 100 8 6 0.040

Small seasonal 100 16 10 0.076

Small seasonal 100 16 16 0.077

No seasonal 1000 8 6 0.040

No seasonal 1000 16 10 0.016

No seasonal 100 8 6 0.055

No seasonal 100 16 10 0.066

No seasonal 100 2 1 0.039

No seasonal 100 4 6 0.049

CBS | Discussion Paper | August 2024 50

Explanation of symbols

Empty cell Figure not applicable

. Figure is unknown, insufficiently reliable or confidential

* Provisional figure

** Revised provisional figure

2017–2018 2017 to 2018 inclusive

2017/2018 Average for 2017 to 2018 inclusive

2017/’18 Crop year, financial year, school year, etc., beginning in 2017 and ending

in 2018

2013/’14–2017/’18 Crop year, financial year, etc., 2015/’16 to 2017/’18 inclusive

Due to rounding, some totals may not correspond to the sum of the separate

figures.

CBS | Discussion Paper | August 2024 51

Colophon

Publisher

Centraal Bureau voor de Statistiek

Henri Faasdreef 312, 2492 JP Den Haag

www.cbs.nl

Prepress

Statistics Netherlands, CCN Creation and visualisation

Design

Edenspiekermann

Information

Telephone +31 88 570 70 70, fax +31 70 337 59 94

Via contactform: www.cbs.nl/information

© Statistics Netherlands, The Hague/Heerlen/Bonaire 2018.

Reproduction is permitted, provided Statistics Netherlands is quoted as the source.

http://www.cbs.nl/
http://www.cbs.nl/information

