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Abstract

This report describes the time series models developed for the mobility trend estimation

project carried out by Statistics Netherlands in collaboration with KiM/Rijkswaterstaat.

First, direct estimates along with standard error estimates are obtained for each year in

the period 1999-2017 from the microdata of the Dutch Travel Survey for a detailed

cross-classification by person characteristics sex and age class and trip leg characteristics

mode and purpose. Consequently, these direct estimates are smoothed by modeling

them using multilevel time series models that account for influential outliers as well as

for the redesigns of the survey within the time span considered. Two target variables are

modeled in this way: the number of trip legs per person per day and the distance

traveled per trip leg. The models are specified in a hierarchical Bayesian framework and

estimated using a Markov Chain Monte Carlo simulation method. From the model

outputs smooth trend estimates can be computed at various aggregation levels for the

mean number of trip legs per person per day and the mean distance traveled per trip

leg, as well as for derived quantities such as the mean distance per person per day. We

discuss the model building and evaluation processes as well as the results based on the

fitted models.

1 Introduction

The Dutch Travel Survey (DTS) is a long-standing annual survey on mobility of residents

of the Netherlands. It is carried out by Statistics Netherlands (CBS) and important users

of the data are Rijkswaterstaat and The Netherlands Institute for Transport Policy

Analysis (KiM, Kennisinstituut voor Mobiliteitsbeleid), both part of the Ministry of

Infrastructure and Water Management.

Since 1985, the DTS survey has undergone several redesigns. The redesigns in 1999,

2004 and 2010 caused major discontinuities in the time series of estimates on mobility.

In 2004 the design actually remained largely unchanged, but it was transferred to

another agency for implementation, causing several changes in the observed series. For

brevity, however, we will mostly also refer to this transition as a ’redesign’.

For users of mobility estimates the changes due to redesigns are very inconvenient as

they hamper the temporal comparability. For the redesign of 1999 direct information

was available on the sizes of the discontinuities, based on a parallel conducted pilot

study. This has been used to correct the series of estimates prior to 1999 to the level of

the estimates under the new design. For the redesigns of 2004 and 2010 such parallel

studies have not been carried out, so in order to estimate the discontinuities a time

series model is needed, see van den Brakel et al. (2017). The time series models

developed in the current trend estimation project aim to account for the discontinuities

due to the redesigns, such that reliable series of trend estimates are obtained with good

comparability over time. For the latest redesign of the DTS in 2018 these considerations

also apply, but accounting for the resulting discontinuities will be handled in a future

project, as for this moment only a single year’s data is available under the latest design,

which is not enough for reliable estimation of the discontinuities in the absence of a

period of parallel conducted surveys under both designs.

Another issue that is addressed in the trend estimation project is due to the fact that
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estimates are desired for a breakdown into many domains, meaning that for each

domain determined by both person characteristics (sex and age class) and trip

characteristics (purpose and transportation mode) reliable time series of estimates are

to be produced. So not only the discontinuities in each of these series should be

accounted for, but in addition the amount of data directly relevant to an estimation

domain in a specific year is often so small that direct estimates are very noisy and

unreliable. The time series of such direct estimates display a lot of volatility caused by

the large variances. The time series models developed are able to reduce the noise and

obtain smoother series of estimates by ’borrowing strength’ over time as well as over

multiple domains. Here the ’borrowing of strength’ over domains is brought about by

using multilevel time series models with random effects for several levels defining the

domains. Within the field of official statistics, the framework of using models to smooth

estimates over domains of interest is known as small area estimation, see Rao and

Molina (2015) for an overview.

The overall purpose of the mobility trends project has been described by the initiators of

the project (KiM, Rijkswaterstaat, CBS) as ’Development of a statistical methodology that

can derive reliable trend estimates from OVG-MON-OViN-ODiN sample data for the

most prevalent mobility data and that deals in a robust way with discontinuities due to

redesigns of the survey process and sample noise.’ Here OVG, MON, OViN and ODiN

refer to the various names used for the DTS during periods with different survey designs.

To achieve the purpose as described, time series multilevel models are employed to fit

the input data, consisting of direct estimates and estimated standard errors compiled

from the DTS survey data. The resulting trend estimates are used by KiM for example in

their publication ’Mobiliteitsbeeld’ containing actual figures, trends, and expectations

about mobility in the Netherlands. The trend estimates will also be published on

Statistics Netherlands’ publication database StatLine along with the regular annual

output based on the DTS.

The two target variables that are modeled using time series multilevel models are:

– number of trip legs per person per day (pppd)

– distance per trip leg (in hectometers)

A trip for a certain purpose may consist of several trip legs characterized by different

transportation modes. Estimates are computed for domains defined by a

cross-classification of some or all of the following classification variables:

– sex (male, female)

– ageclass (0-5, 6-11, 12-17, 18-29, 30-39, 40-49, 50-59, 60-69, 70+)

– purpose (work, shopping, education, other)

– mode (car driver, car passenger, train, BTM (bus/tram/metro), cycling, walking, other)

The purpose category ’other’ includes family and social visits, recreation, as well as

business visits. Combining these categories already reduces some discontinuities

associated with the 2004 and 2010 redesigns, see e.g. Willems and van den Brakel

(2015). The mode category ’other’ includes for example motorcycle, boat and skates.

The time series multilevel models are defined at the most detailed level, corresponding

to the full cross-classification of sex, ageclass, purpose and mode, giving rise to

2 × 9 × 4 × 7 = 504 estimates for a particular year, although a few of them such as

car-driving children are structurally zero. We use the series of direct estimates starting in

1999 to fit the time series multilevel models. The direct estimates of 1999 through 2017

constitute a time series of 19 years, which appears to be sufficient to fit the time series

multilevel models.
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In Bollineni-Balabay et al. (2017) both structural time series models and multilevel time

series models were used to estimate trends for mobility (in particular distance travelled)

by purpose and mode. There it was found that the differences between the two

modeling frameworks were generally small. In Boonstra and van den Brakel (2016) it was

found that multilevel time series models in a hierarchical Bayesian formulation have

some advantages in terms of flexibility and computational efficiency. Therefore we

chose to use the Bayesian multilevel model formulation for this application. This

formulation is also closer to an earlier approach used by KiM (Wüst, 2017).

In Bollineni-Balabay et al. (2017) discontinuities were modeled as fixed effects. In the

current project a different classification into domains is used, including breakdowns by

sex and age, and modeling all discontinuities as fixed effects would now result in

overestimated discontinuities. To reduce the risk of overestimated discontinuities and

overfitting in general, we model many effects including discontinuities associated with

the design transitions as random effects instead. In particular, a regularization method

that employs non-normally distributed random effects is used that suppresses noisy

model coefficients and at the same time allows large effects that are sufficiently

supported by the data. Outliers in the input direct estimates are also modeled, either by

adopting a sampling distribution with broader than normal tails or by modeling them

explicitly as additional random effects, which are subsequently removed from the trend

estimates.

The remainder of this report is organized as follows. Section 2 describes the data sources

used including a brief overview of the different redesigns the DTS has undergone. In

Section 3 the computation of direct estimates and variance estimates from the DTS

survey data is discussed, along with transformations of direct estimates and the

Generalized Variance Function approach for smoothing the variance estimates, which

both improve model fitting. Section 4 describes the hierarchical Bayesian time series

multilevel modeling framework. The models selected for trip legs and distance are

presented in Section 5, along with a brief discussion of the model building process.

Section 6 provides a discussion of the trend estimates based on the estimated models,

and model evaluation results are given in Section 7. The paper concludes with a

discussion in Section 8, and figures of selected results are displayed in the appendix.

2 Data sources

The DTS is an annual survey that attempts to measure the travel behaviour of the Dutch

population. Each year, a sample is drawn with sampling units being defined either as

households (before 2010), or persons (since 2010). The variables of interest considered

in this study are the number of trip legs and the distance traveled. Direct estimates for

these quantities can be obtained using the survey weights that are computed for each

year’s response data. The survey weights reduce the bias due to non-response, and the

estimates based on them correspond to the general regression (GREG) estimator (see

e.g. Särndal et al. (1992)).

The DTS started in 1978, and originally was known under the (Dutch) name Onderzoek

Verplaatsingsgedrag (OVG). It started off as a face-to-face household survey where every

household member 12 years in age or older was asked to report his/her mobility for two

days. In 1985 the first large redesign took place. Interview modes changed to telephone

and postal, and respondents reported their mobility of one day. This redesign led to
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discontinuities in the annual series of some of the statistics based on OVG. In the period

until 2003 the survey was conducted by Statistics Netherlands. In 1994 the sample size

of the DTS was substantially increased and from that year children under 12 years old

have also been included in the surveyed population of interest. In 1999, the DTS went

through the second major redesign that featured some response motivation and

follow-up measures. In preparation to this redesign a pilot based on the new design was

conducted in 1998 in parallel with the survey under the old design. Based on the parallel

surveys, correction factors were computed to correct the 1985-1998 OVG to the level of

the new OVG. In 2004, the data collection for the survey was transferred to another

agency. The survey design remained largely unchanged except for smaller sample sizes

and some methodological changes. This 2004 transition also gave rise to discontinuities

in some of the series, notably those disaggregated by purpose. The DTS during the

period from 2004 until the next major redesign in 2010 is referred to as MON

(Mobiliteitsonderzoek Nederland). Since 2010 the DTS has been conducted by Statistics

Netherlands again. In 2010 the survey changed to a person survey, and a sequential

mixed mode design with face-to-face, telephone and web modes was established. This

changeover led to sizeable discontinuities in many series. The years 2010 to 2017

constitute the OViN (Onderzoek Verplaatsingen in Nederland) period of the DTS. Finally,

starting from 2018 another design is in place, named ODiN (Onderweg in Nederland), in

which only the web mode remains, and substantial changes to the questionnaire have

been carried through. Another change is that in ODiN children between 0 and 5 are no

longer observed. For more information on the history of the DTS and the changes made

by the redesigns, we refer to Konen and Molnár (2007), Molnár (2007) and Willems and

van den Brakel (2015).

Even though the DTS dates back to 1978, for the present project we use DTS data starting

from 1999, the first year of the new OVG survey. This turns out to be sufficient for the

purpose of obtaining reliable trends over the last 15 years or so. We have considered

using also data from the period 1994-1998 but eventually decided not to, since it would

not outweigh the additional effort required for modeling the large discontinuities arising

from the 1999 redesign. The total time span considered is 𝑇 = 17 years, covering the

years 1999-2017. This corresponds to the years of the (new) OVG design, the MON

design, and the OViN design. Currently, it is too early to use the first ODiN data available.

The DTS considers only mobility within the Netherlands. In this project we are primarily

interested in regular mobility, which means the mobility excluding holiday mobility (both

domestic and abroad) and professional transportation mobility. Therefore, trips with

purpose holiday and professional transportation are removed from the survey data.

Unfortunately, this selection cannot be carried out completely consistently over the

years, and the extent to which such non-regular mobility can be removed may give rise

to some discontinuities. In any case, professional transportation trips are present in the

DTS datasets in all years, and we have removed these trips. For the OViN years the data

contain a small number of trips for children under the age of 12 with purpose ’work’, and

we have changed this to purpose ’other’. Flight trips are also removed from the data,

because they lead to some unstable estimates of distance traveled for mode ’other’.

Also, in ODiN flights are no longer reported. For now, data about all age classes are used.

In the future it might be decided to drop the data for young children aged 0-5 years,

since ODiN no longer observes this category.

It is considered important that mobility trend estimates based on the DTS are in line with

external data sources on mobility. Such information has been used in a plausibility

analysis, and a few external sources have also been considered for use as auxiliary
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information in the time series models used for trend estimation. One such source is a

time series of annual total passenger train kilometers based on passenger surveys run by

the Dutch railways NS. These series also include data on train rides by other private

companies active in the Netherlands. Another relevant data source is the annual series

of road intensities, compiled by Statistics Netherlands from road induction loop data. In

addition, there is a time series of registered kilometers driven by cars from Nationale

Autopas (NAP). This series includes kilometers driven abroad but nevertheless it is a

potential covariate in the time series models based on the DTS. Finally, annual figures for

a set of weather characteristics coming from the Royal Netherlands Meteorological

Institute (KNMI) have been used in the model development.

3 Direct estimates

Basing a time series model for mobility trends directly on the microdata from all years

would require a very complex model that must account for non-response, different

aggregation levels of interest, discontinuities, time trends, etc, all at once, which would

be computationally intractable. Instead we follow a two-step estimation procedure

often used in small area estimation. In the first step, estimates and variance estimates of

the target variables are obtained directly from each year’s microdata, at the aggregation

level of interest. Here we can make use of the existing survey weights, accounting for the

sampling design and non-response. In the second step these so-called ’direct estimates’

serve as input for a time series model, which can be used to compute smoothed

estimates of mobility accounting for possible discontinuities caused by the redesigns.

This section outlines the computation of the direct estimates from the OVG-MON-OViN

survey data. For additional details, see Boonstra et al. (2018).

The direct estimates are computed for all years from 1999 until 2017 for trip legs pppd

and distance per trip leg. This results in two tables of 504 series of direct estimates at

the most detailed breakdown level considered.

3.1 Point estimates

Point estimates are readily computed using the existing survey weights. First consider

the number of trip legs, and let 𝑟𝑖 denote the number of trip legs reported by person 𝑖

for the surveyed day. The average number of trip legs pppd is then estimated by

�̂� =
∑
𝑖∈𝑠𝑤𝑖𝑓𝑖𝑟𝑖

∑
𝑖∈𝑠𝑤𝑖𝑓𝑖

, (1)

where the sums run over respondents, 𝑤𝑖 are person weights satisfying ∑𝑖∈𝑠𝑤𝑖 = 𝑁

with 𝑁 the total population size, and 𝑓𝑖 is a so-called vacation factor. The latter take

values slightly less than 1, and are used to account for vacation mobility. The vacation

factors are based on estimates obtained from the CVO (Continu Vakantieonderzoek)

survey. They can be derived from the ’trip weights’ 𝑣𝑖 as

𝑓𝑖 =
𝑣𝑖

𝐷𝑤𝑖

, (2)

where 𝐷 is the number of days in a year. The estimates (1) can be written more

compactly in terms of the trip weights as

�̂� =
∑
𝑖∈𝑠 𝑣𝑖𝑟𝑖

∑
𝑖∈𝑠 𝑣𝑖

. (3)
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The vacation factors have been used for official publications based on OVG, MON and

OViN. For ODiN it is envisaged that the vacation factors will be integrated in the person

weights 𝑤𝑖 by using estimated population totals from CVO in the weighting scheme

directly.

For the second target variable of interest, distance, we estimate the average distance per

trip leg by

�̂� =
∑
𝑖∈𝑠𝑤𝑖𝑓𝑖𝑎𝑖

∑
𝑖∈𝑠𝑤𝑖𝑓𝑖𝑟𝑖

=
∑
𝑖∈𝑠 𝑣𝑖𝑎𝑖

∑
𝑖∈𝑠 𝑣𝑖𝑟𝑖

, (4)

where 𝑎𝑖 is the total distance for person 𝑖 for all trip legs.

For estimates by mode and/or purpose, each particular category defines specific

variables 𝑟 and 𝑎 referring only to the trip legs in that category, so that equations (1) and

(4) still apply. For (further) subdivisions with regard to the person characteristics sex and

ageclass, it is convenient to introduce a dummy variable 𝛿𝑖 for each combination of sex

and ageclass, being 1 if person 𝑖 belongs to this group and 0 otherwise, and then write

instead of (1) and (4),

�̂� =
∑
𝑖∈𝑠𝑤𝑖𝑓𝑖𝛿𝑖𝑟𝑖

∑
𝑖∈𝑠𝑤𝑖𝑓𝑖𝛿𝑖

,

�̂� =
∑
𝑖∈𝑠𝑤𝑖𝑓𝑖𝛿𝑖𝑎𝑖

∑
𝑖∈𝑠𝑤𝑖𝑓𝑖𝛿𝑖𝑟𝑖

.

(5)

By using 𝛿𝑖 also in the denominator of �̂�, we obtain estimates of the means per sex,

ageclass combination. Note that the denominator of �̂� does not depend on any

selection of purpose or mode.

As mentioned in the Introduction, at the most detailed level, each target variable gives

rise to a set of 504 estimates per year, corresponding to the full cross-classification of

person characterics sex and age class and trip characteristics purpose and mode. Some

of the 504 domains are, however, non-existent. We refer to these domains as structural

zeros, since the number of trips in these domains is zero by definition. This concerns the

following domains: age 0-5 and 6-11 in combination with mode car driver or purpose

work and age 12-17 mode car driver before 2011. Starting from 2011 it is possible to

drive a car from age 17, and this can be seen in the data. Distances per trip leg

corresponding to structural zero trip legs are undefined, and therefore missing in the set

of direct estimates. Other occasional zeros for trip legs and missings for distance per trip

leg occur in some years for ’rare domains’ such as education for the elderly. These

accidental zeros and missings will be filled in by the predictions based on the time series

models.

3.2 Variance estimates

For variance estimation we distinguish between person surveys (OViN) and household

surveys (OVG, MON). For the latter, the household is the unit of sampling. Observations

from persons from the same household cannot be regarded as independent. For

example, distances traveled by young children and their parents are often correlated,

depending on purpose and mode. Variance estimates should account for the

dependence between persons clustered within households.

First write estimates (1) and (4) in the general form

�̂� =
∑
𝑖∈𝑠𝑤𝑖𝑦𝑖

∑
𝑖∈𝑠𝑤𝑖𝑧𝑖

, (6)
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which is a ratio of two population total estimates based on person weights 𝑤𝑖. For the

average number of trip legs pppd, 𝑦𝑖 = 𝑓𝑖𝑟𝑖 and 𝑧𝑖 = 𝑓𝑖; for the average distance per

trip leg, 𝑦𝑖 = 𝑓𝑖𝑎𝑖 and 𝑧𝑖 = 𝑓𝑖𝑟𝑖.

Basic estimates of the sampling variances of �̂� that ignore the variation of the weights,

finite population corrections and the variance of the denominator, are given by

𝑣0(�̂�) =
1

(∑𝑖∈𝑠𝑤𝑖𝑧𝑖)
2

𝑁2

𝑛
𝑆2(𝑦) , (7)

where 𝑛 is the number of respondents, 𝑆2(𝑦) =
1

𝑛−1
∑
𝑖∈𝑠

(𝑦𝑖 − �̄�)
2
is the sample

variance of 𝑦, with �̄� =
1

𝑛
∑
𝑖∈𝑠 𝑦𝑖 the sample mean of 𝑦.

These variance estimates are improved by taking into account (1) the variance of the

denominator, (2) the variance inflation due to variation of the weights (Särndal et al.,

1989), and (3) the variance reducing effect of some covariates used for stratification or

weighting. The variance estimates incorporating all three improvements are computed

as (see e.g. Särndal et al. (1992))

𝑣(�̂�) =
𝑛

�∑𝑖∈𝑠𝑤𝑖𝑧𝑖�
2𝑆

2(𝑤𝑒) ,

𝑒𝑖 = 𝑒
𝑦
𝑖 − �̂�𝑒𝑧𝑖 ,

𝑒
𝑦
𝑖 = 𝑦𝑖 − 𝑥′𝑖�̂�

𝑦 ,

�̂�𝑦 = ��

𝑖∈𝑠

𝑥𝑖𝑥
′
𝑖/𝑢𝑖�

−1

�

𝑖∈𝑠

𝑥𝑖𝑦𝑖/𝑢𝑖 ,

𝑒𝑧𝑖 = 𝑧𝑖 − 𝑥′𝑖�̂�
𝑧 ,

�̂�𝑧 = ��

𝑖∈𝑠

𝑥𝑖𝑥
′
𝑖/𝑢𝑖�

−1

�

𝑖∈𝑠

𝑥𝑖𝑧𝑖/𝑢𝑖 .

(8)

Here 𝑆2(𝑤𝑒) is the sampling variance of 𝑤𝑖𝑒𝑖, where 𝑒𝑖 are generalized residuals,

defined in terms of regression residuals 𝑒
𝑦
𝑖 for 𝑦 and 𝑒𝑧𝑖 for 𝑧. The regressions are based

on vectors of covariates 𝑥𝑖 and a positive variance factor 𝑢𝑖. For the persons survey case

we use 𝑢𝑖 = 1.

For the regressions defining the residuals in (8), the following covariate model is used:

ℎℎ𝑠𝑖𝑧𝑒+𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒+𝑠𝑒𝑥∗𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠+𝑢𝑟𝑏𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛+𝑚𝑜𝑛𝑡ℎ+𝑤𝑒𝑒𝑘𝑑𝑎𝑦+𝑓𝑢𝑒𝑙

in which ℎℎ𝑠𝑖𝑧𝑒 is the number of persons in a household, 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠 is as defined in the

Introduction, 𝑢𝑟𝑏𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛 is the degree of urbanisation of the residential municipality

in 5 classes,𝑚𝑜𝑛𝑡ℎ is the survey month, 𝑤𝑒𝑒𝑘𝑑𝑎𝑦 the day in the week the response

refers to, and 𝑓𝑢𝑒𝑙 is the fuel type of the car used by the respondent in three classes:

petrol, other or none if the respondent doesn’t use a car. These covariates represent an

important subset of variables that have been used for stratification and weighting of the

survey data over the years.

The variance formula (8) can be used for any variables 𝑦 and 𝑧 in (6) so it applies to all

estimates by any combination of trip characteristics purpose, mode and person

characteristics sex and ageclass.

We have compared the simple variance estimates computed with (7) with the refined

ones based on (8), and observed that the differences are mostly modest but not

generally negligible. The most important refinement turns out to be the variance
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inflation due to the variation of weights. This clearly increases the variance estimates for

domain estimates based on widely varying weights.

For the years before 2010, when the surveys were conducted as household surveys, the

same formulas can be used, with the understanding that in that case the unit index 𝑖

refers to households. In that case 𝑦𝑖, 𝑧𝑖 refer to weighted household totals, the weights

𝑤𝑖 to the average of the person weights within a household, and 𝑥𝑖 to household totals

of the weighting covariates. The regression variances 𝑢𝑖 are taken equal to the

household size, and 𝑛 in (8) becomes the number of responding households. For details

we refer to Boonstra et al. (2018). We also refer to Boonstra et al. (2018) for a complete

set of plots of the direct estimates and their standard errors for trip legs and distance at

all aggregation levels. The graphs show that for ’common domains’ such as purpose

work for age classes 30-39, 40-49, standard errors are stable and rather small. For rare

domains the standard errors are on average much larger, and, like the point estimates,

volatile and sometimes missing. Boonstra et al. (2018) also contains a short discussion

about the covariances/correlations between the direct estimates within each year. Most

of these cross-sectional correlations are small, but there are some large positive and

negative ones. The largest positive correlations occur between estimates for modes that

are often combined in a single trip, like walking and train, while most negative

correlations occur between modes that are rarely combined such as car driver and

cycling. Furthermore, in OVG/MON years, there are some more positive correlations

induced by the household clustering, for example between estimates for parents (car

driver) and children (car passenger) and purpose shopping or other. The effect of the

cross-sectional correlations on the (standard errors of) the trend estimates was tested

using a simple multilevel time series model and found there to be quite small. However,

due to computational problems we have not been able to use the full correlation

matrices of the input estimates in the finally selected time series models, although we

expect to see only a small effect there as well.

3.3 Transformations of input series

The direct estimates and standard errors of the number of trip legs and the distances

serve as input for the multilevel time series models used to obtain more smooth and

robust trend series. We started out using the direct estimates and their (smoothed)

standard errors directly as input to the multilevel time series models, but it does not fit

the considered class of models well, and related problems showed up with convergence

of the MCMC simulations. The problems lie with the widely varying scales of the data,

i.e. the large (relative) differences between typical numbers of trip legs or distance

among the domains. Another related issue is that the point estimates and standard

errors display strong dependence which is not accounted for by the models. To remedy

these problems, the input series are transformed.

Let �̂�𝑖𝑡 denote the direct estimate for year 𝑡 and domain 𝑖 of the number of trip legs or

distance. We have considered three different transformations for both target variables:

– logarithmic transformation: �̂�𝑖𝑡 → log (�̂�𝑖𝑡 + 𝜀), where 𝜀 is a small number necessary

because some direct estimates for the number of trip legs are zero. Standard errors

for the transformed data are approximated by Taylor linearisation:

𝑠𝑒(�̂�𝑖𝑡) → 𝑠𝑒(�̂�𝑖𝑡)/(�̂�𝑖𝑡 + 𝜀).

– square root transformation: �̂�𝑖𝑡 → ��̂�𝑖𝑡. A Taylor linearisation yields approximated

standard errors 𝑠𝑒(�̂�𝑖𝑡) → 𝑠𝑒(�̂�𝑖𝑡)/(2��̂�𝑖𝑡). Note that these standard errors are
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undefined for domains without observed trips (zero point estimate and standard

error), but this is no problem as they will be imputed using a Generalized Variance

Function (GVF) smoothing model, as described below.

– a linear transformation by centering and scaling the direct estimates. In particular we

centered the estimates around their mean for each age class, mode, purpose

combination, and scaled them by the inverse standard deviation of the direct

estimates also for each age class, mode, purpose combination. Standard errors are

transformed using the same scale factors as the point estimates.

All three transformations gave rise to improved model performance regarding MCMC

simulation converge. To choose among these transformations, we considered the issue

of variance stabilization, see e.g. Sakia (1992). Stabilizing the variances means that a

transformation is chosen so as to remove the dependence between direct point

estimates and their standard errors. This simplifies the ensuing modeling task, as we

model the data using normal distributions1), for which there is no inherent relation

between mean and variance. Figures displaying these dependencies for trip legs and

distance can be found in the model building reports Boonstra et al. (2019c) and Boonstra

et al. (2019b), respectively.

For number of trip legs the direct point estimates and standard errors display a strong

positive dependence, which is largely removed by a square root transformation. In that

case the log transformation is too strong, as it results in negative correlations. For

distance, the dependence is even stronger and only the log transformation is able to

remove most of the dependence between the direct point and variance estimates. Not

surprisingly, the linear scaling and centering transformations are not capable of

removing the dependence between the point and variance estimates.

So for number of trip legs we use the square root transformed direct estimates as input

for a multilevel time series model. The smooth trends are then obtained by

back-transforming the model output to the original scale. In the same way, the

log-transformed direct estimates for distance per trip leg are input for a multilevel time

series model, and the model output is exponentiated in order to get predictions at the

original scale. There was no need to add a small 𝜀 value, since the observed distances

are never smaller than 1 hectometer.

3.4 Smoothing the standard errors of the direct estimates

The time series models considered regard the (transformed) direct point estimates as

noisy estimates of a true underlying signal. However, the accompanying variance

estimates are largely treated as fixed and given quantities by the model. As the variance

estimates can be very noisy due to the detailed estimation level, it is wise to smooth

them before using them in the model. That way they better reflect the uncertainty of

the direct estimates. The most obvious defect of the estimated standard errors is that

they are zero in case of zero or one contributing sampling unit.2) This is correct for the

structural zero domains, but it does not correctly reflect the uncertainty about the

accidental zero estimates for number of trip legs. For distance, the most problematic

estimates are the zero variance estimates in case of a single contributing sampling unit.

1) We also consider Student-t distributions, which can be interpreted as scale-mixtures of normal distribu-

tions.
2) This means that there is at most one unit (person or household) in a specific sex, age class domain, who

reported a trip leg for a specific purpose, mode combination.
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If there are no contributing sampling units for a certain domain then the direct distance

estimate is treated as missing.

The models considered for smoothing the variance estimates are simple regression

models relating the variance estimates to a few predictors such as sample size, design

effects, and point estimates. Such models are known as Generalized Variance Function

(GVF) models in the literature, see Wolter (2007), Chapter 7. In Boonstra et al. (2018)

GVF smoothing models were applied to the standard errors of the untransformed direct

estimates, but it turns out to be better to apply them after transforming the estimates.

Otherwise the standard errors for domains with just a few observed trips can become

unreasonably large due to the linearization approximation. Therefore we apply the GVF

models as described in Boonstra et al. (2018) to the transformed standard error

estimates. The predictions from this model are used as (smoothed) standard errors

accompanying the transformed direct estimates as input for the time series multilevel

models. In particular, the GVF model yields reasonable standard errors for the domains

with no observed trips.

Let �̂�𝑡𝑖𝑗𝑘𝑙 now denote either the sqrt-transformed direct estimates for trip legs or the

log-transformed estimates for distance, for year 𝑡, sex 𝑖, age class 𝑗, purpose 𝑘 and mode

𝑙. For both target variables we use the same GVF smoothing model

log 𝑠𝑒(�̂�𝑡𝑖𝑗𝑘𝑙) = 𝛼 + 𝛽 log �̃�𝑡𝑖𝑗𝑘𝑙 + 𝛾 log(𝑚𝑡𝑖𝑗𝑘𝑙 + 1) + 𝛿 log(deff𝑡𝑖𝑗𝑘𝑙) + 𝜖𝑡𝑖𝑗𝑘𝑙 , (9)

where𝑚𝑡𝑖𝑗𝑘𝑙 is the number of sampling units (households or persons, depending on the

survey year) contributing to domain (𝑖, 𝑗, 𝑘, 𝑙) in year 𝑡, and

deff𝑡𝑖𝑗𝑘𝑙 = 1 +
𝑣𝑎𝑟(𝑤)𝑡𝑖𝑗𝑘𝑙

�̄�2
𝑡𝑖𝑗𝑘𝑙

, (10)

is the design effect of the survey weights, in which the second term is the squared

coefficient of variation of the weights of the contributing units to a specific year and

domain.3) This factor accounts for the variance inflation due to the variation of the

weights. Since we cannot trust the direct estimates for very small𝑚𝑡𝑖𝑗𝑘𝑙, the �̃�𝑡𝑖𝑗𝑘𝑙 on

the right hand side of (9) are simple smoothed estimates

�̃�𝑡𝑖𝑗𝑘𝑙 = 𝜆𝑡𝑖𝑗𝑘𝑙�̂�𝑡𝑖𝑗𝑘𝑙 + (1 − 𝜆𝑡𝑖𝑗𝑘𝑙)�̂�..𝑗𝑘𝑙 ,

𝜆𝑡𝑖𝑗𝑘𝑙 =
𝑚𝑡𝑖𝑗𝑘𝑙

𝑚𝑡𝑖𝑗𝑘𝑙 + 1
,

(11)

where �̂�..𝑗𝑘𝑙 denotes the mean of �̂�𝑡𝑖𝑗𝑘𝑙 over the years and sexes. For𝑚𝑡𝑖𝑗𝑘𝑙 = 0 this

replaces the estimate by the mean over year and sex for the same age class, purpose

and mode. For𝑚𝑡𝑖𝑗𝑘𝑙 = 1 the average of this mean and the estimate itself is used, and

for large𝑚𝑡𝑖𝑗𝑘𝑙 essentially the original point estimate is used.

The regression errors 𝜖𝑡𝑖𝑗𝑘𝑙 are assumed to be independent and normally distributed

with a common variance parameter 𝜎2. The GVF models are fitted to the positive

standard errors of the transformed direct estimates. Summaries of the estimated model

coefficients for trip legs and distance are given in Tables 3.1 and 3.2. The predicted

(smoothed) standard errors based on the fitted models are

𝑠𝑒pred(�̂�𝑡𝑖𝑗𝑘𝑙) = exp ��̂� + �̂� log �̃�𝑡𝑖𝑗𝑘𝑙 + �̂� log(𝑚𝑡𝑖𝑗𝑘𝑙 + 1) + �̂� log(deff𝑡𝑖𝑗𝑘𝑙) + �̂�2/2� ,

(12)

3) In case of 0 or 1 contributing units we have defined deff to equal 1.
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predictor coefficient estimate se

1 𝛼 -0.701 0.012

log �̃�𝑡𝑖𝑗𝑘𝑙 𝛽 0.941 0.003

log(𝑚𝑡𝑖𝑗𝑘𝑙 + 1) 𝛾 -0.497 0.002

log(deff𝑡𝑖𝑗𝑘𝑙) 𝛿 0.420 0.007

Table 3.1 Estimated coefficients of the GVFmodel (9) for number of trip legs.

predictor coefficient estimate se

1 𝛼 -0.905 0.022

log �̃�𝑡𝑖𝑗𝑘𝑙 𝛽 0.197 0.012

log(𝑚𝑡𝑖𝑗𝑘𝑙 + 1) 𝛾 -0.356 0.002

log(deff𝑡𝑖𝑗𝑘𝑙) 𝛿 0.196 0.027

Table 3.2 Estimated coefficients of the GVFmodel (9) for distance per trip leg.

where �̂� is 0.11 for trip legs and 0.42 for distance. The R-squared model fit measures for

both models are quite high: 0.90 for trip legs and 0.70 for distance. Note that the

exponential back-transformation in (12) includes a bias correction, which in this case has

only a small effect.

Figures 3.1 and 3.2 show the transformed direct estimates and their smoothed and

non-smoothed standard errors in the for the relatively rare trip domain of purpose

Education and age class 50-59. The two types of standard errors are displayed as

approximate 95% confidence bands. The pink bands correspond to the original,

non-smoothed, standard errors, whereas the blue bands correspond to the smoothed

standard errors. From these example plots it appears that the predicted, i.e. smoothed,

standard errors replace the original zero standard estimates by reasonable values. The

same holds true for standard errors based on very few contributing units. Otherwise

there is some modest smoothing of large outlying standard errors in some cases.
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Figure 3.1 Transformed direct estimates and approximate 95% intervals

based on smoothed and non-smoothed standard error estimates.
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Figure 3.2 Transformed direct estimates and approximate 95% intervals

based on smoothed and non-smoothed standard error estimates.
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4 Time series multilevel modeling

The time series multilevel models considered are extensions of the popular basic area

level model proposed by Fay and Herriot (1979). The models are defined at the most

detailed level, i.e. the full cross-classification of sex, ageclass, purpose, mode and year.

For convenience let us now denote by �̂�𝑖𝑡 the transformed direct estimates for either trip

legs or distance in year 𝑡 and domain 𝑖. Here domain 𝑖 refers to a particular combination

of sex, ageclass, purpose and mode, so that 𝑖 runs from 1 to𝑀𝑑 = 504 and 𝑡 from 1 to 𝑇

corresponding to the years 1999 to 2017. We further combine these estimates into a

vector �̂� = (�̂�11, … �̂�𝑀𝑑1
, … �̂�1𝑇, … �̂�𝑀𝑑𝑇

)′. Note that �̂� is a vector of dimension

𝑀 = 𝑀𝑑𝑇. Structural zero domains are not modeled, and it is implicitly understood that

they are removed from all expressions. This means that the number of modeled initial

estimates is reduced from𝑀 = 𝑀𝑑𝑇 = 504 × 19 = 9576 to a total of 8720. For

distance per trip leg there are in addition some domains without initial estimates due to

the (accidental) absence of observed trips. The total number of available distance

estimates is 8336. For both target variables model estimates are eventually produced

for all 8720 non-structurally-zero domains.

4.1 Model structure

The multilevel models considered take the general linear additive form

�̂� = 𝑋𝛽 +�

𝛼

𝑍(𝛼)𝑣(𝛼) + 𝑒 , (13)

where 𝑋 is a𝑀 × 𝑝 design matrix for a 𝑝-vector of fixed effects 𝛽, and the 𝑍(𝛼) are

𝑀×𝑞(𝛼) design matrices for 𝑞(𝛼)-dimensional random effect vectors 𝑣(𝛼). Here the sum

over 𝛼 runs over several possible random effect terms at different levels, such as

transportation mode and purpose smooth trends, white noise at the most detailed level

of the𝑀 domains, etc. This is explained in more detail below. The sampling errors

𝑒 = (𝑒11, … , 𝑒𝑀𝑑1
, … 𝑒𝑀𝑑𝑇

)′ are taken to be normally distributed as

𝑒 ∼ 𝑁(0, Σ) (14)

where Σ = ⊕𝑇
𝑡=1Σ𝑡 with Σ𝑡 the covariance matrix for the transformed direct estimates

observed in year 𝑡. We have tried a simple model that takes (smoothed) estimated

covariances for the input estimates into account, but eventually we take Σ𝑡 and

therefore Σ to be diagonal.

Equations (13) and (14) define the likelihood function

𝑝 ��̂�|𝜂, Σ� = 𝑁 ��̂�|𝜂, Σ� , (15)

where 𝜂 = 𝑋𝛽 + ∑
𝛼 𝑍

(𝛼)𝑣(𝛼), called the linear predictor. A Student-t distribution for the

sampling errors in (14) has been considered instead of the normal distribution to give

smaller weight to more outlying observations. This is a traditional approach for handling

outliers in Bayesian regression, see e.g. West (1984). We allow the degrees of freedom

parameter of the Student-t distribution to be inferred from the data. It has been

assigned a Gamma(2, 0.1) prior distribution, which was recommended as a default prior

in Juárez and Steel (2010).

The fixed effect part of 𝜂 contains an intercept and main effects and possibly the

second-order interactions for linear trends, discontinuities and the breakdown variables

sex, age, purpose and mode. The vector 𝛽 of fixed effects is assigned a normal prior
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𝑝(𝛽) = 𝑁(0, 100𝐼), which is very weakly informative as a standard error of 10 is very

large relative to the scales of the transformed direct estimates and the covariates used.

The second term on the right hand side of (13) consists of a sum of contributions to the

linear predictor by random effects or varying coefficient terms. The random effect

vectors 𝑣(𝛼) for different 𝛼 are assumed to be independent, but the components within

a vector 𝑣(𝛼) are possibly correlated to accommodate temporal or cross-sectional

correlation. To describe the general model for each vector 𝑣(𝛼) of random effects, we

suppress superscript 𝛼 in what follows for notational convenience.

Each random effects vector 𝑣 is assumed to be distributed as

𝑣 ∼ 𝑁(0, 𝐴 ⊗ 𝑉) , (16)

where 𝑉 and 𝐴 are 𝑑 × 𝑑 and 𝑙 × 𝑙 covariance matrices, respectively, and 𝐴⊗𝑉 denotes

the Kronecker product of 𝐴 with 𝑉. The total length of 𝑣 is 𝑞 = 𝑑𝑙, and these coefficients

may be thought of as corresponding to 𝑑 effects allowed to vary over 𝑙 levels of a factor

variable, e.g. purpose effects (𝑑 = 4) varying over time (𝑙 = 19 years). The covariance

matrix 𝐴 describes the covariance structure among the levels of the factor variable, and

is assumed to be known. Instead of covariance matrices, precision matrices 𝑄𝐴 = 𝐴−1

are actually used, because of computational efficiency (Rue and Held, 2005). The

covariance matrix 𝑉 for the 𝑑 varying effects is parameterized in one of three different

ways:

– an unstructured, i.e. fully parameterized covariance matrix

– a diagonal matrix with unequal diagonal elements

– a diagonal matrix with equal diagonal elements

The following priors are used for the parameters in the covariance matrix 𝑉:

– In the case of an unstructured covariance matrix the scaled-inverse Wishart prior is

used as proposed in O’Malley and Zaslavsky (2008) and recommended by Gelman

and Hill (2007).

– In the case of a diagonal matrix with equal or unequal diagonal elements, half-Cauchy

priors are used for the standard deviations. Gelman (2006) demonstrates that these

priors are better default priors than the more common inverse gamma priors for the

variances.

The following random effect structures are considered in the model selection procedure:

– Random intercepts for the𝑀𝑑 domains obtained by the full cross clasification of age,

gender, purpose and mode. In this case 𝐴 = 𝐼𝑀𝑑
and 𝑉 is a scalar variance parameter,

and the corresponding design matrix is the𝑀 ×𝑀𝑑 indicator matrix for domains.

This can be extended to a vector of random domain intercepts, random slopes for

linear time effects and discontinuities due to the redesigns in 2004 and 2010. In that

case 𝑉 is a 4 × 4 covariance matrix, parameterized by variance parameters for the

intercepts, linear time slopes and the coeffcients for the level interventions, and

possibly six correlation parameters. Similar random intercept and slope terms varying

over the categories of the cross-classification of a subset of 2 or 3 of the 4

classification variables have also been considered.

– Random effects that account for outliers. The data for some years appear to be of

lesser quality. This is the case for example for data on the number of trip legs in 2009.

In order to deal with such less reliable estimates, random effects can be used to

absorb some of the larger deviations in such years. The corresponding effects are

removed from the trend prediction. This is an alternative to the use of fat-tailed

sampling distributions such as the Student-t distribution for dealing with outliers.
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– Random walks or smooth trends at aggregated domain levels (e.g. purpose by

mode). See Rue and Held (2005) for the specification of the precision matrix 𝑄𝐴 for

first and more smooth second order random walks. A full covariance matrix for the

trend innovations can be considered to allow for cross-sectional besides temporal

correlations, or a diagonal matrix with equal or different variance parameters to

allow for temporal correlations only.

– White noise. In order to allow for random unexplained variation, white noise at the

most detailed domain-by-year level can be included. In this case 𝐴 = 𝐼𝑀 and 𝑉 a

scalar variance parameter, and the design matrix is 𝑍 = 𝐼𝑀.

We also investigate generalisations of (16) to non-normal distributions of random

effects. Relevant references are Carter and Kohn (1996) in the state space modeling

context, Datta and Lahiri (1995), Fabrizi and Trivisano (2010) and Tang et al. (2018) in the

small area estimation context, and Lang et al. (2002) and Brezger et al. (2007) in the

context of more general structured additive regression models. In particular, the

following distributions are considered for various random effect terms:

– Student-t-distributed random effects

– Random effects with a so-called horseshoe prior (Carvalho et al., 2010).

– Random effects distributed according to the Laplace distribution. This corresponds to

a Bayesian version of the popular lasso shrinkage, see (Tibshirani, 1996; Park and

Casella, 2008).

These alternative distributions have fatter tails allowing for occasional large effects. The

Laplace and particularly the horseshoe distribution have the additional property that

they shrink noisy effects more strongly towards zero.

4.2 Model estimation

The models are fitted using Markov Chain Monte Carlo (MCMC) sampling, in particular

the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). See Boonstra

and van den Brakel (2018) for a specification of the full conditional distributions. The

models are run in R (R Core Team, 2015) using package mcmcsae (Boonstra, 2018)

developed at Statistics Netherlands. The Gibbs sampler is run in parallel for three

independent chains with randomly generated starting values. In the model building

stage 1000 iterations are used, in addition to a ’burn-in’ period of 250 iterations. This

was sufficient for reasonably stable Monte Carlo estimates of the model parameters and

trend predictions. For the selected model we use a longer run of 1000 burn-in plus

10000 iterations of which the draws of every fifth iteration are stored. This leaves

3 ∗ 2000 = 6000 draws to compute estimates and standard errors. The convergence of

the MCMC simulation is assessed using trace and autocorrelation plots as well as the

Gelman-Rubin potential scale reduction factor (Gelman and Rubin, 1992), which

diagnoses the mixing of the chains. For the longer simulation of the selected model all

model parameters and model predictions have potential scale reduction factors below

1.02 and sufficient effective numbers of independent draws.

Many models of the form (13) have been fitted to the data. For the comparison of

models using the same input data we use the Widely Applicable Information Criterion or

Watanabe-Akaike Information Criterion (WAIC) (Watanabe, 2010, 2013) and the

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). We also compare the

models graphically by their model fits and trend predictions at various aggregation levels.
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5 Model building, selected models,

and model prediction

The direct estimates for all 504 domains over the 1999-2017 period along with their

standard errors serve as input data for the time series models. The variables defining the

domains and the years have been used in the model development in many ways, e.g.

using different interactions of various orders. Some additional covariates have been

constructed in order to model the discontinuities between 2003 and 2004 and between

2009 and 2010, as well as to reduce the influence of some lesser quality 2009 input

estimates. For the MON level break in 2004, a variable 𝑏𝑟_𝑚𝑜𝑛 is introduced taking

values 1 for the years 2004-2009 and 0 outside that range. For the OViN level break in

2010, likewise a variable 𝑏𝑟_𝑜𝑣𝑖𝑛 is defined, taking values 1 for the years 2010 and later

and 0 otherwise. As it turned out, a slight modification of this variable was necessary in

order not to introduce artificial level breaks in the age 12-17, car driver domains, which

are structurally zero domains before 2011. Also, for year 2009 a dummy variable

𝑑𝑢𝑚𝑚𝑦_2009 has been created being only 1 when year equals 2009 and 0 otherwise.

These variables have been used in different interactions, as fixed or random effects in

the model. The year variable is also used quantitatively to define linear time trends, and

for that purpose we use a scaled and centered version denoted 𝑦𝑟.𝑐.

Some other covariates extracted from other sources like Statistics Netherlands’ Statline

and KNMI meteorological annual reports4) have also been used as candidate covariates

in the model development. As for example, a weather variable 𝑠𝑛𝑜𝑤𝑑𝑎𝑦𝑠 representing

the number of snow days by year is used in the final trip-legs model and an

administrative variable 𝑘𝑚_𝑁𝐴𝑃 representing annual registered car kilometers

collected from Nationale Autopas (NAP) is used in the distance model.

In the following two sub-sections, time series models developed for the number of trip

legs and the distance per trip leg are discussed. Following that, it is described how the

target trend estimates are derived from the developed time series models. The models

are expressed as time series multilevel models in a hierarchical Bayesian framework and

fit using a Markov Chain Monte Carlo (MCMC) simulation method, as described in

Section 4.

5.1 Time series multilevel model for the number of trip legs

As described in Section 3, we model the square-root-transformed direct estimates of the

number of trip legs pppd, using the corresponding transformed and GVF-smoothed

standard errors to define the variance matrix Σ of the sampling errors.

The model parameters in (13) are separated in fixed and random effects. After extensive

examination of different models, the following fixed effects components are included in

the finally selected model:

𝑠𝑒𝑥 ∗ 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠 + 𝑝𝑢𝑟𝑝𝑜𝑠𝑒 ∗ 𝑚𝑜𝑑𝑒 + 𝑚𝑜𝑑𝑒 ∗ 𝑠𝑛𝑜𝑤𝑑𝑎𝑦𝑠 (17)

Terms like 𝑠𝑒𝑥 ∗ 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠 in (17) include both main and interaction effects. Inclusion of

only main effects resulted in underfitting, while inclusion of higher than second-order

4) We thank Hans Wüst for the suggestion to consider weather variables and for collecting these figures.
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interactions resulted in overfitting. Third and higher order interactions are instead

modeled as random effect terms, see Table 5.1, which lists the selected random effects

terms. The interaction between purpose and mode is modeled as a fixed effect because

of the large differences in level between the purpose, mode combinations. The term

𝑚𝑜𝑑𝑒 ∗ 𝑠𝑛𝑜𝑤𝑑𝑎𝑦𝑠 was added because it (slightly) improves the model information

criteria, and because of the small but plausible effect it has on some trend predictions

for walking, cycling and car passenger trip legs.

For the random effects part of the model, the model selection procedure involved

choosing between different prior distributions. First, if multiple varying effects are

modeled then there is a choice between scalar, diagonal or full covariance matrix 𝑉 in

(16). Second, for variation over time it makes sense to choose a matrix 𝐴 with

appropriate correlation structure. We consider both first and second order random

walks corresponding to local level and smooth trends. Finally, the normal distribution in

(16) can be modified to other distributions with different behaviour by the introduction

of additional local scale parameters. We tried Student-t, Laplace and horseshoe priors,

as mentioned in Section 4. These alternative distributions have fatter tails allowing for

occasional large outlying effects. The Laplace and particularly the horseshoe distribution

have the additional property that they shrink effects not strongly supported by the data

more towards zero.

Model

Component
Formula 𝑉

Variance

Structure
Factor 𝐴 Prior

Number

of Effects

V_2009 𝑑𝑢𝑚𝑚𝑦_2009 scalar
𝑠𝑒𝑥 ∗ 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠∗

𝑝𝑢𝑟𝑝𝑜𝑠𝑒 ∗ 𝑚𝑜𝑑𝑒
horseshoe 504

V_BR
1 + 𝑦𝑟.𝑐+

𝑏𝑟_𝑚𝑜𝑛_𝑆𝑂 + 𝑏𝑟_𝑜𝑣𝑖𝑛
full

𝑠𝑒𝑥 ∗ 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠∗

𝑝𝑢𝑟𝑝𝑜𝑠𝑒 ∗ 𝑚𝑜𝑑𝑒
Laplace 1764

RW2AMM
𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠 ∗ 𝑝𝑢𝑟𝑝𝑜𝑠𝑒∗

𝑚𝑜𝑑𝑒
scalar RW2(yr) normal 4788

RW2MM 𝑝𝑢𝑟𝑝𝑜𝑠𝑒 ∗ 𝑚𝑜𝑑𝑒 diagonal RW2(yr) normal 532

WN 1 scalar

𝑠𝑒𝑥 ∗ 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠∗

𝑝𝑢𝑟𝑝𝑜𝑠𝑒 ∗ 𝑚𝑜𝑑𝑒∗

𝑦𝑟

normal 9576

Table 5.1 Summary of the random effect components for the selected time

series multilevel model. The second and third columns refer to the varying

effects with covariance matrix 𝑉 in (16), whereas the fourth and fifth columns

refer to the factor variable associated with 𝐴 in (16). The last column contains

the total number of random effects for each term.

To reduce the influence of outliers, student-t distributed sampling errors were

attempted at first. This approach did not work well for trip legs, perhaps because the

outliers are quite specific and concentrated mostly in 2009 and specific domains. This

led us to include random effects for the dummy variable 𝑑𝑢𝑚𝑚𝑦_2009 at the domain

level, resulting in a significant improvement of model fit (WAIC, DIC) and clearly visible

reduction of the influence of several 2009 outliers. The resulting model term is named

’V_2009’ in Table 5.1. It uses a horseshoe prior distribution, which improved the model

fit as it is better able to accommodate some of the large outliers.

The random effects component ’V_BR’ includes MON and OViN level break random

effects, random intercepts, and random linear time trends, varying over all domains (the

cross-classification of sex, ageclass, purpose and mode). The full covariance structure

resulted in the best model improvement. The full covariance matix 𝑉 in (16) is a 4 x 4
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matrix parameterised in terms of standard deviation and correlation parameters. Since

randomMON break effects for the purposes work and education resulted in somewhat

artificial and implausible trend estimates, it was decided to model MON breaks only for

the purposes shopping and other. Therefore, we introduced a variable 𝑏𝑟_𝑚𝑜𝑛_𝑆𝑂,

equal to 𝑏𝑟_𝑚𝑜𝑛 for purposes shopping and other and zero for purposes work and

education. Shopping and other are the purposes with the largest OViN breaks as well.

Using a Laplace prior distribution for ’V_BR’ further improved the model fit.

Two smooth time trend components at purpose ×mode and ageclass × purpose ×

mode aggregation levels are included in the final model. These terms are named

’RW2MM’ and ’RW2AMM’ respectively in Table 5.1. The best model fit was obtained

using a diagonal variance for ’RW2MM’ and a scalar variance for the more detailed

’RW2AMM’ component. The different values found for the variance components of the

’RW2MM’ components indicate large diifferences in degrees of smoothness of the

various series. The ’RW2AMM’ component can be interpreted as a correction to the

’RW2MM’ trends, allowing for some differences between age classes. The contribution

of the ’RW2AMM’ effects is indeed generally of a smaller size than that of the ’RW2MM’

effects.

Finally, a white noise term named ’WN’ in Table 5.1 was added in the final model to

capture unstructured variation over all levels of all factors. This ’WN’ component

accounts for more or less random variation of the true average number of trip legs pppd

over the domains and the years.

5.2 Time series multilevel model for the distance per trip leg

For distance we model the log-transformed direct estimates of distance per trip leg,

using the corresponding transformed and GVF-smoothed standard errors discussed in

Section 3 to define the variance matrix Σ of the sampling errors. The use of Student-t

distributed sampling errors in this case succeeds in reducing the influence of outliers

sufficiently. The degrees of freedom parameter of the Student-t distribution is assigned

a weakly informative prior and is inferred from the data.

Similar to the model for number of trip legs pppd, only main effects and second order

interaction effects are used in the fixed effects part of the selected model. In the finally

selected model the following fixed effects components are included:

𝑠𝑒𝑥 ∗ 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠 + 𝑝𝑢𝑟𝑝𝑜𝑠𝑒 ∗ 𝑚𝑜𝑑𝑒 + 𝑦𝑟.𝑐 ∗ 𝑚𝑜𝑑𝑒+

+𝑚𝑜𝑑𝑒_𝑤𝑎𝑙𝑘𝑖𝑛𝑔 ∶ 𝑏𝑟_𝑜𝑣𝑖𝑛 + 𝑚𝑜𝑑𝑒_𝑐𝑎𝑟𝑑𝑟𝑖𝑣𝑒𝑟 ∶ 𝑙𝑜𝑔𝑟𝑎𝑡𝑖𝑜_𝑘𝑚_𝑁𝐴𝑃
(18)

Here the term 𝑦𝑟.𝑐 ∗ 𝑚𝑜𝑑𝑒 represents linear time trends by mode. The variables

𝑚𝑜𝑑𝑒_𝑐𝑎𝑟𝑑𝑟𝑖𝑣𝑒𝑟 and𝑚𝑜𝑑𝑒_𝑤𝑎𝑙𝑘𝑖𝑛𝑔 are indicator variables for transportation

modes car driver and walking. The term𝑚𝑜𝑑𝑒_𝑤𝑎𝑙𝑘𝑖𝑛𝑔 ∶ 𝑏𝑟_𝑜𝑣𝑖𝑛 represents a single

OViN break fixed effect for mode walking. Among the covariates extracted from external

sources, the the year-by-year differences in the log of registered car kilometers

(𝑘𝑚_𝑁𝐴𝑃), denoted by 𝑙𝑜𝑔𝑟𝑎𝑡𝑖𝑜_𝑘𝑚_𝑁𝐴𝑃, is used in combination with mode car

driver as it as it slightly improves model fit and gives rise to some small but plausible

changes in the trend estimates for mode car driver.

The other effects, including higher order interactions, are modeled as random effects,

and the selected terms are shown in Table 5.2. As in the model development for number

of trip legs, the combination of intercepts, linear time trends (slopes) and both level

breaks varying over all domains, represented by the term ’V_BR’ in Table 5.2, yields a

reasonable fit. A full covariance matrix among the random intercepts, the linear time
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trends and the two break variables 𝑏𝑟_𝑚𝑜𝑛 and 𝑏𝑟_𝑜𝑣𝑖𝑛 also works best here. A

Laplace prior distribution for ’V_BR’ enables to accommodate some of the larger breaks

quite well.

Several time trend components at different levels have been considered for inclusion,

but adding multiple such trend components showed signs of overfitting. Inclusion of a

single smooth trend, i.e. second order random walk, for each mode, purpose

combination with a variance parameter depending only on mode turned out to work

best. This term is named RW2M in Table 5.2. Finally, a white noise term, WN in Table

5.2, is added to capture remaining unstructured variation over all levels.

Model

Component
Formula V

Variance

Structure
Factor A Prior

Number

of Effects

V_BR
1 + 𝑦𝑟.𝑐+

𝑏𝑟_𝑚𝑜𝑛 + 𝑏𝑟_𝑜𝑣𝑖𝑛
unstructured

𝑠𝑒𝑥 ∗ 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠∗

𝑝𝑢𝑟𝑝𝑜𝑠𝑒 ∗ 𝑚𝑜𝑑𝑒
Laplace 2016

RW2M 𝑚𝑜𝑑𝑒 diagonal 𝑝𝑢𝑟𝑝𝑜𝑠𝑒*RW2(𝑦𝑟) normal 532

WN 1 scalar
𝑠𝑒𝑥 ∗ 𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠∗

𝑝𝑢𝑟𝑝𝑜𝑠𝑒 ∗ 𝑚𝑜𝑑𝑒 ∗ 𝑦𝑟
normal 9576

Table 5.2 Summary of the random effect components for the selected time

series multilevel model. The second and third columns refer to the varying

effects with covariance matrix 𝑉 in (16), whereas the fourth and fifth columns

refer to the factor variable associated with 𝐴 in (16). The last column contains

the total number of random effects for each term.

5.3 Trend estimation and derived estimates

The trend estimates of main interest are computed based on the MCMC simulation

results as follows. First, simulation vectors of model linear predictions are formed, i.e.

𝜂(𝑟) = 𝑋𝛽(𝑟) +�

𝛼

𝑍(𝛼)𝑣(𝛼,𝑟) , (19)

where superscript 𝑟 indexes the retained MCMC draws, and each 𝜂(𝑟) is of dimension𝑀.

Consequently, the level break effects are removed or added, depending on the choice of

benchmark level. We choose the OViN level as the benchmark level, as it corresponds to

the most recent period considered. Given the way the level break dummies are coded, it

means that we need to add all OViN break effects to the predictions referring to the OVG

and MON years, and in addition need to remove the MON effects from the predictions

referring to the MON years. Also, if present, the dummy effects for outliers are removed.

We note that the survey errors 𝑒 in (13) are already absent from the linear predictor

(19). The simulation vectors of linear predictors thus obtained are

�̃�(𝑟) = �̃�𝛽(𝑟) +�

𝛼

�̃�(𝛼)𝑣(𝛼,𝑟) , (20)

where �̃� and �̃�(𝛼) are modified design matrices that accomplish the stated correction for

level breaks and possibly outlier effects. Back-transformation of these vectors to the

original scale yields the MCMC approximation to the posterior distribution of the trends.

For the square root transformation as used for modeling the number of trip legs pppd,

the back-transformation amounts to

𝜃(𝑟) = (�̃�(𝑟))2 + (𝑠𝑒(�̂�
sqrt
𝑖𝑡 ))2 , (21)
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The second term on the right hand side accomplishes a (relatively small) bias correction

using the transformed and smoothed standard errors for number of trip legs. The bias

correction stems from the fact that the design expectation of the direct estimates can be

written as

𝐸(�̂�) = 𝐸((�̂�sqrt)2) = 𝐸((𝜂+𝑒sqrt)2) = 𝜂2+2𝜂𝐸(𝑒sqrt)+𝐸((𝑒sqrt)2) = 𝜂2+𝑣𝑎𝑟(𝑒sqrt) ,

(22)

where 𝑒sqrt is the vector of sampling errors after transformation, assumed to be

normally distributed with standard errors 𝑠𝑒(�̂�
sqrt
𝑖𝑡 ).

For the log transformation, as used in modeling distance per trip leg, back-transforming

�̃�(𝑟) to the original scale yields the MCMC approximation to the posterior distribution of

the distance trends. The exponential back-transformation including bias correction is

𝜃(𝑟) = 𝑒�̃�
(𝑟)+se(�̂�log)/2 . (23)

The bias correction is added to largely correct a small negative bias induced by the log

transformation, see for example Fabrizi et al. (2018).

The means over the MCMC draws 𝜃(𝑟) are used as trend estimates, whereas the

standard deviations over the draws serve as standard error estimates.

Recall that 𝜂 and 𝜃 are vector quantities with components for all year-domain

combinations. We have computed the trends at the most detailed level, but we also

have computed aggregates over several combinations of the domain characteristics.

Aggregation of distance per trip leg involves the number of trip legs, and so requires

combining the MCMC output for both target variables. By multiplying the distance per

trip leg results by the number of trip leg pppd results we obtain the results for distance

pppd. Aggregation amounts to simple summation over trip characteristics purpose and

mode, and to population weighted averaging over person characteristics sex and

ageclass. Inference for other derived quantities like total number of trip legs per day and

total distance per day at different aggregation levels can also be readily conducted using

the simulation results for the two modeled target variables.

6 Results

The appendices contain several figures showing trend estimates at different aggregation

levels based on the selected models for the number of trip legs pppd and the distance

per trip leg described in Section 5. The black lines in these figures correspond to the

series of direct estimates, the red lines to the model fit based on all model components,

i.e. the back-transformation of (19), and the green lines to the trend series (21) or (23).

A complete set of time series plots for the number of trip legs pppd, distance per trip

leg, and distance pppd at different aggregation levels, including the most detailed level,

are given in Boonstra et al. (2019c) and Boonstra et al. (2019b). In the following two

sub-sections, the trend estimates obtained for number of trip legs and distance are

discussed and illustrated.

6.1 Trip legs

Trend estimates of total number of trip legs per day at overall, purpose and mode levels

are shown in Figures A.1, A.2, and A.3 respectively in Appendix A. It is noted that these
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figures are based on the (aggregation of the) trends for number of trip legs pppd

estimated at the most detailed level. A selected set of plots for the number of trip legs

pppd is given in Appendix B.

The plots show that the estimated trends for trip legs are hardly affected by any MON

breaks. This has partly be enforced by excluding MON breaks for the purposes work and

education in the random effects model component ’V_BR’. Since the OVG and MON

designs are largely the same except that they were carried out by different data

collection organisations, no large MON breaks are anticipated anyway. However, at a

more detailed level, some MON discontinuities are clearly present for purposes

shopping and other, as is shown in Figure B.5, for the 0-5 age group. It shows a possible

exchange in classification of purposes shopping and other for young children.

In contrast, some OViN breaks are quite large. Overall, the OViN level for trip leg number

is lower than the MON and OVG levels, as is clear from Figure B.1. This is the case for

modes car driver, train and cycling, as illustrated by Figure B.3. For mode walking there is

also a large jump downwards, but it happens in 2011, a year after the start of OViN. A

full explanation of this jump is lacking, but it seems that the weather at least plays a

partial role. The year 2010 was a year with a rather extreme amount of snow days, and

under such circumstances it is expected that more walking trips are made, e.g. as an

alternative to cycling. It appears strange, however, that the trend level before 2010 is

not much lower than that of 2010. The small OViN break that is estimated here is

actually due to inclusion of 𝑠𝑛𝑜𝑤𝑑𝑎𝑦𝑠 as a covariate. Without it, there would have

been even a larger jump in 2011.

There are some noteworthy differences in discontinuities between men and women

trend lines, particularly for 30-39 and 40-49 age groups, see e.g. Figure B.7. In these

particular cases the differences in the levels of the direct estimates between men and

women are much larger during the OViN period. As these differences are most probably

due to measurement errors in OViN data, this is a drawback of basing the trend

estimates on the OViN level.

Since the trends are defined at the level of OViN in the current model, the outcomes

during the MON and OVG period are corrected for the discontinuities induced by the

redesigns in the past. It implies that due to the uncertainty of the estimated

discontinuities the standard errors for the trend estimates in the OVG and MON period

are larger compared to the OViN period. At an aggregated level, the standard errors of

the trend estimates are even larger than the uncertainty of the direct estimates. See for

example Figure B.1 for estimates at the overall level and Figures B.2 and B.3 for

estimates by purpose and mode.

The 2009 outlier effects are pronounced for some domains, notably for young children

and purposes shopping and ’other’, as illustrated in Figure B.5). There is a clear exchange

between both purposes for the young children. These effects have been captured by the

random effect term ’V_2009’ of the selected model for trip legs. The trend lines show

that these outliers are indeed neutralized by excluding the ’V_2009’ effects.

Tables 6.1 and 6.2 list the posterior means and standard errors of several variance

components of the trip leg model. It is to be noted from Table 6.1 that the random

intercepts over the domains are negatively correlated with the OViN break effects and

random linear time trends. Table 6.2 shows that the scales of the second order random

walks by purpose and mode in the ’RW2MM’ model component are very diverse. The

largest scales are seen for cycling and walking for purpose ’other’. This difference in

volatility by purpose and mode is also visible in the trends, as shown in Figure B.4.
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Especially the high volatility of the series for cycling and purpose ’other’ is apparent,

which may possibly be caused by weather effects. This series closely follows the direct

estimates series due to the relatively small standard errors of the latter. Other domains

have more smooth trends despite volatile direct estimates, as for example train for

purpose ’other’. As the direct standard error estimates are much larger in this case, the

model chooses a smoother trend series. Still other domains, such as car driver for

purpose work, show smooth series for both direct estimates and trend predictions.

Compared to the fixed effects, ’V_BR’ and ’RW2MM’ components, it was found that the

more detailed trend component ’RW2AMM’ has a smaller contribution to the linear

predictor, and is smoother than most ’RW2MM’ components. The white noise term

’WN’ was also found to have only a modest contribution to the trend estimates.

A positive trend in the number of trip legs can be observed for the 12-17 age group as

car driver after the 2011 change in law, see Figure B.6. Though this domain is very small

and the time period of available data is short, the fitted model seems to work

satisfactorily here.

Intercept br_mon_SO br_ovin yr.c

Intercept 14.81 (0.73) 13.90 (9.90) -41.80 (5.96) -15.00 (6.89)

br_mon_SO 1.80 (0.18) 13.40 (11.28) 21.80 (11.39)

br_ovin 3.49 (0.23) -11.40 (7.96)

yr.c 1.77 (0.11)

Table 6.1 Estimated standard deviations and correlations (×100) for the

’V_BR’ component

Car

Driver

Car

Passenger
Train BTM Cycling Walking Other

Work
3.66

(1.97)

3.00

(4.81)

2.16

(1.90)

1.19

(1.13)

1.23

(1.31)

6.77

(3.06)

1.82

(1.54)

Shopping
2.68

(1.46)

4.28

(2.08)

0.86

(0.95)

1.35

(1.66)

1.76

(1.67)

3.11

(4.07)

1.32

(1.14)

Education
0.86

(0.93)

1.85

(2.91)

0.67

(0.68)

2.89

(2.81)

5.18

(3.52)

3.14

(1.78)

2.80

(1.70)

Other
7.14

(3.64)

5.72

(2.72)

1.16

(1.19)

1.89

(1.14)

23.75

(7.07)

13.69

(4.17)

1.84

(2.17)

Table 6.2 Estimated standard deviations (×1000) with their standard errors

in parentheses under the diagonal covariance matrix for the ’RW2MM’

component

6.2 Distance

The trends of total distance per day at overall, purpose and mode levels are shown in

Figures C.1, C.2, and C.3 respectively in Appendix C. The corresponding plots for the

trends of distance pppd and distance per trip leg are given in Appendix D and Appendix E

respectively.

The direct estimates of distance per trip leg are rather volatile, even at the most

aggregated level, see Figure E.1. Due to the nature of the distance variable compared to

number of trip legs, the former series are generally more affected by outliers than the

trip leg series. The Student-t distribution with a posterior mean degrees of freedom of

CBS | Discussion paper | October 30, 2019 24



about 4 seems to account for outliers quite well, but it is harder to detect fine changes in

the true underlying distance trends. Consequently, in order to avoid overfitting the

model for distance is more parsimonious than that for the number of trip legs. One

exception is that the distance model includes a fixed OViN break effect for mode

walking. This effect was required to capture the very pronounced discontinuity in 2010

for mode walking5), as shown in Figure E.3.

For the distance model, some parameter estimates (posterior means and standard

errors) are listed in Tables 6.3 and 6.4. The ’V_BR’ component containing varying

coefficients by domain for intercept, slope, and MON and OViN breaks, shows, as in the

trip legs model, negative correlation among the intercepts and OViN breaks, see Table

6.3.

Table 6.4 shows that the mode-dependent scales of the smooth trend components by

mode and purpose, as represented by model component ’RW2M’, are quite diverse.

Here, the components are most volatile for BTM, walking and, especially, ’other’. As is

the case for the trip leg model, the white noise component makes only a relatively small

contribution to the trends.

Intercept br_mon br_ovin yr.c

Intercept 26.40 (1.45) -0.44 (26.06) -22.26 (11.50) 18.08 (12.65)

br_mon 1.32 (0.89) 8.80 (30.73) 12.22 (35.28)

br_ovin 11.10 (1.51) 9.95 (22.63)

yr.c 3.98 (0.65)

Table 6.3 Estimated standard deviations and correlations (×100) for the

’V_BR’ component.

Car Driver Car Passenger Train BTM Cycling Walking Other

1.77

(1.53)

3.92

(2.10)

10.13

(5.42)

20.68

(7.41)

7.47

(2.74)

26.59

(13.75)

33.73

(12.31)

Table 6.4 Estimated standard deviations (×1000) with their standard errors

in parentheses under the diagonal covariance matrix for the ’RW2M’

component.

7 Model assessment

As mentioned before, model selection was largely based on the WAIC, DIC, and graphical

comparisons of their model fits and trend predictions at various aggregation levels. To

evaluate how adequate the models fit the time series of direct estimates more formally,

posterior predictive checks has been applied to the finally selected models. Furthermore

it has been tested to what extent the residuals of the time series are independently and

identically distributed by testing for normality or whether the residuals follow a

t-distribution, depending on the assumed distributions in the likelihood. Also formal

tests have been conducted for heteroscedasticity and remaining serial correlation in the

5) The effect is most probably due to the fact that in OViN walks are more often classified as single tours

instead of consisting of a go and return trip.
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residuals. Finally the bias in the model predictions, the variance reduction of the model

predictions compared to the initial direct estimates, and the size of revisions if new data

become available.

In this section, results are presented for bias and variance reduction along with the

revision analysis. For the details of the posterior predictive checks and the various tests

applied to the standardized residuals, see Boonstra et al. (2019a)

7.1 Bias and variance reduction

Two discrepancy measures are defined to evaluate and compare the time series

multilevel models. The first measure is the Relative Bias (RB) which expresses the

differences between model estimates and direct estimates, as percentage of the latter.

For a given model, the 𝑅𝐵𝑖𝑡 for a domain is defined as

𝑅𝐵𝑖𝑡 =
(�̂�𝑖𝑡 − �̂�𝑖𝑡)

�̂�𝑖𝑡
× 100% . (24)

with �̂�𝑖𝑡 the model prediction and �̂�𝑖𝑡 the direct estimate for domain 𝑖 and year 𝑡. This

benchmark measure shows for each domain 𝑖 how much the model-based estimates

deviate from the direct estimates. The discrepancies should not be too large as one may

expect that the direct estimates on average are close to the true average number of trip

legs or distances. The second discrepancy measure is the Relative Reduction of the

Standard Errors (RRSE) and measures the percentages of reduction in standard error of

the model-based compared to the direct estimates, i.e.,

𝑅𝑅𝑆𝐸𝑖𝑡 = 100% × (𝑠𝑒(�̂�𝑖𝑡) − 𝑠𝑒(�̂�𝑖𝑡))/𝑠𝑒(�̂�𝑖𝑡) . (25)

Both measures are evaluated at different aggregation levels. The distributions of the

measures are presented in terms of the minimum value, 1st quartile, median, mean, 3rd

quartile and maximum value. The measures are presented for the following aggregation

levels:

– Yearly estimates at the highest aggregation level (19 estimates, where (24) and (25)

are averaged over all domains)

– Yearly estimates for the mode categories (19 by 7 estimates, where (24) and (25) are

averaged over all domains that belong to a mode category)

– Yearly estimates for the purpose categories (19 by 4 estimates)

– Yearly estimates for the cross-classification of mode and purpose (19 by 7 by 4

estimates)

– Yearly estimates for the cross-classification of mode, purpose, gender and age-class

(19 by 7 by 4 by 2 by 9 estimates)

7.2 Revision analysis

The models for the number of trip legs and distances are fitted to time series of different

lengths, starting with series observed up until 2010 and then adding a year sequentially.

Directly after the change-over from MON to OViN, this gives an impression how many

observations under the new design are required until stable estimates for the

discontinuities are obtained. For the last three years of the observed series, the

discontinuity estimates have converged to a stable value. For this period, this revision

analysis gives an impression how stable the prediction for the last year is and how large

its revision is when a new observation becomes available. Results are presented for the

most aggregated level, the categories for mode and motive.
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7.3 Trip legs

The distributions of the 𝑅𝐵𝑖𝑡 (24) and 𝑅𝑅𝑆𝐸𝑖𝑡 (25) for the different aggregation levels

specified in Section 7.1, are provided in Tables 7.1 and 7.2, respectively. The bias at the

highest aggregation level is negligible (average of -0.14%) and gradually increases to an

average of -1.16% at the most detailed level. The reduction of the variance is the

smallest at the highest aggregation level (25% on average) and gradually increases with

the level of detail to 46.9% at the most detailed level.

Variable Min. 1st.Qu. Median Mean 3rd.Qu. Max.

1 Year -1.16 -0.51 -0.03 -0.14 0.27 0.54

2 Motive -0.35 -0.34 -0.21 -0.21 -0.08 -0.06

3 Mode -0.77 -0.48 -0.25 -0.31 -0.10 -0.01

4 Motive and Mode -1.54 -0.57 -0.28 -0.37 -0.05 0.11

5 Sex, Ageclass, Motive, and mode -64.43 -1.08 -0.17 -1.16 0.30 50.29

Table 7.1 Summary statistics of mean relative bias (in %) at different

aggregation levels for the SAE estimates of mean number of trip legs pppd

Variable Min. 1st.Qu. Median Mean 3rd.Qu. Max.

1 Year 11.72 21.75 27.54 25.08 28.83 36.71

2 Motive 19.65 28.54 33.13 31.18 35.77 38.82

3 Mode 22.16 24.24 27.31 29.81 36.23 38.25

4 Motive and Mode 10.30 30.19 36.70 33.94 39.16 43.26

5 Sex, Ageclass, Motive, and mode 33.74 43.10 45.63 46.90 48.20 95.32

Table 7.2 Summary statistics of relative reduction of standard errors (in %)

at different aggregation levels for the standard errors of the SAE estimates of

mean number of trip legs pppd

The size of the revisions is evaluated graphically at the highest aggregation level in

Figures 7.1 and 7.2. Figure 7.1 illustrates the revisions if directly after the change-over

from MON to OVIN trends are published at the OVIN level for time series observed up

until 2010 and then adding one year at a time. This is a so-called in real time analysis for

periods 2010 to 2017. Similar figures for the purpose and mode categories are provided

in Boonstra et al. (2019a).

Figure 7.2 illustrates the revisions if trends are published at the OVG level in real time for

the period directly after the implementation of the OViN, i.e. 2010 to 2017. Similar

figures for the purpose and mode categories are provided in Boonstra et al. (2019a).

In real time, estimates for the discontinuity due to the change-over from MON to OViN

are presented in Figure 7.3. This figure illustrates that it takes about 4 years before the

estimate for the discontinuity converges to a stable value. The updates for the OViN

discontinuities during the years directly after the implementation of OViN are one factor

that causes the revisions of the trends visible in 7.1 and 7.2.

Figure 7.1 in which the signals are estimated at the OViN level, shows large revisions of

the signals during the MON period (2004-2009). If signals are estimated at the OViN

level, the estimate for the OViN discontinuity is added to the signal at all time periods.

During the MON period, the estimate for the MON discontinuity is removed. The

revisions of the OViN discontinuities in the period 2010 until 2014, also influence the

estimates for the MON discontinuities. The revisions of the signals during the OVG

period (1999-2003) are purely the effect of the revision of the estimated OViN

discontinuity. The updates of the trend levels in the OVG period in Figure 7.1 indeed
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agree with the revision of the estimated OViN discontinuity in Figure 7.3. These findings

are confirmed with the in real time analyses at the level of the mode and purpose

categories.

It appears that the revisions of the signals over the entire time period are smaller if the

signals are estimated on the OVG level. These findings are confirmed with the in real

time analyses at the level of the purpose and mode categories in Figures 7.1 and 7.2.

The most important conclusion from the revision analysis at the OViN and OVG level is

that the dummies that model the different redesigns are coded, must adapted to the

publication level of the signals. In this application there is a dummy for the MON break,

and a dummy for the OViN. These are regression variables that equal one during the

MON period and zero elsewhere and equal one during the OViN period and zero

elsewhere (Boonstra et al., 2019c,b). If the desired level of publication is OViN it might

be preferable to take OViN as the baseline level; i.e. use one dummy that equals one

during the OVG period and zero elsewhere and one dummy that equals one during the

MON period and zero elsewhere. It appears to be advisable to choose the publication

level as the baseline level. This, however, requires additional research. It is also not clear

to what extent this empirical finding can be generalized to the implementation of ODiN.

As mentioned before, it takes about 4 years until stable estimates for the discontinuities

are obtained (Figure 7.3). In the period after 2014 the revisions are very small. This is an

indication that once stable estimates for the discontinuities are obtained, the revisions

of the model predictions are small. This might suggest that, once sufficient data are

available after the last redesign, no revision policy is required.
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7.4 Distance

The distributions of the 𝑅𝐵𝑖𝑡 (24) and 𝑅𝑅𝑆𝐸𝑖𝑡 (25) for the different aggregation levels

specified in Section 7.1, are provided in Tables 7.3 and 7.4, respectively. The bias at the

highest aggregation level is negligible (average of -0.08%) and gradually increases to an

average of -3.15% at the most detailed level. The reduction of the variance is the

smallest at the highest aggregation level (36.9% on average) and gradually increases with

the level of detail to 58.7% at the most detailed level.

Variable Min. 1st.Qu. Median Mean 3rd.Qu. Max.

1 Year -3.04 -0.61 -0.11 -0.08 0.35 2.92

2 Motive -0.95 -0.74 -0.36 -0.39 -0.01 0.11

3 Mode -1.93 -0.37 -0.28 -0.35 -0.05 0.57

4 Motive and Mode -11.22 -1.60 -0.36 -1.22 -0.03 1.27

5 Sex, Ageclass, Motive, and mode -57.83 -3.94 -0.58 -3.15 0.37 68.46

Table 7.3 Summary statistics of mean relative bias (in %) at different

aggregation levels for the SAE estimates of mean distance per trip legs pppd

Variable Min. 1st.Qu. Median Mean 3rd.Qu. Max.

1 Year 14.76 31.67 39.63 36.58 42.26 44.84

2 Motive 36.30 37.16 37.79 39.12 39.75 44.60

3 Mode 6.18 30.61 38.94 35.16 45.64 48.49

4 Motive and Mode 10.42 35.86 44.48 41.61 51.98 58.79

5 Sex, Ageclass, Motive, and mode -72.52 55.69 60.20 58.70 64.09 73.17

Table 7.4 Summary statistics of relative reduction of standard errors (in %)

at different aggregation levels for the standard errors of the SAE estimates of

mean distance per trip legs pppd

The size of the revisions is evaluated graphically at the highest aggregation level in

Figures 7.4 and 7.5. Figure 7.4 illustrates the revisions estimated in real time for the

signals at the OViN level for the period 2010 to 2017. Similar figures for the purpose and

mode categories are provided in Boonstra et al. (2019a).

Figure 7.5 illustrates the revisions if trends are published at the OVG level in real time

analysis for the period directly after the implementation of the OViN, i.e. 2010 to 2017.

Similar figures for the purpose and mode categories are provided in Boonstra et al.

(2019a).

In real time, estimates for the discontinuity due to the change-over from MON to OViN

are presented in Figure 7.6. This figure illustrates that it is not significantly different from

zero.

The revisions of the signals visible in Figures 7.4 and 7.5 are most likely caused by the

revisions of the predicted number of trip legs, which are used in the aggregation of the

average trip distances. As in the case of the number of trip legs, the revisions for the

distance are larger if the predictions are at the OViN level during the OVG and MON

period. For the OViN period, it appears that the revisions are slightly larger if the

predictions are at the OVG level.
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Figure 7.6 In real time estimates from 2010 to 2017 for the discontinuity for

average distance of trip legs at the overall level with 95% confidence interval
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8 Discussion

In this paper two models are developed for estimating trends for mobility indicators

based on the Dutch Travel Survey (DTS). Two target variables are considered: the

average number of trip legs per person per day and the average distance per trip leg for

domains that are defined by the cross classification of age, gender, purpose, and

transportation mode on a yearly frequency.

In a first stage direct estimates are compiled from the DTS data as well as their standard

errors using the general regression estimator. The direct estimates are the input for the

time series models and are first transformed to better meet normality assumptions. For

the number of trip legs a square-root transformation is used and for distance a log

transformation. The standard errors are also transformed and subsequently smoothed

with a generalized variance function model.

The resulting direct estimates at the level of the aforementioned cross classification are

used as input for multilevel time series models, which are fitted using MCMC

simulations. The models account for discontinuities due to two redesigns that occurred

due to change-over from OVG to MON in 2004 and the change-over from MON to OViN

in 2010. Discontinuities are predominantly modeled as random effects. DTS time series

are influenced by outliers. The model for trip legs contains random effects to model the

most dominant outliers in 2009, while the model for distances assumes a Student-t

distribution for the sampling errors. Other important model components are smooth

trends at different levels of the cross classification variables. Several auxiliary annual

time series are used as covariates: number of snow days for the trip legs model and

registered car kilometers for the distance model. For random effects several non-normal

priors are considered as a stronger form of regularization.

Model predictions at different aggregation levels of the cross-classification variables are

obtained by aggregating the model predictions at the most detailed level. In addition

trends at the OViN level are derived by accounting for the MON and OViN

discontinuities. Finally model predictions and trends for total number of trip legs per

day, distance per person per day, and total distance per day at different aggregation

levels are derived from the two fitted models.

Model selection is predominantly based on model information criteria (WAIC and DIC),

graphical comparisons in combination with subject matter knowledge about

transportation in the Netherlands. The adequacy of the finally selected models is

confirmed with a set of model diagnostics. Posterior predictive checks confirm a good

model fit for most of the series, since there are no signs of bias, overfitting or

underfitting in the majority of the time series. A graphical comparison of the direct

estimates with the simulated posterior predictive distributions show that the direct

estimates mostly fit well with the simulated distributions.

The standardized residuals of the time series obey the assumed standard normal

distribution in the case of trip legs and Student-t distribution in the case of distance. The

relative bias statistics illustrate negligible amounts of bias in the model predictions at

higher aggregation levels, while the precision of the predictions is improved with 25% to

50% in the case of trip legs and 36% to 60% in the case of distance from the highest

aggregation level to the most detailed level.

In real time analysis of the discontinuities due to the implementation of OViN at high

aggregation levels illustrate that stable estimates for the discontinuities are obtained in
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about 4 years in the case of trip legs, while for distance no significant discontinuities are

observed. In real time analysis of the signals illustrate that signals are revised since the

estimated discontinuities for MON as well as OViN change, directly after the

implementation of OViN. It appears that the revisions of the signal predictions are most

stable if the survey design that is chosen as publication level is used as the base line in

the definitions of the dummy indicators used to model the discontinuities. Once the

discontinuity estimates are sufficiently stable, the revisions of the signal predictions are

small.

Topics for further research are:

– accounting for correlations between the direct estimates.

– modeling trends for volatile domains. At the moment trends of number of trip legs

for cycling and walking both for other purposes are very volatile and might be

improved using different type of model components.

– parameterizing of the level interventions. Additional research is required to find the

best parameterization of the level interventions for discontinuities. This is necessary

to better understand whether it is advisable to change the trend estimates from the

OViN to ODiN level, directly after the change-over to ODiN in 2018 or to wait until

stable estimates for ODiN discontinuities are obtained.

– updating the trend estimates. The models need to be extended to account for the

change-over to ODiN in 2018 for updating the trend estimates.
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Appendix
A Total number of trip legs per day
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Figure A.1 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Figure A.2 Direct estimates (black), model fit (red) and trend estimates
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Figure A.3 Direct estimates (black), model fit (red) and trend estimates
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B Number of trip legs per person per

day
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Figure B.4 Direct estimates (black), model fit (red) and trend estimates
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Figure B.5 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.

CBS | Discussion paper | October 30, 2019 50



● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
● ●

● ● ●
● ●

●

●
●

●

●

●

●
●

● ●
●

●
●

●

● ●

●
●

● ●
●

●
●

● ●

●
●

● ●

●
●

●

●

●
●

●
●

● ●
●

●
● ● ●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

● ●

● ● ●

●

●

●
●

●

●

●
● ● ●

● ● ●
●

● ●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

● ●

●

● ●

●

●
●

●
● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

●

● ● ●

●

●

●
● ●

● ●

●

●

● ●

● ●

● ● ●

● ● ● ●
●

● ●
● ●

●

●

●
●

● ●

● ●

● ●

●
●

● ●

●
●

● ●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

● ●

●
●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

● ●
● ● ●

●
● ●

●

●

●
● ●

●

●

● ●
●

Male Female

C
a

r d
rive

r
C

a
r p

a
sse

n
g

e
r

Tra
in

B
T

M
C

yclin
g

W
a

lkin
g

O
th

e
r

2000 2005 2010 2015 2000 2005 2010 2015

−0.005

0.000

0.005

0.010

0.015

0.3

0.4

0.5

0.6

0.7

0.03

0.06

0.09

0.10

0.15

0.20

0.25

0.30

1.4

1.5

1.6

1.7

1.8

0.4

0.5

0.6

0.7

0.8

0.05

0.10

0.15

0.20

0.25

year

n
r 

o
f 
tr

ip
 le

g
s 

p
p

p
d

Number of trip legs pppd by mode and sex, age 12−17

Figure B.6 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Figure B.7 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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C Total distance per day
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Figure C.1 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Figure C.2 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Figure C.3 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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D Total distance per person per day
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(green) with approximate 95% intervals.
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E Distance per trip leg

CBS | Discussion paper | October 30, 2019 61



●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

96

100

104

2000 2005 2010 2015

year

d
is

ta
n

ce
 p

e
r 

tr
ip

 le
g

 (
in

 h
e

ct
o

m
e

te
rs

)

Overall average of distance per trip leg

Figure E.1 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Figure E.2 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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Figure E.3 Direct estimates (black), model fit (red) and trend estimates

(green) with approximate 95% intervals.
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