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Summary1 
For a number of economic sectors, Statistics Netherlands (SN) produces two time 

series on turnover growth rates of businesses: a monthly series based on a sample 

survey and a quarterly series based on census data. The census data consist of 

Value Added Tax data (VAT) for most of the enterprises and of questionnaire data 

for a limited set of large or complex enterprises. To improve the quality of our 

output, SN aims to benchmark the monthly time series upon the quarterly one, 

using a Denton method. However, benchmarking has not been applied so far. One 

of the reasons is that a previous study on 2014 and 2015 data suggested that the 

two time series have different seasonal effects: the yearly distribution of quarterly 

turnover tends to be shifted more towards the fourth quarter of the year for the 

VAT data than for the sample survey data. In the present study, we aimed to 

analyse whether the earlier observed differences between the two times series are 

really due to seasonal differences or not. Further, we wanted to know whether the 

differences are due to units with specific reporting patterns and if it is caused by a 

limited number of units. To answer the first aim, we used different models to 

describe the quarterly relation between sample survey turnover and VAT turnover 

for 2014 – 2016. The analysis confirmed that the two time series show seasonal 

differences. We found only minor differences between the results of the different 

models, from which we conclude that the seasonal effects are not due to 

modelling assumptions. For the second aim, we classified the units to 81 different 

yearly reporting patterns. These patterns describe whether VAT is smaller, equal 

or larger than the sample survey for each of the four quarters of a year, plus an 

additional pattern. Unfortunately, we could not relate one or more of those 

reporting patterns to the seasonal effects. Finally, we found that a considerable 

amount of units contribute to the patterns each year. In the near future we aim to 

find the causes of those seasonal differences and we will seek background 

variables by which we can explain those differences. Finally, we aim to define 

measures such that the current differences in seasonal patterns no longer are an 

obstacle to benchmark the survey data to the VAT data. 

Keywords 
Measurement errors, reporting differences, tax data, seasonal patterns 

 

   

 

 
1 The authors thank the reviewers Koert van Bemmel, Danny van Elswijk and Jeroen Pannekoek for their useful 

comments to earlier versions of this paper. 
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1. Introduction 

For a number of economic sectors, Statistics Netherlands (SN) produces two 

turnover time series: a monthly series based on sample survey turnover and a 

quarterly series based on census data. The census data consist of a combination of 

Value Added Tax data (VAT) for the smaller and simple enterprises and of survey 

data for the more complex enterprises. The smaller and simple enterprises are 

referred to as non-top X units and the more complex ones as top X enterprises. 

The census data are processed in the so-called DRT system. The sample survey 

data were processed in the IMPECT2 system until 2014 and in the KICR system 

from 2015 onwards. 

 

The monthly series is used to publish output for the Short-term statistics (STS), 

whereas the sum of the quarterly level estimates based on the census data is used 

to calibrate the outcomes of the annual structural business statistics (SBS). The 

monthly STS data are used as input for the quarterly national accounts whereas 

the SBS is used as input for the annual national accounts. Differences between the 

two time series therefore contribute to differences between early and late 

releases of the national accounts figures. To improve the quality of our output, SN 

aims to benchmark the monthly time series upon the quarterly one, using a 

Denton method (Bikker et al., 2013; Denton, 1971).  

 

SN aims to benchmark the two series from 2015 onwards. However, preliminary 

results of benchmarking the 2015 data showed that, for the majority of the 

industries, the year-on-year (yoy) growth rates of quarterly turnover from the 

survey were adjusted downwards in the first quarter of the year and upwards in 

the fourth quarter of the year (see Van Delden and Scholtus, 2017). For Retail 

trade adjustments of yoy growth rates of quarterly turnover for Q1 2015 up to Q2 

2016 were {-0.5, 0.5, 0,2, 1.0, 1.0, 0.9} per cent points, with similar values for the 

adjustments of the yoy growth rates for monthly turnover. Since the 95 per cent 

sampling error margins for yoy growth rates of Retail trade are 0.7 per cent points 

(Van Delden, 2012; Scholtus and de Wolf, 2011), the adjustments in Q4 2015 and 

Q1 2016 are larger than this margin. Furthermore, Van Bemmel and Hoogland 

(2017) found that changes computed from the monthly time series differ 

systematically from changes computed directly as the ratios of two levels of the 

census data. 

These findings lead to two complementary research questions: 

1. What are the reasons for the systematic differences between the sample 

survey growth rates and the census growth rates? 

2. Is the seasonal pattern based on the VAT data different from that based on the 

sample survey data for enterprises that report to both sources? 

 

The first question is treated by Van Bemmel and Hoogland (2017). They quantified 

a number of causes for differences between the monthly and the quarterly time 

series. Some of those differences they identified lead to systematic differences: 

– In the survey only enterprises above a certain size class are observed (cut-off 

sampling) whereas the census data concerns all size classes. More specifically, 
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new enterprises may enter the population frame at SN in a special size class 

“00”, which refers to enterprises without any working persons. In practice 

enterprises are often put into this size class because the true number of 

employees is not yet known. Later, those enterprises move into a larger size 

class. The monthly survey with cut-off sampling is designed in such a way that 

this group of units is missed as births in the population, leading to an 

underestimation of the growth. 

– The survey time series uses weights to aggregate from industry level towards 

economic sector level. Those weights are based on yearly turnover from the 

structural business statistics (SBS). In the past the final SBS estimates could 

differ from the estimates of the census data, leading to systematic differences 

between them. The new weights, that have been determined end of 2017, are 

based on SBS estimates that are calibrated upon the census data, thus now this 

problem has been solved. 

 

Furthermore, Van Bemmel and Hoogland (2017) found that for a number of 

economic sectors, apart from systematic yearly differences, there were also 

systematic quarterly differences where the quarter-on-quarter growth rate based 

in the fourth quarter is larger for the census data than for the survey data. These 

quarterly differences, expressed in the second question, are addressed in the 

current report. 

 

A first analysis on these quarterly differences has been given by Van Delden and 

Scholtus (2017). They linked the sample survey data to the VAT data for the 

smaller and simple units. Imputed values were left out of the analysis. Using a 

robust linear regression analysis and a mixture model, they found a slightly 

decreased slope for the relation between turnover in the sample survey data 

(dependent variable) and turnover in the VAT data (independent variable) in the 

fourth quarter of 2014 and 2015 and a slightly increased slope in the first and or 

second quarter. The intercept was not affected by the quarter. Van Delden and 

Scholtus (2017) first adjusted the seasonal VAT pattern using the results of the 

slopes, and then estimated what would be its implications on the benchmarking. 

They found that the downwards adjustment in the fourth quarter of the year was 

0.7 instead of 1.0 per cent in the fourth quarter of 2015 for Retail trade. Also in 

other industries the sizes of the adjustments due to benchmarking were reduced. 

The seasonal effects found in Van Delden and Scholtus (2017) are relatively small 

and not entirely consistent over the different industries2 that were tested: 

Manufacturing, Construction and Retail trade. We therefore concluded that we 

wanted to repeat the analysis for 2016 data to be more certain whether there are 

really seasonal effects. 

 

A first objective of the present paper is to fine-tune the exact model that is used 

for the quarterly effects. We have used a robust linear regression and a mixture 

model in Van Delden and Scholtus (2017) and we compare those two approaches 

and their settings. A second objective is, given the selected model, to repeat the 

analysis including 2016 data, to determine whether the seasonal differences are 

 

 
2 Mining and quarrying and Import of new cars were also included in this study, but these economic sectors did 

not contain enough linked units to test the seasonal effects.  
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consistent over time and whether they are also found in another economic sector, 

namely Job Placement. 

  

When the seasonal differences are due to a limited number of units, those units 

could be manually checked and errors can be corrected if needed. Instead, when it 

concerns a large number of units that contribute to those seasonal effects that it 

seems more realistic to develop a correction method at macro-level rather than 

manually checking the units. In its most simple form, this limited set of units 

concern units that have certain reporting patterns in common. A more 

complicated form is to directly account for the contribution of all units to the 

slope. The third objective is to investigate whether the quarterly slope-differences 

can be explained by groups of units that have a certain reporting pattern in 

common. The fourth objective of the present paper is therefore to investigate 

whether the quarterly slope-differences can be explained by a limited number of 

most influential enterprises. 

 

The remainder of this paper is organised as follows. We start with section 2 that 

describes the data used in the present study. Section 3 addresses the effect of 

model settings on the estimated quarterly effects (objectives 1 and 2). Section 4 

determines whether the quarterly effects can be explained by a limited number of 

units that either have a certain pattern in common or a limited set of most 

influential units (objectives 3 and 4). Section 5 discusses the results and gives main 

directions for future research. Additionally, Appendix 1 provides the formulas to 

estimate the mixture model and the model parameter lambda for the Huber 

model.  

2. Data 

2.1 Description 

We compared survey turnover with VAT turnover on a quarterly basis, using 2014, 

2015 and 2016 data of the economic sectors Manufacturing, Construction, Retail 

trade and Job placement. Manufacturing, Construction, Retail trade are sectors 

with a monthly survey, whereas Job placement is a quarterly survey. Compared to 

Van Delden and Scholtus (2017), we omitted the sectors Mining and quarrying and 

Import of new cars. The estimates of our model yielded unstable results for those 

two sectors due to the small non-top X population sizes in both sectors, relative to 

the other three economic sectors in that paper. Sizes of the non-top X population 

in 2014 were 2048 (Mining and quarrying), 56 572 (Manufacturing), 143 339 

(Construction), 110 440 (Retail Trade) and 128 (Import of new cars), see Van 

Delden and Scholtus (2017; Table 3). Further, compared to Van Delden and 

Scholtus (2017), we added the economic sector Job placement because a study by 

Van Bemmel (2018) showed clear seasonal patterns in differences between survey 

and VAT turnover. 
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VAT data were linked to sample survey data at the level of the statistical units, the 

enterprises, using a unique enterprise identification number. The linked data have 

been processed each within their own production systems before linkage. More 

information on the data and the production systems can be found in Van Delden 

and Scholtus (2017). We did not use all of the linked data, but we made a few 

selections: 

1. units that were likely to have a ‘thousand error’ were omitted (see section 2.3 

in Van Delden and Scholtus, 2017); 

2. units need to be in both data sets for all four quarters of a year; 

3. units need to have reported turnover in all four quarters of the year; 

4. industries for which the turnover level or change estimates based on VAT are 

considered unreliable, because of differences in definition between VAT and 

sample survey turnover, were omitted. 

We have applied those selections, to ensure that the seasonal effects that we find 

are due to reporting differences and not due to other factors. In van Delden and 

Scholtus (2017) we verified the effect of those selections on the outcomes of the 

2014 and 2015 data. Van Delden and Scholtus (2017) showed that a limited 

number of units were omitted due to the first three selection steps. Further, they 

also provide an analysis on the combined effect of the selections 2, 3 and 4 on the 

regression coefficients. Their analyses showed that the seasonal effects were not 

very sensitive to those selections. 

 

For the current study, we maintained outlying units with our data set (with the 

exception of selection 1) and used robust regression analyses methods to deal 

with them; see the next section. When an analysis of seasonal effects is done as 

part of the production process for estimating quarterly turnover changes then one 

should first correct the large errors with a clear cause. 

2.2 Basic figures 

The quarterly turnover for the whole population (all size classes) and the quarterly 

population size, given as the average over the four quarters per year, varies 

considerably per economic sector (see Table 1). Table 1 also shows that the 

turnover of the topX units forms a large part of the total turnover: the fraction is 

largest for Manufacturing (about 0.72) and smallest for Construction (0.35). All 

further tables in the present study only concern the non-topX population. Recall 

that the data for the topX units are obtained as a take-all part of the survey and 

the response is also used in the census data. Differences between the two sources 

only occur for the non-topX units. 

 

In the remainder of the results, all our analysis concerns a selection from the 

population: 

– non-topX units; 

– units that exist all twelve months of the year; 

– units that are within the sample survey size classes. 

 

The set of units that remain after these selection steps are referred to as the 

selected units. The number of selected units is given in the final column of Table 1. 
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We computed an estimate of the quarterly turnover level for the population of 

non-topX units that exists all four quarters of the year based on the selected units. 

For each selected unit we computed the calibration weight 𝑑𝑖
𝑞

. The estimated non-

topX turnover level is given by 𝑌̂𝑞 = ∑ 𝑑𝑖
𝑞

𝑦𝑖
𝑞

𝑖  for the survey turnover and by 𝑋̂𝑞 =

∑ 𝑑𝑖
𝑞

𝑥𝑖
𝑞

𝑖  for the VAT turnover. The result is presented in Figure 1. For all quarters 

and economic sectors, the weighted VAT turnover was larger than the weighted 

survey turnover. Note that the weighted turnover levels are smaller than the 

average quarterly non-topX turnover levels given in Table 1 because it concerns a 

smaller portion of the non-topX population. 

 

 

 
 

Figure 1. Estimated total non-topX turnover for all units that exist during a whole 

calendar year for VAT and Survey based on selected units that report both to the 

survey and the VAT data. Quarters are numbered from the first quarter of 2014 

onwards. 
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Table 1. Some basic figures per economic sector and year based on the census 

data: average quarterly turnover and average quarterly number of enterprises 

for topX and non-topX units, and number of selected units for the analysis.  

Sector 

 

Turnover (109 euro) 

  

Enterprises 

 

 Selected 

units 

 topX non-topX  topX non-topX  (non-TopX) 

Manufacturing        

2014 59.7 21.5  1554 56572  2296 

2015 58.6 22.4  1495 58501  2187 

2016 56.6 23.3  1417 60329  2271 

Construction        

2014 6.9 12.3  534 143339  863 

2015 7.1 13.1  515 149662  740 

2016 7.2 14.3  430 156453  735 

Retail trade        

2014 16.2 12.9  322 110439  2068 

2015 17.0 13.5  316 115136  1590 

2016 17.2 14.1  298 117836  1579 

Job placement        

2014 2.0 3.6  168 12222  1290 

2015 2.4 4.0  176 12469  936 

2016 2.6 4.4  172 12775  1086 

 

 

 

The number of non-topX units for a given quarter, above the survey threshold, for 

which we have reporting values during the whole year for both the survey and the 

VAT data, denoted by 𝑛𝑞, is shown in the final column of Table 1. It varies from 

735 for Consumption in 2016 to 2296 for Manufacturing in 2014. In most of the 

comparisons (years × sectors), the difference between the quarterly VAT and 

survey turnover 𝑋̂𝑞 − 𝑌̂𝑞 was largest in the fourth quarter of the year. The 

quarterly VAT turnover growth rate, computed as 𝑔𝑋
𝑞,𝑞−1

= 100(𝑋̂𝑞 𝑋̂𝑞−1⁄ − 1) 

was often larger than the corresponding quarterly survey turnover growth rate 

𝑔𝑌
𝑞,𝑞−1

 in the fourth quarter of the year and smaller in the first quarter of the year. 
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Table 2. The difference between in weighted non-topX totals (in 109 euros) for 

the survey (𝑌̂𝑞) and the VAT turnover (𝑋̂𝑞) and their quarterly growth rates, for 

different quarters and years. 

𝑞 𝑋̂𝑞 − 𝑌̂𝑞 𝑔𝑋
𝑞,𝑞−1

 𝑔𝑌
𝑞,𝑞−1

  𝑋̂𝑞 − 𝑌̂𝑞 𝑔𝑋
𝑞,𝑞−1

 𝑔𝑌
𝑞,𝑞−1

 

 Manu    Cons   
1 0.48    0.18   
2 0.47 5.1 5.4  0.26 23.3 22.7 

3 0.41 -2.5 -2.2  0.24 -10.7 -10.9 

4 0.37 6.2 6.7  0.55 36.4 32.5 

5 0.55 -7.1 -8.6  0.14 -31.7 -28.6 

6 0.47 6.7 7.6  0.25 31.7 30.5 

7 0.39 -4.0 -3.6  0.27 -10.2 -10.7 

8 0.66 7.1 5.1  0.46 29.7 28.0 

9 0.59 3.3 4.0  0.21 -25.2 -23.5 

10 0.52 5.8 6.6  0.45 26.6 23.6 

11 0.55 -4.1 -4.4  0.34 -7.8 -6.9 

12 0.69 6.8 6.1  0.60 32.4 30.3 

        

 Retail     

Job 

placement  
1 0.57    0.03   
2 0.6 13.1 13.9  0.21 17.3 11.3 

3 0.6 -5.6 -6.0  0.20 0.8 1.2 

4 0.71 10.6 9.9  0.40 12.3 6.9 

5 0.6 -11.0 -10.6  0.18 -20.8 -16.7 

6 0.68 16.0 16.3  0.30 17.3 14.1 

7 0.67 -4.9 -5.1  0.35 6.4 5.4 

8 0.84 10.7 9.4  0.43 10.0 8.7 

9 0.58 -20.1 -19.1  0.16 -23.3 -18.7 

10 0.71 16.7 16.1  0.32 18.8 14.6 

11 0.76 -3.3 -4.2  0.36 2.5 1.5 

12 0.86 14.7 14.9  0.50 9.6 6.7 
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3. Determine effects of model 
settings on quarterly slope 
effects  

3.1 Methodology 

3.1.1 General approach of the regression analysis 
Underlying the economic sectors are a number of industries for which the 

outcomes are published separately. The regression analyses are done at the level 

of the economic sectors, so the data of the underlying industries are pooled. The 

reason is that the seasonal pattern effects are so subtle that we cannot estimate 

them accurately at industry level. 

 

Throughout this paper we use VAT turnover as the independent variable and 

sample survey turnover as the dependent variable. The main reason for this is that 

the definition of survey turnover completely coincides with the definition of the 

target variable, while that of the VAT may differ (slightly). Furthermore, we are 

interested to understand the difference in seasonal pattern of VAT turnover versus 

sample survey turnover, where we have the hypothesis that enterprises may have 

shifted part of their declared sales for the VAT declarations towards the end of the 

year. We are well aware that in reality both sources may contain measurement 

errors and that neither one should act as the gold standard. We will come back to 

this issue at the end of this subsection and in section 5. 

 

In the present paper we describe the relationship between survey and VAT 

turnover by a simple linear model with a number of assumptions, explained below. 

First of all, the motivation for the linear model is that in many industries the 

differences in definition between VAT turnover and survey turnover are either 

limited or they lead to a structural difference which can be corrected by a simple 

linear correction factor. This has been shown in Van Delden et al. (2016) who 

compared yearly survey and VAT turnover values and their definitions. Also, plots 

of VAT and survey turnover show a relationship which is close to linear (Van 

Delden et al., 2016; Van Delden and Scholtus, 2017). Other kinds of models that try 

to capture the measurement error in more detail are also possible, and will be 

used in future studies, see our explanation in section 5. In the current paper we 

will use a very simple version of such a measurement error model, as a start.  

 

Van Delden and Scholtus (2017) found that the slope of a simple linear regression 

of survey turnover on VAT turnover depends on the quarter of the year while it is 

not necessary to let the intercept vary with the quarter of the year. We therefore 

applied the following linear regression model for the four quarters within a given 

year. Let 𝑥𝑖
𝑞

 denote the VAT turnover for quarter 𝑞 of enterprise 𝑖 and let 𝑦𝑖
𝑞

 be its 

sample survey turnover. Further, let 𝛼 be the intercept, 𝛽
𝑞=1

 be the slope for 

quarter 1 and let 𝑑𝛽1
𝑞=𝑞∗

 stand for the difference in the slope between quarter 
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𝑞 = 𝑞∗ and quarter 1. Finally, let 𝛿𝑞∗
𝑞

∈ {0,1} be a dummy variable that indicates 

whether 𝑞 = 𝑞∗, with 𝑞∗ ∈ {2,3,4}. 

 

We used the following ‘basic’ model: 

𝑦𝑖
𝑞

= 𝛼 + (𝛽
𝑞=1

+ 𝑑𝛽1
𝑞=2

𝛿2
𝑞

+ 𝑑𝛽1
𝑞=3

𝛿3
𝑞

+ 𝑑𝛽1
𝑞=4

𝛿4
𝑞

)𝑥𝑖
𝑞

+ 𝜀𝑖
𝑞

 (1) 

 

where 𝜀𝑖
𝑞

 is a disturbance term. In what follows, we sometimes use 𝒃 =

(𝛼, 𝛽
𝑞=1

, 𝑑𝛽1
𝑞=2

, 𝑑𝛽1
𝑞=3

, 𝑑𝛽1
𝑞=4

)𝑇 as shorthand for the regression coefficients and 

𝝃𝑖
𝑞

= (1, 𝑥𝑖
𝑞

, 𝛿2
𝑞

𝑥𝑖
𝑞

, 𝛿3
𝑞

𝑥𝑖
𝑞

, 𝛿4
𝑞

𝑥𝑖
𝑞

)
𝑇

 so that (1) can be written as 𝑦𝑖
𝑞

= 𝒃𝑇𝝃𝑖
𝑞

+ 𝜀𝑖
𝑞

. For 

simplicity, we assumed that 𝜀𝑖
𝑞

 is normally distributed with mean 0 and variance 

𝜎̃2/𝑤𝑖
𝑞

. In reality, the error terms may be correlated over the quarters, implying 

that we may underestimate the significance of the regression parameters. In 

Ostlund (2018) the effect of these correlated errors on the estimates is shown for 

a similar model. The assumption that the variance of 𝜀𝑖
𝑞

 equals 𝜎̃2/𝑤𝑖
𝑞

 means that 

its size may vary with some properties of the units (heteroscedasticity). 

 

The weights 𝑤𝑖
𝑞

 used to correct for heteroscedasticity are given by: 

𝑤𝑖
𝑞

= 1 {max(𝑥𝑖
𝑞

, 1)}
𝜆

⁄ .  (2) 

Because some of the turnover values in the data were zero, we limited the 

maximum of this weight to 1. Here, 𝜆 > 0 is either a parameter of the model or a 

pre-defined constant (see Section 3.1.4). 

 

This model corresponds to model B in Van Delden and Scholtus (2017), but with 

slightly different notation. All regressions were done separately for each year 𝑡 

and for each sector ℎ. All units from different industries within a sector are pooled. 

The subscripts 𝑡 and ℎ are therefore omitted from the notation unless we need to 

express differences between years and sectors. 

 

For the estimation of the model (1), we have two further points that we account 

for. First of all, in all analyses, we estimate a model based on the ‘selected set’ 

which is a sample of the population. Since we want to estimate the outcomes at 

population level, we accounted for the calibration weights in the estimation 

procedure. The symbol 𝑑𝑖
𝑞

 denotes a calibration weight, and stands for the ratio of 

the population size 𝑁𝑘
𝑞

 in stratum 𝑘 over the number of selected units 𝑛𝑘
𝑞

. A 

stratum 𝑘 is given by the combination of an industry with a one-digit size class, see 

Scholtus and de Wolf (2011). Second, likewise to Van Delden and Scholtus (2017), 

we estimated the regression coefficients of the model (1) in a robust way, to avoid 

that results are affected by outliers. We compared two approaches: the use of a 

Huber model and the use of a mixture model. 

 

We estimated the uncertainty in our parameter estimates in two ways. The survey 

package in R was used to compute uncertainty in the intercept and slope 

parameters of the linear regressions of both model types accounting for the actual 

calibration weights 𝑑𝑖
𝑞

; for details see Van Delden and Scholtus (2017). 

Furthermore, a bootstrap procedure was used to estimate uncertainty of all model 

parameters for the mixture model. This bootstrap approach used a fixed census of 



 

 

CBS | Discussion Paper | May 2019 13 

 

the large enterprises (50 and more employees) and simple random sampling with 

replacement from the medium and small enterprises (less than 50 employees), 

which is a simplified version of the actual sampling design. 

 

In our estimation procedure we minimise the sum of the residuals 𝜀𝑖
𝑞

 rather than 

using an orthogonal regression. In our situation both the independent and the 

dependent variables may be prone to errors and the errors in the independent 

variable VAT may result in an underestimation of the quarterly slopes of the 

regression. If the size of the random error of the independent variable depends on 

the quarter then it might affect the outcomes. In additional studies we found this 

underestimation effect to be very small: in a mixture model where we estimated a 

group of units with no quarterly effect and a small variance the slopes were 

estimated to be 0.999 (not shown). Note that the alternative, orthogonal 

regression, is also sensitive to this effect because the bias in the regression 

parameters with orthogonal regression depends on the ratio of the random error 

in the dependent and independent variable. We use a regression model where we 

account for outliers in the regression. We expect quarterly differences in random 

error (if there are any) to be the largest for the units with the largest errors and 

that effect is corrected for in our model. 

3.1.2 The Huber model 
The Huber estimator is an outlier-robust estimator based on an iteratively 

weighted least squares procedure. In the remainder of this paper we will refer to 

this outlier-robust estimator as the "Huber model". This way, we can easier 

describe differences with results from the two-group mixture model. 

 

For each regression we minimise: 

  

Min𝒃  ∑ ∑ 𝑤̂𝑖
𝑞

(𝑢̂𝑖
𝑞

)2

𝑖∈𝑠
𝑞

𝑞
 (3) 

 

where 𝑤̂𝑖
𝑞

 is an estimated weight for unit 𝑖 which is corrected for outliers, 

accounts for the design weights and for the heteroscedasticity factor, and 𝑢̂𝑖
𝑞

 is an 

estimated standardised residual, which is a residual divided by a robust estimate 

of its standard deviation, see Draper and Smith (1998). Furthermore 𝑠
𝑞

 stands for 

the set of sample units that is available in quarter 𝑞. We will first explain the 

computation of the standard deviation, then give the computation of 𝑢̂𝑖
𝑞

 and 

finally 𝑤̂𝑖
𝑞

. 

 

A robust estimator for standard deviation 𝜎̃ = √𝜎̃2 is the median absolute 

deviation (Rouseeuw and Croux, 1993):  

 

σ̂MAD =𝑎 median | √𝜔𝑖
𝑞

𝜀𝑖̂
𝑞

− median (√𝜔𝑖
𝑞

𝜀𝑖̂
𝑞

)| (4) 
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where the factor a = 
1

.6745
 is needed to provide a consistent estimator of the 

standard deviation of the residuals of independent observations from a normal 

distribution and 

 

𝜔̂𝑖
𝑞

≡ 𝑑𝑖
𝑞

{max(𝑥𝑖
𝑞

, 1)}
𝜆̂

⁄  (5) 

accounts for the effect of the calibration weight 𝑑𝑖
𝑞

 and for the heteroscedasticity 

factor 1 {max(𝑥𝑖
𝑞

, 1)}
𝜆̂

⁄ . Note that in equation (4) the value of the term 

median (√𝜔𝑖
𝑞

𝜀𝑖̂
𝑞

) is 0 in expectation, but the actual estimate for a given data set 

may differ from 0. A simplied, alternative, estimator for the standard deviation is 

therefore the median absolute residual:  

 

σ̂MAR =a median | √𝜔𝑖
𝑞

𝜀𝑖̂| (6) 

The R function rlm that we used for the Huber model has implemented σ̂MAR (but 

the metadata of the package unjustly claimed it to be σ̂MAD). In practice σ̂MAD and 

σ̂MAR are expected to be nearly identical.  

 

For the purpose of robust estimation, the residuals are normalised as follows: 

 

𝑢̂M,𝑖
𝑞

=
√𝜔𝑖

𝑞
𝜀𝑖̂

𝑞

 σ̂MAR
. 

(7) 

 

 

The estimated weights 𝑤̂𝑖
𝑞

 are computed according to: 

𝑤̂𝑖
𝑞

= 𝑔𝑖
𝑞

𝑑𝑖
𝑞

{max(𝑥𝑖
𝑞

, 1)}
𝜆̂

⁄ = 𝑔𝑖
𝑞

𝜔̂𝑖
𝑞

, with 𝜔̂𝑖
𝑞

 given in (5),  (8) 

and 𝑔𝑖
𝑞

 stands for the estimated Huber weight. The Huber weight is an outlier 

weight, such that non outlying units obtain a value of 1 while outlying values 

obtain a weight < 1. The Huber weight is estimated by: 

𝑔𝑖
𝑞

=  {
1 if |𝑢̂M,𝑖

𝑞
|≤𝛾 

𝛾/|𝑢̂M,𝑖
𝑞

| else
  (9) 

with 𝛾 = 1.345 (see p. 349 in Hastie et al., 2013). Thus, the estimated Huber 

weights are 1 for “normal” 𝑦𝑖
𝑞

 values while outlying values obtain a weight < 1. 

 

We estimated the regression coefficients of the Huber model with a maximum of 

800 iterations. An iterative procedure is needed since the estimated Huber 

weights 𝑔𝑖
𝑞

 depend on the estimated residuals, the estimated residuals depend on 

the estimated regression coefficients and the estimated regression coefficients 

result from minimisation of an estimated weighted sum of residuals. The 

procedure starts assuming that the Huber weights 𝑔𝑖
𝑞

= 1 for all units. This leads 

to first parameter estimates and estimated residuals from which new Huber 

weights are estimated. This procedure is repeated until the estimates converge. 
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3.1.3 The two-group mixture model 
Rather than using a robust model, one might also model the measurement errors 

in the population. Within the population, different units may have different types 

of systematic or random measurement errors. In the present paper, we use a very 

simple version of such a measurement error model. We plan to expand this 

approach in future work, see the discussion in section 5. In the current paper, we 

use a mixture model which assumes that the data are generated from a mixture of 

two populations: one set of units with a small error variance and another set of 

units with a larger error variance (the outlying units). We choose this simple 

mixture model because it closely resembles the Huber model: with both model 

types one estimates one regression line per quarter, while allowing for differences 

in variance among the units; see also Figure 1 in Van Delden and Scholtus (2017). 

In reality the population may consist of a mixture of units with more differences in 

measurement errors.  

 

In fact equation (1) is replaced by:  

 

𝑦𝑖
𝑞

= 𝛼 + (𝛽
𝑞=1

+ 𝑑𝛽1
𝑞=2

𝛿2
𝑞

+ 𝑑𝛽1
𝑞=3

𝛿3
𝑞

+ 𝑑𝛽1
𝑞=4

𝛿4
𝑞

)𝑥𝑖
𝑞

+ 𝜀𝑖
𝑞

+  𝑧𝑖
𝑞

𝑒𝑖
𝑞

 (10) 

 

where 𝑧𝑖
𝑞

∈ {0,1} denotes an indicator with 𝑃(𝑧𝑖
𝑞

= 1) = 𝜋, 𝜀𝑖
𝑞

 is normally 

distributed with mean 0 and variance 𝜎̃2/𝑤𝑖
𝑞

 and 𝑒𝑖
𝑞

 is an additional, normally 

distributed disturbance with mean 0 and variance (𝜗 − 1)𝜎̃2/𝑤𝑖
𝑞

 that only affects 

units with 𝑧𝑖
𝑞

= 1. Note that the variance of 𝜀𝑖
𝑞

, 𝜎̃2/𝑤𝑖
𝑞

, is corrected for 

heteroscedasticity, according to expression (2). It is assumed that 𝜀𝑖
𝑞

, 𝑧𝑖
𝑞

 and 𝑒𝑖
𝑞

 

are mutually independent. Note that, under this model, the variance of the 

disturbance term for a given unit is inflated by a factor 𝜗 when 𝑧𝑖
𝑞

= 1. This means 

that the model separates outlying units (with a large variance) from inlying units 

without a large variance. 

 

In Van Delden and Scholtus (2017) it is explained that from the maximum 

likelihood estimation of the model parameters it follows that the estimation of the 

mixture model in (10) is equivalent to using a weighted least squares procedure as 

in (3), but now with the weights: 

 

𝑤̂𝑖
𝑞

= (1 − 𝜏̂𝑖
𝑞

)𝜔̂𝑖
𝑞

+ 𝜏̂𝑖
𝑞

𝜔̂𝑖
𝑞

/𝜗̂  (11) 

with 𝜔̂𝑖
𝑞

≡ 𝑑𝑖
𝑞

{max(𝑥𝑖
𝑞

, 1)}
𝜆̂

⁄ , according to equation (5). The parameter 𝜏𝑖
𝑞

 is the 

expectation of 𝑧𝑖
𝑞

 given the covariates 𝝃𝑖
𝑞

 for unit 𝑖, 𝑦𝑖
𝑞

 and 𝜽, where 𝜽 is the 

vector of model parameters with 𝜽 = (𝜋, 𝒃𝑇 , 𝜎̃2, 𝜗)𝑇.  

 

We can re-write equation (11) into  

𝑤̂𝑖
𝑞

= {1 − 𝜏̂𝑖
𝑞

(1 − 1 𝜗̂⁄ )}𝜔̂𝑖
𝑞

,   (12) 

which shows it has the same form of the Huber model in equations (8) and (9), but 

the outlier weights are different. 
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The parameters of the mixture model are estimated by (pseudo) maximum 

likelihood, using an Expectation Conditional Maximisation (ECM) algorithm; see 

Appendix 1. We estimated the regression coefficients of the mixture model with a 

maximum of 500 iterations of the ECM algorithm. This algorithm aims to maximise 

the expected log likelihood for 𝜽 given the observed data: i.e. maximise 𝑄𝑑(𝜽) =

𝐸{log 𝐿𝑑(𝜽) |𝝃𝑖
𝑞

, 𝑦𝑖
𝑞

, 𝜽}. 

 

Each iteration of this algorithm consists of two steps (see Appendix 1 for details): 

1. Obtain 𝑄𝑑(𝜽) by replacing each instance of 𝑧𝑖
𝑞

 in the expression for log 𝐿𝑑(𝜽) 

by its conditional expectation 𝜏𝑖
𝑞

= 𝐸(𝑧𝑖
𝑞

|𝝃𝑖
𝑞

, 𝑦𝑖
𝑞

, 𝜽) = 𝑃(𝑧𝑖
𝑞

= 1|𝝃𝑖
𝑞

, 𝑦𝑖
𝑞

, 𝜽) given 

the current parameter estimates 𝜽. 

2. Obtain new parameter estimates 𝜽 by maximising 𝑄𝑑(𝜽). 

3.1.4 Variations of the weights used in the regression  
We performed a sensitivity analysis on the effect of the estimation of the weights 

𝑤̂𝑖
𝑞

 on the estimated regression coefficients. We looked into two variations. The 

first variation concerned the heteroscedasticity correction factor 𝜆. In Van Delden 

and Scholtus (2017), we used 𝜆̂ = 1, thus assuming that the variance increases 

linearly with total VAT turnover. In the current study, we tried to verify this choice 

by inspecting plots of the residuals versus VAT turnover, but we found it was very 

hard to judge which value of 𝜆 is best (see for examples Figures 3–6 in Section 3.2). 

We therefore used another approach and estimated 𝜆 by maximum likelihood. In 

the mixture model, we estimate 𝜆 as part of the ECM algorithm; see Appendix 1. In 

a similar way, we included the estimation of 𝜆 in the iterative reweighting 

procedure of the Huber model. This is further explained in Appendix 1. We 

compare the results of estimating 𝜆 with 𝜆̂ = 1 used in the previous report. 

 

The second variation concerns the estimated weight for outlier detection: 𝑔𝑖
𝑞

 in 

the Huber and in the mixture model {1 − 𝜏̂𝑖
𝑞

(1 − 1 𝜗̂⁄ )}. In Van Delden and 

Scholtus (2017), these outlier weight factors varied by the quarter of the year. We 

also considered the situation where a part of the units report differently in the 

sample survey compared to VAT throughout the whole year. We simulate this 

situation by giving the units the same ‘outlier’ weight during the whole year: 𝑔𝑖
+ =

𝑔𝑖
𝑞

, where the ‘+’ denotes the yearly value. 

 

In order to express an outlier weight 𝑔𝑖
+ for the Huber model, we first consider the 

mean residual over the four quarters of the year: 𝜀𝑖̃
+ =

1

4
∑ √𝜔̂𝑖

𝑞
𝜀𝑖̂

𝑞4
𝑞=1 . We assume 

that the mean quarterly residual 𝜀𝑖̃
+ is normally distributed with mean 0 and 

var(𝜀𝑖̃
+) = 𝜎̃2/4, with 𝜎̃ estimated by σ̂MAR. These values of 𝜀𝑖̃

+ and var(𝜀𝑖̃
+) are 

subsequently used to compute the Huber weight 𝑔𝑖
+. That is done, by first 

computing a normalised residual: 

 

𝑢̂M,𝑖
+ =

𝜀𝑖̃
+

 𝜎̂̃ √4⁄
 (13) 

followed by: 
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𝑔𝑖
+ =  {

1 if |𝑢̂M,𝑖
+ |≤𝛾 

𝛾/|𝑢̂M,𝑖
+ | else

.  (14) 

 

In the mixture model with quarterly outlier weights, the parameter 𝜏𝑖
𝑞

 is based on 

a mixture of two normal distributions for quarter 𝑞. In order to estimate a yearly 

outlier weight, we replace the univariate distribution by a multivariate distribution 

to compute the simultaneous density for the four quarters of the year, where the 

four quarters are considered to be independent; see Appendix 1 for details. Using 

this approach we mainly identify units that have large residuals in all four quarters 

of a year or that have one very large residual in a single quarter as outlier.  

 

 
Figure 2. Illustration of effect of appointing outliers on a quarterly basis. Red 

points are outliers. 

 

When the weights were estimated on a quarterly basis, one expects that slope 

differences are smaller than when the weights are estimated yearly. The reason 

for this effect is illustrated in Figure 2 that shows two units (marked 1 and 2) for 

which the reported VAT turnover in the fourth quarter of the year is relatively 

larger than in the first quarter (connected by an arrow). When units 1 and 2 are 

marked as yearly outliers and given a reduced weight of 0.75 in quarter 1 and 4, 

the thick regression lines are obtained. When units 1 and 2 are marked as 

quarterly outliers and given a reduced weight of 0.5 only in the quarter that they 

are outlying, the thin regression lines are obtained. It is seen that the difference in 

slope between quarters 1 and 4 is then attenuated. Therefore, use of yearly 

weights are expected to be more useful for a proper analysis of quarterly effects. 
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3.2 Results 

3.2.1 Sensitivity analysis on outlier weights, on lambda and on 
model type 

The outcomes of the sensitivity analysis on the computation of the outlier weights 

and on the heteroscedasticity correction are given in Tables 3–6. We found the 

following main observations in the results over the three years (2014 – 2016) and 

four economic sectors (Manufacturing, Construction, Retail trade and Job 

Placement): 

– the estimated value of 𝜆 varied from year to year for a given economic sector, 

model type (Huber or mixture) and type of outlier weight (quarterly or yearly 

weights);  

– the estimated values of 𝜆 for a given type of economic sector and outlier 

weight were larger for the Huber model than for the mixture model; 

– the quarterly effects differed slightly between an estimated 𝜆 versus 𝜆 = 1; 

– the values for 𝑑𝛽̂1
𝑞=4

 (the difference between the slope of the fourth and the 

first quarter) tended to be more extreme when yearly rather than quarterly 

outlier weights per unit were used (𝑔𝑖
+ versus 𝑔𝑖

𝑞
) (with some exceptions); 

– the values for 𝑑𝛽̂1
𝑞=4

 were often more extreme when the outliers were based 

on the Huber model compared to the mixture model (with some exceptions); 

 

In order to better understand these five observations, we will first have a closer 

look into the effect of model type on the residuals. This was analysed by 

computing the estimated weighted residuals √𝑤̂𝑖
𝑞

𝜀𝑖̂
𝑞

 which should be 

homogeneous if the weighting correction works well and if 𝜆 is estimated 

correctly. For the Huber models we found that the computed reduction in weights 

for outliers was not large enough to achieve homogeneity of variances. This is 

illustrated in Figure 3 for Construction in 2015. We found that the 5 per cent most 

outlying units (red points) despite having reduced weights still had a larger 

variance than the 5-15% most outlying units (orange points). The latter group had 

a larger variance than the remaining units (blue points). In contrast, for the 

Mixture model with two groups we found that after correction with weights the 

variance of outlying units was comparable to that of less outlying units (compare 

the red, orange and blue points in Figure 4). The same difference between the two 

model types was found in other years and in the other economic sectors. 

Therefore, results in the remainder of this paper will be based on the Mixture 

model. The results of the two-group mixture model are not completely 

homoscedastic: in a future study we will show that this is due to the fact that the 

population consists of more than two groups with different reporting behaviour.  

 

Note that it is likely that the differences in the estimated quarterly effects 

between the Huber and the Mixture model (our fifth point) are caused by the 

larger influence of the outlying units in the Huber model on those quarterly slopes 

than is the case with the Mixture model. 

 

A second important aspect is the difference between quarterly versus yearly 

weights. When the weights were estimated on a quarterly basis, the slope 

differences tended to be smaller than when estimated on a yearly basis. Recall 
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that this result is in line with the illustration in Figure 2 (section 3.1.4) that shows 

that quarterly appointment of the weights attenuates quarterly slope differences. 

Therefore, in the remainder of this document we use yearly outlier weights rather 

than quarterly ones since we believe that it approaches the source of the 

measurement errors more closely.  

 

The third important aspect is the desired value of 𝜆. Figures 3-6 show that, as 

expected, very small values of 𝜆 (close to 0) resulted in an increase of the variance 

of the residuals with size of the independent variable while vary large values of 𝜆 

(close to 2) generally resulted in the opposite effect. The selected estimated 𝜆 

value deviated somewhat from 1 (depending on the year and economic sector), 

but the estimated value was also affected by some outlying points with =1 that 

had still a larger variance than the remainder of the units. Note that the units with 

=1 (the crosses) mostly occurred for the red points, but sometimes also for 

orange and blue points. A future study will show that a mixture model with more 

groups better fits the data: there are units with an even larger variance than is 

captured in the two-mixture model. Concerning the value for 𝜆 we want to avoid 

that its value depends too much on the actual selected data, we therefore prefer 

to use a fixed value. When those outlying units are ignored 𝜆 = 1 is an adequate 

value to achieve homoscedasticity. 

 

 

Table 3. Regression coefficients and lambda for Huber and Mixture models, for 

Manufacturing1. 

 

 
 
1 EQ: 𝜆 estimated and quarterly outlier weights; FQ: 𝜆 = 1 and quarterly outlier 

weights; EY: 𝜆 estimated and yearly outlier weights; FQ: 𝜆 = 1 and yearly outlier 

weights. 
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Table 4. Regression coefficients and lambda for Huber and Mixture models, for 

Construction. 

 
 

Table 5. Regression coefficients and lambda for Huber and Mixture models, for 

Retail trade. 
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Table 6. Regression coefficients and lambda for Huber and Mixture models, for 

Job placement. 

 
 

 

 
Figure 3. Weighted residuals for Construction 2015 estimated with the Huber 

model for different values of , with =1.63 as the estimated value in the EY 

model. Red symbols: top 5% smallest Huber weight values, orange 5-15% 

smallest Huber weight values, blue: all other Huber weights. Cross means Huber 

weight < 0.1, circle Huber weight ≥ 0.1. 
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Figure 4. Weighted residuals for Construction 2015 estimated with the Mixture 

model for different values of , with =0.799 as the estimated value in the EY 

model. Red symbols: top 5% smallest Huber weight values, orange 5-15% 

smallest Huber weight values, blue: all other Huber weights. Cross means  = 1, 

circles stand for  < 1. 

 

 
Figure 5. Weighted residuals for Manufacturing 2015 estimated with the Mixture 

model for different values of , with =0.799 as the estimated value in the EY 

model. Red symbols: top 5% smallest Huber weight values, orange 5-15% 

smallest Huber weight values, blue: all other Huber weights. Cross means  = 1, 

circles stand for  < 1. 
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Figure 6. Weighted residuals for Job Placement 2016 estimated with the Mixture 

model for different values of , with =1.83 as the estimated value in the EY 

model. Red symbols: top 5% smallest Huber weight values, orange 5-15% 

smallest Huber weight values, blue: all other Huber weights. Cross means  = 1, 

circles stand for  < 1. 

 

 

We finally remark that Van Delden and Scholtus (2017) also estimated the linear 

regressions for 2014 and 2015 for the Huber model where units should report 12 

months of the year (their Tables 15 and 16). The 2015 data used in the current 

paper are slightly different, because in the meantime some additional editing has 

been done on the data during regular production. Further, the model in Van 

Delden and Scholtus (2017) was slightly different since in their paper they did not 

completely correctly select the units that were non-top X units all four quarter of 

the year, and units without imputed values for the VAT data for all four quarter of 

the year (for some quarters the data could be imputed). Comparing the columns 

labelled “Huber FQ” in Tables 3 – 5 (current paper) with the column “12 months 

estim” in Tables 15 and 16 (van Delden and Scholtus, 2017) we find that results for 

Manufacturing and Retail trade were nearly the same. Only for Construction we 

found that the estimated intercept is larger and the slope of the first quarter 

smaller in Van Delden and Scholtus (2017) than in the current paper. 

3.2.2 Parameter estimates for the chosen model  
The estimated parameters of the chosen mixture model according to equation (10) 

are given in Table 7 (for Manufacturing), Table 8 (for Construction) and Table 9 (for 

Retail trade) and Table 10 (for Job Placement). Tables 7-10 show that the standard 

errors for the intercept and slope parameters based on the bootstrap procedure 

and those estimated by the survey package based on the design weights were 

close together. This strengthens the confidence in both estimated standard errors. 
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We will first describe the regression coefficients, and then we will discuss the 

model parameters of the mixture model. In the fifth column of these tables we 

give the probability (𝑝-value) based on a Student t distribution, that a regression 

coefficient equals its reference value (symbol 𝑟). Small 𝑝-values indicate that a 

regression coefficient differs from its reference value. As a reference value we 

used 𝑟 = 0 for all regression coefficients except for 𝛽̂1  where we used 𝑟 = 1. 

 

In most of the twelve cases (four economic sectors times three years), the 𝑝-value 

of the slope effect coefficient (𝑑𝛽1
𝑞=4

) of the fourth quarter of the year was the 

smallest. In two cases (Job Placement 2014 and 2016), the slope effect of a second 

and/or third quarter had an equally small 𝑝-value. The size of 𝑑𝛽1
𝑞=4

 was largest 

for Job placement (range: -0.012 to -0.035), followed by Manufacturing (range: -

0.007 to -0.011), Construction (range: -0.007 to -0.010) and Retail trade (range: -

0.003 to -0.010). The effects for the fourth quarter were strong for Manufacturing 

and Job Placement (all 𝑝-values < 0.01), weaker for Construction (𝑝-values varying 

from 0.03 to 0.06), and for Retail trade only in 2015 the 𝑝-value for 𝑑𝛽1
𝑞=4

 was 

small. Note that the slope effect coefficients had a relatively large uncertainty, 

leading to a large 95%-uncertainty interval. 

 

  



 

 

CBS | Discussion Paper | May 2019 25 

 

Table 7. Parameters of the Mixture model (𝜆 = 1), for Manufacturing.(1) 

Year Parameter Value Survey package Bootstrap 

   SE p-value SE L95 U95 

2014 𝜋̂ 0.262   0.007 0.248 0.276 

 𝜎̂̃2 9.322   0.167 8.983 9.631 

 𝜗̂ 199.004   6.909 186.175 213.370 

 𝛼̂ -14.260 1.658 0.000 1.797 -17.677 -10.953 

 𝛽̂1  0.990 0.001 0.000 0.002 0.987 0.993 

 𝑑𝛽̂1
𝑞=2

 -0.003 0.002 0.062 0.002 -0.007 0.000 

 𝑑𝛽̂1
𝑞=3

 -0.004 0.002 0.065 0.002 -0.007 0.001 

 𝑑𝛽̂1
𝑞=4

 -0.007 0.002 0.001 0.002 -0.010 -0.003 

 𝛽̂+  0.987      

2015 𝜋̂ 0.222   0.007 0.209 0.236 

 𝜎̂̃2 13.176   0.234 12.713 13.607 

 𝜗̂ 281.412   10.033 261.976 302.038 

 𝛼̂ -14.584 2.165 0.000 2.328 -19.197 -10.197 

 𝛽̂1  0.984 0.002 0.000 0.002 0.981 0.987 

 𝑑𝛽̂1
𝑞=2

 -0.002 0.002 0.303 0.002 -0.007 0.002 

 𝑑𝛽̂1
𝑞=3

 -0.006 0.002 0.017 0.002 -0.010 -0.002 

 𝑑𝛽̂1
𝑞=4

 -0.011 0.003 0.000 0.002 -0.015 -0.006 

 𝛽̂+  0.979      

2016 𝜋̂ 0.241   0.007 0.227 0.254 

 𝜎̂̃2 12.175   0.212 11.762 12.611 

 𝜗̂ 161.771   5.681 151.072 173.243 

 𝛼̂ -3.584 0.985 0.000 1.041 -5.687 -1.511 

 𝛽̂1  0.986 0.002 0.000 0.002 0.983 0.989 

 𝑑𝛽̂1
𝑞=2

 -0.004 0.002 0.029 0.002 -0.008 -0.001 

 𝑑𝛽̂1
𝑞=3

 -0.004 0.002 0.036 0.002 -0.009 0.000 

 𝑑𝛽̂1
𝑞=4

 -0.009 0.002 0.000 0.002 -0.013 -0.005 

 𝛽̂+  0.982      

 
(1) The parameters 𝜋̂, 𝜎̂̃2, 𝜗̂, 𝛼̂, 𝛽̂1 , 𝑑𝛽̂1

𝑞=2
, 𝑑𝛽̂1

𝑞=3
 and 𝑑𝛽̂1

𝑞=4
 are according to 

equation (10), 𝛽̂+  is according to equation (23) defined below. 
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Table 8. Parameters of the Mixture model (𝜆 = 0.5), for Construction. 

Year Parameter Value Survey package Bootstrap 

   SE p-value SE L95 U95 

2014 𝜋̂ 0.286   0.020 0.246 0.325 

 𝜎̂̃2 3.933   0.152 3.637 4.217 

 𝜗̂ 213.246   14.859 186.591 244.969 

 𝛼̂ 1.104 0.910 0.225 1.188 -1.696 3.426 

 𝛽̂1  0.980 0.003 0.000 0.003 0.974 0.986 

 𝑑𝛽̂1
𝑞=2

 0.002 0.003 0.649 0.004 -0.006 0.010 

 𝑑𝛽̂1
𝑞=3

 -0.001 0.004 0.799 0.004 -0.009 0.007 

 𝑑𝛽̂1
𝑞=4

 -0.007 0.004 0.063 0.004 -0.015 0.000 

 𝛽̂+  0.978      

2015 𝜋̂ 0.219   0.020 0.183 0.261 

 𝜎̂̃2 5.076   0.219 4.659 5.505 

 𝜗̂ 164.765   13.213 139.658 191.620 

 𝛼̂ 1.330 0.813 0.102 1.602 -2.384 4.557 

 𝛽̂1  0.984 0.003 0.000 0.004 0.978 0.991 

 𝑑𝛽̂1
𝑞=2

 -0.004 0.004 0.324 0.005 -0.013 0.004 

 𝑑𝛽̂1
𝑞=3

 -0.002 0.004 0.575 0.005 -0.012 0.007 

 𝑑𝛽̂1
𝑞=4

 -0.010 0.005 0.032 0.004 -0.019 -0.002 

 𝛽̂+  0.980      

2016 𝜋̂ 0.282   0.022 0.241 0.325 

 𝜎̂̃2 2.855   0.132 2.591 3.119 

 𝜗̂ 286.006   21.991 246.665 330.219 

 𝛼̂ -0.475 0.517 0.358 1.276 -3.139 2.570 

 𝛽̂1  0.984 0.002 0.000 0.003 0.979 0.989 

 𝑑𝛽̂1
𝑞=2

 0.001 0.003 0.832 0.004 -0.006 0.008 

 𝑑𝛽̂1
𝑞=3

 -0.003 0.003 0.313 0.004 -0.011 0.004 

 𝑑𝛽̂1
𝑞=4

 -0.007 0.003 0.016 0.003 -0.014 -0.001 

 𝛽̂+  0.981      
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Table 9. Parameters of the Mixture model (𝜆 = 1), for Retail trade. 

Year Parameter Value Survey package Bootstrap 

   SE p-value SE L95 U95 

2014 𝜋̂ 0.243   0.013 0.220 0.269 

 𝜎̂̃2 1.034   0.027 0.982 1.083 

 𝜗̂ 112.667   5.333 102.760 122.989 

 𝛼̂ -0.325 0.060 0.000 0.081 -0.496 -0.180 

 𝛽̂1  0.976 0.002 0.000 0.002 0.972 0.981 

 𝑑𝛽̂1
𝑞=2

 0.002 0.003 0.391 0.003 -0.004 0.008 

 𝑑𝛽̂1
𝑞=3

 -0.002 0.003 0.442 0.003 -0.008 0.003 

 𝑑𝛽̂1
𝑞=4

 -0.003 0.003 0.346 0.003 -0.008 0.003 

 𝛽̂+  0.976      

2015 𝜋̂ 0.245   0.014 0.220 0.275 

 𝜎̂̃2 1.119   0.033 1.051 1.179 

 𝜗̂ 77.157   4.148 69.778 86.228 

 𝛼̂ -0.053 0.081 0.513 0.105 -0.262 0.148 

 𝛽̂1  0.975 0.002 0.000 0.003 0.970 0.980 

 𝑑𝛽̂1
𝑞=2

 -0.001 0.003 0.752 0.004 -0.008 0.006 

 𝑑𝛽̂1
𝑞=3

 -0.002 0.004 0.521 0.004 -0.010 0.006 

 𝑑𝛽̂1
𝑞=4

 -0.010 0.004 0.004 0.004 -0.017 -0.003 

 𝛽̂+  0.971      

2016 𝜋̂ 0.218   0.013 0.193 0.244 

 𝜎̂̃2 1.419   0.041 1.335 1.495 

 𝜗̂ 123.400   6.837 110.953 136.939 

 𝛼̂ -0.328 0.090 0.000 0.118 -0.545 -0.096 

 𝛽̂1  0.968 0.003 0.000 0.003 0.963 0.973 

 𝑑𝛽̂1
𝑞=2

 0.004 0.004 0.307 0.004 -0.003 0.011 

 𝑑𝛽̂1
𝑞=3

 -0.001 0.004 0.745 0.004 -0.009 0.006 

 𝑑𝛽̂1
𝑞=4

 -0.006 0.004 0.155 0.004 -0.013 0.001 

 𝛽̂+  0.967      
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Table 10. Parameters of the Mixture model (𝜆 = 1), for Job placement. 

Year Parameter Value Survey package Bootstrap 

   SE p-value SE L95 U95 

2014 𝜋̂ 0.337   0.022 0.294 0.379 

 𝜎̂̃2 0.921   0.042 0.847 1.003 

 𝜗̂ 188.487   12.705 164.687 214.511 

 𝛼̂ 0.030 0.036 0.411 0.071 -0.106 0.175 

 𝛽̂1  1.000 0.004 0.993 0.003 0.994 1.005 

 𝑑𝛽̂1
𝑞=2

 -0.017 0.005 0.000 0.004 -0.025 -0.009 

 𝑑𝛽̂1
𝑞=3

 -0.022 0.005 0.000 0.004 -0.030 -0.015 

 𝑑𝛽̂1
𝑞=4

 -0.035 0.005 0.000 0.004 -0.043 -0.028 

 𝛽̂+  0.980      

2015 𝜋̂ 0.375   0.031 0.316 0.441 

 𝜎̂̃2 0.515   0.035 0.446 0.583 

 𝜗̂ 299.031   28.464 249.894 362.582 

 𝛼̂ 0.125 0.049 0.010 0.072 -0.015 0.272 

 𝛽̂1  0.990 0.003 0.001 0.003 0.984 0.996 

 𝑑𝛽̂1
𝑞=2

 -0.003 0.005 0.565 0.004 -0.011 0.006 

 𝑑𝛽̂1
𝑞=3

 -0.010 0.005 0.029 0.004 -0.018 -0.001 

 𝑑𝛽̂1
𝑞=4

 -0.012 0.005 0.008 0.004 -0.021 -0.004 

 𝛽̂+  0.983      

2016 𝜋̂ 0.292   0.028 0.241 0.347 

 𝜎̂̃2 0.815   0.055 0.708 0.914 

 𝜗̂ 462.435   43.772 390.350 564.006 

 𝛼̂ 0.026 0.060 0.657 0.091 -0.136 0.202 

 𝛽̂1  0.993 0.003 0.041 0.004 0.986 1.000 

 𝑑𝛽̂1
𝑞=2

 -0.009 0.005 0.084 0.005 -0.019 0.001 

 𝑑𝛽̂1
𝑞=3

 -0.018 0.005 0.000 0.005 -0.027 -0.008 

 𝑑𝛽̂1
𝑞=4

 -0.025 0.005 0.000 0.005 -0.033 -0.015 

 𝛽̂+  0.980      

 

Further, for Job placement, reduced slopes at 𝑝-value < 0.05 were also found for 

the third quarter in all three years, and for the second quarter in 2014. Also, for 

Manufacturing, a reduced slope at a 𝑝-value < 0.05 was found in the third quarter 

of 2015 and in the second quarter for Manufacturing 2016.  

 

We found that the slope of the first quarter of the year was significantly different 

(in fact: smaller) from one at a 𝑝-value < 0.05 in all years for all four economic 

sectors, except for Job placement in 2014. That result is consistent with Table 1 

showing that the quarterly VAT turnover was larger than the quarterly survey 

turnover, also in the first quarter of the year. We also found that the intercepts 

were differing significantly from zero in all years for Manufacturing, in 2014 and 

2016 for Retail Trade and in 2015 for Job placement at a 𝑝-value < 0.01 although 

the intercepts were generally very small. We prefer to include an intercept into 

the model because in this way we can verify the value of the intercept of the 

estimated relationship between survey and VAT and avoid that an estimated effect 

on the slope is in fact due to a missing intercept term in the model. 
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Tables 7 –  10  also mention the slope 𝛽̂+  . That slope will be explained in section 

4.1.2. 

 

In the chosen mixture model according to equation (10), the proportion of units 

with an enlarged disturbance term, 𝜋, was estimated to be similar for Retail trade 

(range: 0.218 – 0.245), Construction (range: 0.219 – 0.286) and  Manufacturing 

(range: 0.222 – 0.262), whereas it was somewhat larger for Job placement (range: 

0.292 – 0.375). The inflation factor 𝜗 that describes the ratio of the variance of 

outliers to that of the non-outlying units, was smallest for Retail trade (range: 77.1 

to 123.4), followed by Manufacturing (range: 161.8 to 281.4) and Construction 

(range: 164.8 to 286.0). For Job placement the inflation factor varied widely 

between years (range: 188.5 to 462.4). The estimated variance 𝜎̃2 was around a 

value of '10' for Manufacturing and around of value of '1' for the other three 

economic sectors. The relative uncertainty (coefficient of variation: SE-

boot/parameter value) was much smaller for 𝜋, 𝜗 and 𝜎̃2 than for 𝛼 and for the 

slope effect parameters 𝑑𝛽1
𝑞

. 

 

The above estimated 𝜋-, and 𝜗-values were similar to those obtained for the 

mixture model (FQ) in Van Delden and Scholtus (2017; Table 18). The values for 

the estimated 𝜎̃2 of the current report are smaller than found in Van Delden and 

Scholtus (2017); note that the header of the last column of their Table 18 is 𝜎̃ but 

should have been 𝜎̃2. The estimation of the parameters in the current report has 

changed slightly compared to Van Delden and Scholtus (2017) in the sense that the 

design weights are now included in the estimation procedure according to pseudo 

maximum likelihood estimation; see Appendix 1. 

4. Determine if quarterly slope 
effects can be explained by a 
limited number of enterprises  

4.1 Methodology 

To explain which units contribute most to the differences in quarterly slopes our 

approach is the following: 

– We start by finding an expression for contribution of each unit to the quarterly 

slopes. This contribution can be interpreted as the "unit level quarterly slope" 

(eq. (21)  in section 4.1.1); 

– Define an overall slope common to all quarters and units (eq. (23)) 

– For each unit and quarter, we define the "quarterly unit slope effect" as the 

differences between the unit level quarterly slope and the overall slope (eq. 

(25)); 
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– Now define a "normalised quarterly unit slope effect" by subtracting from the 

unit slope effects their weighted means (eq. (27)); 

– The sum of these (normalised) quarterly unit level effects over 𝑘 units is their 

combined effect on slope differences (eq. (28)); 

– We can also accumulate the contributions of all units in a response pattern to 

the response pattern effect (section 4.1.3). Likewise to the expressions at unit 

level, we distinguish among a "quarterly pattern slope effect" and a 

"normalised quarterly pattern slope effect", and we have the sum of these 

(normalised) quarterly pattern level effects over 𝑃 patterns as their combined 

effect on slope differences. 

4.1.1 Contribution of units to the slope of the regression  
We are interested to explain which units contribute most to the differences in 

quarterly slopes. We will first explain how this can be done in the case of a simple 

linear regression without an intercept. Then, we will derive how this can be done 

in our situation. 

 

Consider the simple linear regression without an intercept: 

𝑦𝑖
𝑞

= 𝛽̂
𝑞

𝑥𝑖
𝑞

+ 𝜀𝑖̂
𝑞

. (15) 

 

 The ordinary least squares (OLS) estimate for the slope is then equivalent to: 

𝛽̂
𝑞

=
∑ 𝑦𝑖

𝑞
𝑥𝑖

𝑞
𝑖

∑ 𝑥𝑖
𝑞

𝑥𝑖
𝑞

𝑖

 (16) 

 

The linear regression model of equation (1) can be re-written in a similar form. 

Weighted least squares of equation (1) with the weights 𝑤𝑖
𝑞

 is equivalent to 

estimating:  

√𝑤𝑖
𝑞

𝑦𝑖
𝑞

= √𝑤𝑖
𝑞

𝛼

+ (𝛽
𝑞=1

+ 𝑑𝛽1
𝑞=2

𝛿2
𝑞

+ 𝑑𝛽1
𝑞=3

𝛿3
𝑞

+ 𝑑𝛽1
𝑞=4

𝛿4
𝑞

) (√𝑤𝑖
𝑞

𝑥𝑖
𝑞

)

+ √𝑤𝑖
𝑞

𝜀𝑖
𝑞

 

(17) 

with OLS. In practice, we can first estimate equation (1) with weighted least 

squares and save the retrieved weights 𝑤̂𝑖
𝑞

 and the estimated intercept 𝛼̂. We 

then define 𝑦̌𝑖
𝑞

= √𝑤̂𝑖
𝑞

(𝑦𝑖
𝑞

− 𝛼̂), 𝑥𝑖
𝑞

= √𝑤̂𝑖
𝑞

𝑥𝑖
𝑞

 and 𝜀𝑖̌
𝑞

= √𝑤̂𝑖
𝑞

𝜀𝑖
𝑞

. Using these new 

variables, we obtain the linear equation:  
 

𝑦̌𝑖
𝑞

= (𝛽
𝑞=1

+ 𝑑𝛽1
𝑞=2

𝛿2
𝑞

+ 𝑑𝛽1
𝑞=3

𝛿3
𝑞

+ 𝑑𝛽1
𝑞=4

𝛿4
𝑞

)𝑥̌𝑖
𝑞

+ 𝜀𝑖̌
𝑞

 (18) 

When we estimate the regression coefficients in equation (18) with OLS, we obtain 

exactly the same parameter estimates for the slopes as are obtained by estimating 

equation (1) with weighted least squares. Furthermore, the slope parameters 𝛽
𝑞=1

 

and 𝛽
𝑞∗

= 𝛽
𝑞=1

+ 𝑑𝛽1
𝑞=𝑞∗

 in (18) can also be estimated from simple linear 



 

 

CBS | Discussion Paper | May 2019 31 

 

regressions of the form (15) for each quarter separately (using the already 

estimated intercept 𝛼̂ from (17) as “input”). This is true because all sums of cross-

products of covariates in (18) for different quarters are zero; e.g., 

∑ (𝑥𝑖
𝑞

𝛿2
𝑞

)(𝑥̌𝑖
𝑞

𝛿3
𝑞

)𝑖 = 0 for all 𝑞. The quarterly slope 𝛽
𝑞

 can thus be estimated, 

analogously to (16), by: 

 

𝛽̂
𝑞

=
∑ 𝑦̌𝑖

𝑞
𝑥𝑖

𝑞
𝑖

∑ 𝑥𝑖
𝑞

𝑥𝑖
𝑞

𝑖

=

∑ √𝑤̂𝑖
𝑞

(𝑦𝑖
𝑞

− 𝛼̂)√𝑤̂𝑖
𝑞

𝑥𝑖
𝑞

𝑖

∑ √𝑤̂𝑖
𝑞

𝑥𝑖
𝑞

√𝑤̂𝑖
𝑞

𝑥𝑖
𝑞

𝑖

=
∑ 𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
𝑖

∑ 𝑤̂𝑖
𝑞

(𝑥𝑖
𝑞

)
2

𝑖

 (19) 

 

Recall that 𝑤̂𝑖
𝑞

= 𝑔𝑖
𝑞

𝑑𝑖
𝑞

{max(𝑥𝑖
𝑞

, 1)}
𝜆̂

⁄ . Ignoring the exceptional cases with 𝑥𝑖
𝑞

<

1, in the special situation that 𝜆̂ = 1, we can simplify (19) to: 

 

𝛽̂
𝑞

=
∑ 𝑔𝑖

𝑞
𝑑𝑖

𝑞
𝑥𝑖

𝑞
⁄ (𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
𝑖

∑ 𝑔𝑖
𝑞

𝑑𝑖
𝑞

𝑥𝑖
𝑞

⁄ (𝑥𝑖
𝑞

)
2

𝑖

=
∑ 𝑔𝑖

𝑞
𝑑𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑖

∑ 𝑔𝑖
𝑞

𝑑𝑖
𝑞

𝑥𝑖
𝑞

𝑖

 (20) 

 

Notice that in the denominator in (20) one recognises the term 𝑋̂ = ∑ 𝑑𝑖
𝑞

𝑥𝑖
𝑞

𝑖  which 

stands for an estimator of the total VAT turnover. The actual denominator also has 

a correction for outliers. Similarly, the term 𝑌̂ = ∑ 𝑑𝑖
𝑞

𝑦𝑖
𝑞

𝑖  is an estimator of the 

total survey turnover. The numerator also has corrections for outliers and for the 

common intercept. 

 

We re-express equation (19) to see the contribution of the units to the slope, we 

refer to this as the "quarterly unit slope effect". Let 𝑐̂𝑖
𝑞

= 𝑤̂𝑖
𝑞

(𝑥𝑖
𝑞

)
2
 be the term of 

each unit in the denominator and let 𝑟̂𝑖
𝑞

= 𝑐̂𝑖
𝑞 ∑ 𝑐̂𝑖

𝑞
𝑖⁄  be the relative contribution of 

each unit to the denominator. We further define: 

 

𝛽̂𝑖
𝑞

=
𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞

𝑤̂𝑖
𝑞

(𝑥𝑖
𝑞

)
2 =

𝑦𝑖
𝑞

− 𝛼̂

𝑥𝑖
𝑞  (21) 

as being the equivalent of 𝛽̂
𝑞

 in (19) but now at unit level. It corresponds to the 

ratio of survey to VAT turnover, but now corrected for the intercept. We obtain: 
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𝛽̂
𝑞

=
∑ 𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
𝑖

∑ 𝑐̂𝑖
𝑞

𝑖

 

= ∑
1

∑ 𝑐̂𝑖
𝑞

𝑖

𝑤̂𝑖
𝑞

(𝑦𝑖
𝑞

− 𝛼̂)𝑥𝑖
𝑞

𝑖
 

= ∑
𝑐̂𝑖

𝑞

∑ 𝑐̂𝑖
𝑞

𝑖

{𝑤̂𝑖
𝑞

(𝑦𝑖
𝑞

− 𝛼̂)𝑥𝑖
𝑞

} 𝑐̂𝑖
𝑞

⁄
𝑖

 

= ∑ 𝑟̂𝑖
𝑞

𝛽̂𝑖
𝑞

𝑖
 

(22) 

 

 

Notice that when 𝑥𝑖
𝑞

= 0, 𝛽̂𝑖
𝑞

 is not defined. But in that situation 𝑟̂𝑖
𝑞

= 0 and 
1

∑ 𝑐𝑖𝑖
𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
= 0 (second line in equation (22) so those units do not 

contribute to 𝛽̂
𝑞

. For all other units 𝑖, the contribution to 𝛽̂
𝑞

 is defined to be 

𝑟̂𝑖
𝑞

𝛽̂𝑖
𝑞

. 

4.1.2 Contribution of units to the quarterly effects of slopes 
We are interested to identify the units that contribute to the differences in the 

slopes between the four quarters of a year. Additionally, we would like to find out 

which of the patterns, to be defined below in section 4.1.3, contribute most to the 

quarterly differences in slopes. 

 

Let 𝛽̂+ be a weighted version of the four quarterly slopes: 

𝛽̂+ =
∑ ∑ 𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
𝑖𝑞

∑ ∑ 𝑐̂𝑖
𝑞

𝑖𝑞

 

=
∑ (∑ 𝑐̂𝑖

𝑞
𝑖 )𝑞 {∑ 𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
𝑖 ∑ 𝑐̂𝑖

𝑞
𝑖⁄ }

∑ ∑ 𝑐̂𝑖
𝑞

𝑖𝑞

 

=
∑ ∑ 𝑐̂𝑖

𝑞
𝑖𝑞 𝛽̂

𝑞

∑ ∑ 𝑐̂𝑖
𝑞

𝑖𝑞

= ∑ 𝑟̂
𝑞|+

𝛽̂
𝑞

𝑞
 

(23) 

with 𝑟̂
𝑞|+

≡
∑ 𝑐𝑖̂

𝑞
𝑖

∑ ∑ 𝑐𝑖̂
𝑞

𝑖𝑞
. 

 

In the empirical data at hand, the outcome of 𝛽̂+  differed at most 0.001 from the 

estimated slope 𝛽̂0 that results from fitting a regression with an intercept and one 

common slope to the data for all four quarters (see Tables 57):  

 

𝑦𝑖
𝑞

= 𝛼0 + 𝛽0𝑥𝑖
𝑞

+ 𝜀𝑖
𝑞

 with 𝑞 = 1, … , 4 (24) 

 

Note that estimation of 𝛼0 in equation (24) will probably lead to another value 

than in equation (1). 

 

We analyse the differences 𝛽̂𝑞 − 𝛽̂+:  
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𝛽̂
𝑞

− 𝛽̂+ = ∑ 𝑟̂𝑖
𝑞

𝛽̂𝑖
𝑞

𝑖
− 𝛽̂+ = ∑ 𝑟̂𝑖

𝑞
(𝛽̂𝑖

𝑞
− 𝛽̂+)

𝑖
= ∑ 𝑟̂𝑖

𝑞
𝛽̃𝑖

𝑞

𝑖
 (25) 

where 𝛽̃𝑖
𝑞

 is defined as: 𝛽̃𝑖
𝑞

= 𝛽̂𝑖
𝑞

− 𝛽̂+. The right-hand side of equation (25) holds 

because ∑ 𝑟̂𝑖
𝑞

𝑖 = 1. Expression (25) gives the absolute difference of the ‘slope’ 𝛽̂𝑖
𝑞

 

compared to 𝛽̂+ for each unit 𝑖. However, to go one step further we are interested 

to analyse how this difference varies with the four quarters. For instance, assume 

that we found 𝛼̂ = 0, 𝛽̂+ = 1 and for unit 𝑖 = 𝑖0 we found 𝛽̂𝑖=𝑖0

𝑞=1
= 1.1, 𝛽̂𝑖=𝑖0

𝑞=2
=

1.11, 𝛽̂𝑖=𝑖0

𝑞=3
= 1.09 and 𝛽̂𝑖=𝑖0

𝑞=4
= 1.01. Then for all of the four quarters the sample 

survey turnover is larger than the VAT turnover, but in the fourth quarter of the 

year relatively more VAT turnover is reported than in the other three quarters. The 

seasonal VAT turnover pattern for this unit is shifted towards the fourth quarter of 

the year, relative to the survey turnover.  

 

We can quantify this effect as follows. Define the weighted average value of the 

quarterly values for 𝛽̃𝑖
𝑞

 as: 

𝛽̅̃𝑖 =
1

4
∑ 𝑟̂𝑖

𝑞
𝛽̃𝑖

𝑞
4

𝑞=1
 (26) 

 

Now, we consider the differences:  

𝑑𝛽̃𝑖
𝑞

= 𝑟̂𝑖
𝑞

𝛽̃𝑖
𝑞

− 𝛽̅̃𝑖 (27) 

A negative value of 𝑑𝛽̃𝑖
𝑞=4

 implies the slope of the regression between turnover 

and VAT is relatively smaller in the fourth quarter that the weighted average over 

the year, a positive value implies the opposite. We refer to expression (27) as the 

"normalised quarterly unit slope effect". 

 

The sum of 𝑑𝛽̃𝑖
𝑞

 over all units is not equal to the quarterly slope effect, ∑ 𝑑𝛽̃𝑖
𝑞

𝑖 ≠

𝛽̂
𝑞

, because we have ‘normalised’ the quarterly unit slope effect with the yearly 

mean at unit level (𝛽̅̃𝑖). In fact, 

∑ 𝑑𝛽̃𝑖
𝑞

𝑖
= ∑ 𝑟̂𝑖

𝑞
𝛽̃𝑖

𝑞

𝑖
− ∑ 𝛽̅̃𝑖

𝑖
 

= ∑ 𝑟̂𝑖
𝑞

𝛽̃𝑖
𝑞

𝑖
−

1

4
∑ ∑ 𝑟̂𝑖

𝑞∗

𝛽̃𝑖
𝑞∗

𝑖

4

𝑞∗=1
 

= (𝛽̂
𝑞

− 𝛽̂+) −
1

4
∑ ∑ (𝛽̂

𝑞∗

− 𝛽̂+)
𝑖

4

𝑞∗=1
 

= 𝛽̂
𝑞

−
1

4
∑ 𝛽̂

𝑞∗4

𝑞∗=1
. 

But similarly it is easy to show that difference of the sum of 𝑑𝛽̃𝑖
𝑞

 over all units 

between two quarters, say quarter 𝑞 = 𝑎 versus 𝑞 = 𝑏, equals the difference in 

slopes between those two quarters: 

∑ 𝑑𝛽̃𝑖
𝑞=𝑎

𝑖
− ∑ 𝑑𝛽̃𝑖

𝑞=𝑏

𝑖

= ∑ (𝑟̂𝑖
𝑞=𝑎

𝛽̃𝑖
𝑞=𝑎

− 𝛽̅̃𝑖)
𝑖

− {∑ (𝑟̂𝑖
𝑞=𝑏

𝛽̃𝑖
𝑞=𝑏

− 𝛽̅̃𝑖)
𝑖

} 

= 𝛽̂
𝑞=𝑎

− 𝛽̂
𝑞=𝑏

 with (𝑎, 𝑏) ∈ {1, 2,3, 4} 

(28) 
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The value 𝑑𝛽̃𝑖
𝑞

 thus describes the contribution of each unit to the quarterly slope-

effect. We sort all units in the population by the absolute value of 𝑑𝛽̃𝑖
𝑞

and then 

plot the cumulative value ∑ 𝑑𝛽̃𝑖
𝑞=𝑎𝑘

𝑖=1  up to the first 𝑘 units. We can then see what 

the combined effect of the 𝑘 units on the quarterly slope effect is. 

 

The slope effect does not have to be zero, we do accept a certain difference 

between the two sources. If this difference occurs year after year this concerns a 

bias rather than a variance. The bias of the survey design is expected to be close to 

zero but requiring a bias of zero would be a very strict norm. The business 

statistics division who compiles the output uses the norm that the month-on-

month growth rates of Manufacturing, Retail trade and Construction should be 

changed by at most 0.4 per cent points due to the benchmarking process. The data 

that we have available for our analysis cannot directly be used to compare with 

the 0.4 per cent norm, for three reasons. First, the data that we analyse in the 

present study concern only the non-topX part of the population. Because the top-X 

part does not lead to an adjustment in benchmarking, this implies we should use a 

wider norm for our data. Second, we use quarterly data whereas the norm refers 

to monthly data. Effects of benchmarking on monthly growth rates will be at least 

as large as effects on the quarterly growth rates, since a quarterly index is the 

average over three monthly indices. This implies that a norm for quarterly growth 

rates should be stricter. Third, in our data we analyse the effect of units for 

specific quarters. That effect will be a mixture of random and structural 

measurement effects, instead of only a structural measurement effect.  

 

In order to get an indication of the effects of patterns and of units on the 

estimated slopes, we used the following approach to find a margin for the 

cumulative value ∑ 𝑑𝛽̃𝑖
𝑞=𝑎𝑘

𝑖=1 . If the turnover in the first quarter is underestimated 

by 0.0015 and the fourth quarter is overestimated by 0.0015, this leads to a 

shifted quarterly growth rate of 0.3 per cent points. Since the intercept is close to 

zero, this effect of under- and overestimation can be achieved by a shift in the 

slope of ± 0.0015. If the cumulative effect remains within the margin then the 

quarterly benchmarking revision remains within 0.3 per cent points. (Note, the 

Figures 8–11 and 16–20 show that when the cumulative effect stays within the 

margin, they stay within the upper or lower margin.) This is slightly stricter than 

the above-mentioned 0.4 per cent norm. Because this norm is not directly 

applicable to our situation as noted above, we have chosen a conservative margin. 

4.1.3 Contribution of the patterns to the quarterly effects of 
slopes 

 

As explained before, we are interested to understand the causes of the differences 

in quarterly slopes within a year. The simplest situation would be when quarterly 

slope-differences are caused by units with certain reporting patterns. In that case 

we might try to find the cause of those patterns. Are they due to measurement 

errors in the survey or in the VAT data? We might use this to correct the data with 

a specific pattern. In this section we will first define a set of reporting patterns. 

Then we will show how the compute the contribution of units with a reporting 

patterns to the quarterly slope effects. 
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Defining the reporting patterns. We used a simple approach to appoint enterprises 

to a reporting pattern for each year. In each quarter 𝑞 we compare the difference 

‘quarterly sample survey minus quarterly VAT turnover’ (both expressed in 1000 

euros, 𝑦𝑖
𝑞

− 𝑥𝑖
𝑞

) with 𝜎̂𝑖
𝑞

, the estimated standard deviation obtained from the 

regression. The estimated standard deviation for unit 𝑖 in quarter 𝑞 corrected for 

heteroscedasticity, for the design weight and for the outlier weight is 𝜎̂𝑖
𝑞

=

√𝜎̂̃2/𝑤̂𝑖
𝑞

. The design weight is included because we aim to estimate the standard 

deviation of the disturbances at population level rather than at sample level. For a 

quarter 𝑞 we considered VAT to be larger (“L”) than the sample survey turnover if 

𝑦𝑖
𝑞

− 𝑥𝑖
𝑞

> 𝜎̂𝑖
𝑞

, smaller (“S”) if 𝑦𝑖
𝑞

− 𝑥𝑖
𝑞

< −𝜎̂𝑖
𝑞

 and equal (“E”) otherwise. For 

instance, we might obtain the pattern “LLLS“ which implies that VAT is larger in 

quarter 1–3 and smaller in quarter 4 than the survey turnover by at least one 

standard deviation. This way a total of 34 = 81 different patterns is obtained for 

each year. Note that 𝜎̂𝑖
𝑞

 is the residual obtained in the regression for comparing 

𝑦𝑖
𝑞

− 𝑦̂𝑖
𝑞

. In our situation, the obtained quarterly regressions yielded an intercept, 

slope combination close to (0, 1), so the expected value 𝑦̂𝑖
𝑞

 for 𝑦𝑖
𝑞

 is close to 𝑥𝑖
𝑞

. 

We therefore used 𝜎̂𝑖
𝑞

 as an approximation for the (weighted) standard deviation 

of 𝑦𝑖
𝑞

− 𝑥𝑖
𝑞

. In a preliminary study we first computed the relative proportion of 

quarterly turnover within a year for both sources and then determined the 

categories larger, equal and smaller. We found that a part of the units were now 

appointed to another pattern, but that the two main conclusions from this analysis 

were not changed. Those two main conclusions are that a large number of units 

contribute to quarterly effects and the units have different patterns over time. We 

therefore decided to only present the results based on the actual turnover levels 

(without normalising to the yearly turnover values). 

 

There is one special reporting situation to be aware of. Sometimes persons report 

turnover on the survey questionnaire that excludes the VAT payment itself, 

whereas the survey requested to report the turnover that includes the VAT 

payment (for sector Retail Trade). Also the opposite might occur, people reporting 

turnover that includes the VAT payment whereas the survey asks to exclude the 

amount of VAT paid (the other economic sectors). In a preliminary computation 

we found that this reporting error occurred rarely, with a maximum of 1% at 

industry level. We have therefore not classified this as a separate pattern. 

 
Contribution of units within a pattern to slope effects. Let 𝒢𝑝 denote a set of units 

that are appointed to the same pattern 𝑝. We are interested to quantify the 

contribution of each of the patterns to the quarterly slope effects. 

 

Analogously to equation (22) we express the overall quarterly slope 𝛽̂
𝑞

 as a linear 

sum of a quarterly ‘slopes per pattern’ 𝛽̂𝑝
𝑞

: 
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𝛽̂
𝑞

=
∑ 𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
𝑖

∑ 𝑐̂𝑖
𝑞

𝑖

 

=
∑ ∑ 𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
𝑖𝜖𝒢𝑝𝑝

∑ 𝑐̂𝑖
𝑞

𝑖

 

= ∑
∑ 𝑐̂𝑖

𝑞
𝑖𝜖𝒢𝑝

∑ 𝑐̂𝑖
𝑞

𝑖𝑝
(∑ 𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞

𝑖𝜖𝒢𝑝

∑ 𝑐̂𝑖
𝑞

𝑖𝜖𝒢𝑝

⁄ ) 

= ∑ 𝑟̂𝑝
𝑞

𝛽̂𝑝
𝑞

𝑝
 

(29) 

where 𝛽̂𝑝
𝑞

 is defined as: 

𝛽̂𝑝
𝑞

=
∑ 𝑤̂𝑖

𝑞
(𝑦𝑖

𝑞
− 𝛼̂)𝑥𝑖

𝑞
𝑖𝜖𝒢𝑝

∑ 𝑐̂𝑖
𝑞

𝑖𝜖𝒢𝑝

 (30) 

 

and 𝑟̂𝑝
𝑞

 as: 

𝑟̂𝑝
𝑞

=
∑ 𝑐̂𝑖

𝑞
𝑖𝜖𝒢𝑝

∑ 𝑐̂𝑖
𝑞

𝑖

 . (31) 

 

Likewise to the analysis of the quarterly effects of the units, we are interested in 

the quarterly effects of the patterns compared to the overall common yearly 

slope. First of all, we define the differences  

 𝛽̃𝑝
𝑞

= 𝛽̂𝑝
𝑞

− 𝛽̂+ . (32) 

These differences are referred to as the "quarterly pattern slope effect". 

 

Analogously to (26) and (27), for each pattern, we compute the weighted mean of 

𝛽̃𝑝
𝑞

 over the four quarters of the year: 

 

𝛽̅̃𝑝 =
1

4
∑ 𝑟̂𝑝

𝑞
𝛽̃𝑝

𝑞
4

𝑞=1
 (33) 

 

and we consider the difference: 

𝑑𝛽̃𝑝
𝑞

= 𝑟̂𝑝
𝑞

𝛽̃𝑝
𝑞

− 𝛽̅̃𝑝 (34) 

This latter difference is referred to as the "normalised quarterly pattern slope 

effect". 

 

A negative value of 𝑑𝛽̃𝑝
𝑞=4

 implies that the component 𝑟̂𝑝
𝑞

𝛽̂𝑝
𝑞

 is relatively smaller in 

the fourth quarter of the year than the weighted average 𝛽̅̃𝑝, thus that for units in 

𝒢𝑝 the ratio of survey to VAT turnover (ignoring the intercept) is smaller in the 

fourth quarter. 
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Likewise to 𝑑𝛽̃𝑖
𝑞

, the sum of 𝑑𝛽̃𝑝
𝑞

 over all patterns is not equal to the quarterly 

slope, ∑ 𝑑𝛽̃𝑝
𝑞

𝑝 ≠ 𝛽̂
𝑞

. But the difference of the sum of 𝑑𝛽̃𝑝
𝑞

 over all patterns 

between two quarters, say quarter 𝑞 = 𝑎 versus 𝑞 = 𝑏, equals the difference in 

slopes between those two quarters: 

 

∑ 𝑑𝛽̃𝑝
𝑞=𝑎

𝑝
− ∑ 𝑑𝛽̃𝑝

𝑞=𝑏

𝑝

= ∑ (𝑟̂𝑝
𝑞=𝑎

𝛽̃𝑝
𝑞=𝑎

− 𝛽̅̃𝑝)
𝑝

− {∑ (𝑟̂𝑝
𝑞=𝑏

𝛽̃𝑝
𝑞=𝑏

− 𝛽̅̃𝑝)
𝑝

} 

= 𝛽̂
𝑞=𝑎

− 𝛽̂
𝑞=𝑏

 with (𝑎, 𝑏) ∈ {1, 2,3, 4} 

(35) 

 

The value 𝑑𝛽̃𝑝
𝑞

 thus describes the normalised contribution of each pattern to the 

quarterly slope-effect. For each quarter, we sort all patterns in the population by 

the absolute value of 𝑑𝛽̃𝑝
𝑞

 and then plot the cumulative value ∑ 𝑑𝛽̃𝑝
𝑞=𝑎𝑃

𝑝=1  up to 

the first 𝑃 patterns. We can then analyse what the accumulated normalised effect 

of the patterns on the quarterly slope effects is. 

 

In the current paper, we used the differences 𝛽̃𝑝
𝑞

= 𝛽̂𝑝
𝑞

− 𝛽̂+, 𝑟̂𝑝
𝑞

𝛽̃𝑝
𝑞

− 𝛽̅̃𝑝, 𝛽̃𝑖
𝑞

=

𝛽̂𝑖
𝑞

− 𝛽̂+, and 𝑟̂𝑖
𝑞

𝛽̃𝑖
𝑞

− 𝛽̅̃𝑖. Note that we have considered to use a number of other 

‘differences’, but they did not work out well. For instance, 𝛽̂𝑖
𝑞

− 𝛽̂
𝑞

 and 𝛽̂𝑖
𝑞

− 𝛽̂𝑝
𝑞

 

have the disadvantage that they do not show the effect on the quarterly slope 

differences. Furthermore, we tried to use 𝛽̂𝑝
𝑞

− 𝛽̂𝑝 , to analyse the quarterly 

effects per pattern: The disadvantage of the latter expression is that the difference 

between two quarters (𝑞 = 𝑎, 𝑞 = 𝑏) for the sum over all patterns  the 

equivalent of equation (35)  has no clear interpretation because ∑ 𝑟̂𝑝
𝑞=𝑎

𝛽̂𝑝𝑝 ≠

∑ 𝑟̂𝑝
𝑞=𝑏

𝛽̂𝑝𝑝 . 

4.2 Results  

We will now analyse whether a limited number of units contribute to the quarterly 

slope effects or not. The simplest form would be when this limited set of units 

have certain reporting patterns in common. That analysis is described in section 

4.2.1. A more complicated form is to directly account for the contribution of all 

units to the slope. That is discussed in sections 4.2.2 and 4.2.3. 

4.2.1 Contribution of patterns to slope differences 
The distribution of the units over the different patterns, as defined in section 4.1 is 

given in Figure 7. For all economic sectors and years, the largest group of units is 

appointed to pattern “EEEE” (range: 16.2  53.7 per cent). Recall that a unit is 

appointed to pattern “E” in a single quarter when the difference between the 

survey and the VAT value is within one (weighted) standard deviation. For a 

normal distribution, the standard deviation covers 68 per cent of the data. The 

second most frequent pattern was “LLLL” (range 6.1  22.1 per cent), that 

occurred far less frequently than “EEEE”. We computed the average frequencies 

over the economic sectors and years. In reversed order we thus obtained, with 
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percentage between brackets: “EEEE” (33.6), “LLLL” (11.2), “EEEL” (6.2), “EELE” 

(2.9), “LEEE” (2.8), “ELEE” (2.6),”ELLL”(2.5), “EEES” (2.3), “SEEE”(2.3) and  

"EELL"(2.1). Other patterns had an average contribution smaller than 2 per cent. It 

is consistent with our earlier finding that the VAT turnover totals are larger than 

the survey turnover totals (Table 1).  
 
 

 
Figure 7. Distribution of the units over the patterns (in percentages), for the four 

industries and three years. Patterns are sorted by their average fraction (over 

the three years and three economic sectors), and only patterns with an average 

>=1.5 per cent are shown. 
 

We also verified whether the patterns per unit were stable over time or not. We 

selected units that reported turnover for eight subsequent quarters. This 

concerned about half the number of units that report turnover for four 

subsequent quarters. Table 11 gives for each pattern, the total number of units 

and the number with the same pattern in the subsequent year, both for the 2014 – 

2015 comparison and for the 2015 – 2016 comparison. Table 11 shows that for 

most of the units the pattern changes from one year to the next.  
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The table also reveals that for the patterns “EEEE”, “LLLL” and “SSSS” there are 

relatively many units that do remain in the same category in two subsequent 

years. A further inspection of the microdata revealed within the units that kept the 

“EEEE” pattern for three years, there is a group of enterprises which report nearly 

the same values for the quarterly VAT turnover, but there are also enterprises 

within this group with larger differences. Further, we found that some of the 

enterprises that report nearly the same turnover values for VAT as for the survey 

do so for 12 subsequent quarters, others do so in 11 of the 12 quarters and others 

do so for one or two years but not in the other ones. This means that ‘reporting 

nearly the same quarterly value’ is not necessarily done for each year again. 
 

Table 11. Total number of units per pattern for units in the selection for eight 

consecutive quarters and the number with same pattern, for two periods. (Top 

25 most frequent patterns). 

 
  

Analysis of the microdata further showed that within the “LLLL” pattern there is a 

group of units that report structurally larger VAT values in three subsequent years. 

But this behaviour is also not consistent over time, since there are also units with 

large deviations in one year but not in the other two years. Nearly all of the 

enterprises in the pattern “SSSS” had structurally smaller VAT values in the three 

subsequent years.   
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These results suggest that the reporting behaviour in terms of the patterns as 

defined in the current paper are not consistently applied by the enterprises over 

time.  

 

Further, we analysed the contribution of each of the patterns to the differences 

between the quarterly slope and the slope that would have been obtained when 

we do not allow for a quarterly effect, according to equation (29) and (32): 𝛽̂
𝑞

−

𝛽̂+ = ∑ 𝑟̂𝑝
𝑞

(𝛽̂𝑝
𝑞

− 𝛽̂+)𝑝 = ∑ 𝑟̂𝑝
𝑞

𝛽̃𝑝
𝑞

𝑝 . The quantity 𝑟̂𝑝
𝑞

𝛽̃𝑝
𝑞

 describes the contribution 

of pattern 𝑝 to the quarterly slope effect, also referred to as the "quarterly pattern 

slope effect". For each quarter, we sort all patterns in the population by the 

absolute value of 𝑟̂𝑝
𝑞

𝛽̃𝑝
𝑞

 and then plot the cumulative value ∑ 𝑟̂𝑝
𝑞

𝛽̃𝑝
𝑞𝑃

𝑝=1  up to the 

first 𝑃 patterns. We can then analyse the accumulated effect of the patterns on 

the quarterly slope effects. We refer to this in short as the cumulative effects of 

the patterns. 

 

 
Figure 8. Cumulative effect of the patterns to the difference between the 

quarterly slope and the yearly slope, for Manufacturing 2015. From top to 

bottom: quarter 1 to 4. Straight line represents the final quarterly slope 

difference and the dotted lines represent 0.0015 margin line. 
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Here we give an example for each Industry: manufacturing (2015), Construction 

(2015), Retail Trade (2015) and Job placement (2016). The selected economic 

sector-year combinations each have a significantly smaller slope in the fourth 

quarter of the year.  

 

Figure 8 11 show that, overall, patterns “EEEE”, “LLLL” and “EEEL” are the three 

patterns that have the largest effect on the slope of the fourth quarter, where 

“EEEE” has a positive slope effect while “LLLL” and “EEEL” have a negative slope 

effect. All of the patterns have a small effect on the slope. If we accept a slope 

effect that lies within the 0.0015 margin lines, then still we need to consider 34 

different patterns in case of the fourth quarter for Manufacturing 2015. For 

Construction 2015 37 patterns, for Retail trade 2015 57 patterns and for Job 

placement 2016 35 patterns were needed for the cumulative effect of the fourth 

quarter to stay within the margins. For the other quarter, also a large number of 

patterns was needed before the cumulative slope effect remained within its 

margins. This implies that the quarterly effect cannot be explained by considering 

all units within a limited set of patterns. 

 

 
Figure 9. Cumulative effect of the patterns to the difference between the 

quarterly slope and the yearly slope for Construction, 2015. Straight line 

represents the final quarterly slope difference and the dotted lines represent 

0.0015 margin line. 
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Figure 10. Cumulative effect of the patterns to the difference between the 

quarterly slope and the yearly slope for Retail trade, 2015. Straight line 

represents the final quarterly slope difference and the dotted lines represent 

0.0015 margin line. 
 

Next, we verified the normalised contribution of each of the patterns to the 

quarterly effect, in terms of 𝑑𝛽̃𝑝
𝑞

 from (34). These effects are difficult to see in the 

Figures 8–11, since those figures show the cumulative effect. The effect in terms of 

𝑑𝛽̃𝑝
𝑞

 is illustrated in Figure 2 where units 1 and 2 both support a regression line 

with a smaller slope in the fourth quarter relative to the first quarter. We 

normalised the quarterly effects per patterns to the average quarterly effect per 

pattern. The result is shown in Figure 12 for Manufacturing 2015. The patterns are 

sorted by the absolute value of 𝑑𝛽̃𝑝
𝑞

 in the fourth quarter (𝑞 = 4). The largest 

downwards effect on the slope of the fourth quarter is due to units in pattern 

“EEEL”. When we look back to Figure 8 with the cumulative pattern effects we see 

for “EEEL” that it increased the cumulative effect in Q1, Q2 and Q3 whereas it 

strongly decreased the cumulative effect in Q4, a result that is consistent with 

Figure 12. From Figure 8 you can see that units in pattern “EEEE” are above the 

regression line in all four quarters, combining this with Figure 12 one can see that 

Q1 lies above its average whereas Q4 lies below its average.  
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The quarterly effects of the other three economic sectors are found in Figures 13–

15. In all four figures it is seen that pattern "EEEL" has the largest normalised 

quarterly effect 𝑑𝛽̃𝑝
𝑞

 in the fourth quarter (𝑞 = 4). Additionally, we find that there 

are a number of other quarterly patterns that contribute to a quarterly effect in 

the fourth quarter.   

 

Furthermore, Figure 12 confirms that there are many patterns, each with small 

additional contributions to the quarterly slope. Figures 12 – 15 show that “EELE” 

leads to a quarterly effect in the third quarter, “ELEE” to an effect in the second 

quarter and “LEEE” to an effect in the first quarter. The figures show that pattern 

“EEEE” also has some (small) quarterly effects, but the direction and extent of its 

effect differs between the economic sectors and for a given economic sector it 

varies between years (not shown). 

 

 
Figure 11. Cumulative effect of the patterns to the difference between the 

quarterly slope and the yearly slope for Job placement, 2016. Straight line 

represents the final quarterly slope difference and the dotted lines represent 

0.0015 margin line. 
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Figure 12. Normalised quarterly effect for first 16 patterns, Manufacturing 2015. 

 
Figure 13. Normalised quarterly effect for first 16 patterns, Construction 2015. 
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Figure 14. Normalised quarterly effect for first 16 patterns, Retail trade 2015. 

 
Figure 15. Normalised quarterly effect for first 16 patterns, Job Placement 2016. 
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An alternative to Figure 12 – 15 is to plot their absolute contribution to the slopes, 

thus 𝑟̂𝑝
𝑞

𝛽̃𝑝
𝑞

 from (30) rather than their normalised versions 𝑑𝛽̃𝑝
𝑞

. These were not 

shown, because then the relative effects on the quarterly slopes are more difficult 

to see. But the absolute contributions make it easier to analyse whether units 

within a certain pattern are above or below the regression line. To avoid an 

abundance of figures, these were omitted here. 

4.2.2 Results: cumulative contribution of units to slope 
differences 

Analogously to the cumulative effect of the patterns to the difference between the 

quarterly and the yearly slopes, we analysed the cumulative effect of the units 

themselves to that difference. The reason behind this is that maybe, within each 

pattern, only a limited number of units can explain the effects already. We 

analysed the cumulative value of the first 𝑘 units of the "quarterly unit slope 

effect", i.e. ∑ 𝑟̂𝑖
𝑞

𝛽̃𝑖
𝑞𝑘

𝑖=1  according to (25) and the cumulative value of the 

"normalised quarterly unit slope effect" ∑ 𝑑𝛽̃𝑖
𝑞𝑘

𝑖=1  according to (27). This first will 

be referred to in short as the cumulative effect and the second as the cumulative 

normalised effect. The cumulative effect is plotted with black lines (label 

"betatilde") and the cumulative normalised effect in blue lines (label "dbetatilde") 

in Figures 16–20. 

 
 

 
 
Figure 16. Cumulative effect of the units to the difference between the quarterly 
slope and the yearly slope, for Manufacturing 2015. Straight line represents the 
final quarterly slope difference and the dotted lines represent 0.0015 margin 
lines. 
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Figure 17. As figure 16, for Manufacturing 2016.  
 

 

 
Figure 18. As Figure 16, for Construction 2015. 
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Figure 19. As Figure 16 but now for Retail trade 2015. 

 

  

 
Figure 20. As Figure 16 but now for Job placement 2016. 
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For Manufacturing in 2014 (not shown) and 2015 (Figure 16), about 900 – 1000 

units were passed before the cumulative effect for the different quarters stays 

within the margins. For 2016 (Figure 17), far less units were needed to stay within 

the margins. For instance, after about 200 units the cumulative effect of the fourth 

quarter stayed within the margins. For Construction the curves for all three years 

are similar, only 2015 is shown (Figure 18). After about 300 (2014) and 200 (2015 

and 2016) units the effect in the fourth quarter stays within the margins. In the 

other quarters it also takes 200 - 300 units till the cumulative effect stays within 

the margins. For Retail trade, about 500 – 700 units are passed until the quarterly 

effects stay within the margins (see Figure 19 for an example). This holds for all 

four quarters. For Job placement it varied between quarters and years from 50 – 

300 units until the effect stayed within the margins. The smallest number of units 

was needed for Q4, 2015, see Figure 20. The exact number of units until the 

cumulative effect stayed within the margins is given in Table 12. 

  

The number of units that was needed before the cumulative normalised effects 

(𝑑𝛽𝑖
𝑞

) stayed within the margins was often considerably smaller than for the 

cumulative effects (𝑟̂𝑖
𝑞

𝛽𝑖
𝑞

). For instance, for Manufacturing the fourth quarter in 

2015, 223 units were needed for 𝑑𝛽𝑖
𝑞

 whereas 1006 for 𝑟̂𝑖
𝑞

𝛽𝑖
𝑞

 until the cumulative 

effect stayed within the margins, see Table 12. The actual number of units before 

the cumulative normalised effects (𝑑𝛽𝑖
𝑞

) stayed within the margins varied greatly 

between economic sectors and years. For instance, for the fourth quarter this 

ranged from 36 – 671.  

 

We computed the percentage of units until  𝑑𝛽𝑖
𝑞

 stayed within the margins, as a 

function of size class and economic sector, averaged over 2014–2016, see  

Table 13. For Manufacturing, the relative fractions increased somewhat with size 

class, for Construction, Retail Trade and Job Placement the relative fractions 

decreased with size class. The main conclusion however is that for each economic 

sector, units with the largest effects are found in any of the size classes (that are 

included in the selected units). 

  

Table 12. Number of units until the cumulative quarter effects (Cum) and 

cumulative normalised quarter effects (Norm) within the margins. 

  Manufacturing  Construction  Retail trade  Job placement 

Year Q Cum Norm   Cum Norm   Cum Norm   Cum Norm 

2014 1 931 187  333 0  711 0  299 281 

2014 2 924 0  292 69  717 99  290 52 

2014 3 963 0  317 27  672 0  302 96 

2014 4 871 93   290 90   671 36   122 260 

2015 1 1072 235  308 104  560 177  157 79 

2015 2 1017 139  257 1  565 93  114 45 

2015 3 1075 208  279 34  493 173  94 1 

2015 4 1006 223   216 115   579 59   35 69 

2016 1 542 303  268 17  579 29  268 171 

2016 2 695 0  255 99  537 165  214 69 

2016 3 663 0  224 54  584 15  208 16 

2016 4 191 228   193 62   543 46   101 146 
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Table 13. Percentage of units per size class, averaged over 2014–2016, until the 

cumulative normalised quarter effects in Q4 stay within the margins.  

 

Size 

class Manufacturing Construction 

Retail 

trade Job placement 

1    24.3 

2   4.8 18.3 

3   2.7 21.4 

4  20.3 0.9 20.6 

5 5.5 15.6 1.0 15.2 

6 9.7 4.1 0.0 8.5 

7 16.1 5.3 0.0 9.7 

8 23.7 1.6 1.3 8.8 

9     0.0 8.5 

4.2.3 Cumulative contribution of units to slope differences: 
simulation 

Introduction 

For many years and economic sectors, the cumulative effect of 𝑟̂𝑖
𝑞

𝛽𝑖
𝑞

 has a typical 

shape whereby it first reaches a minimum and/or maximum and then it reaches its 

final value. If the residuals are normally distributed around the line, then one 

would expect that the cumulative effect moves toward its final value, with only 

one minimum or maximum. Van Delden et al. (2019) have enlarged the mixture 

model with additional groups and found that a mixture model with more groups 

had a larger likelihood than the two-group model used in the current paper. The 

key point that they found is that the population is a mixture of three groups that 

differ in their quarterly reporting behaviour: 

– a group of units which reports the same value for VAT as for survey turnover; 

– a group of units with relatively large quarterly effects and for which VAT is 

clearly larger than survey turnover (also in the first quarter); 

– a group of units with smaller quarterly effects and for which VAT is closer to the 

survey turnover than the second group. 

 

Methodology  

In the current section we investigate the effect of having one, two or three groups 

with different reporting behaviour on the shape of the cumulative effect of 𝑟̂𝑖
𝑞

𝛽𝑖
𝑞

. 

We investigated this effect on data where the VAT turnover values were obtained 

from the population of Job placement 2016. The survey turnover values were 

simulated, using parameters underlying Figure 4.2-1 in Van Delden et al. (2019) for 

Job placement 2016. 

 

We first describe the three group scenario. For this scenario the units of Job 

Placement 2016 were stratified into large enterprises of 1-digit size class 6 and 

higher and small and medium sized enterprises (1-digit size class 5 and smaller). 

Within each of those two size class strata, the enterprises were divided randomly 

over three groups. Let 𝑝𝑘 be the proportion of units of group 𝑘, then 𝑛𝑘 = 𝑛𝑝𝑘  is 

the stratum group size. The proportions are given in Table 14. For each unit in the 

population, we first drew a random number 𝑢𝑖~ 𝑢𝑛𝑖𝑓[0,1], and then sorted the 
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units on 𝑢𝑖. Next the first 𝑛𝑘=1 units were appointed to group 1, the next 𝑛𝑘=2 

units were appointed to group 2, and the remaining units to group 3. Next, the 

quarterly survey turnover values, 𝑦𝑖, were generated from a linear regression with 

a yearly slope for group 1 and quarterly slopes for groups 2 and 3 with an intercept 

of 0, slopes given in Table 14 and random error 𝜀𝑖. For simplicity, we assumed that 

𝜀𝑖
𝑞

 is normally distributed with mean 0 and variance 𝜎̃2/𝑤𝑖
𝑞

, with 𝑤𝑖
𝑞

 given by 

equation (2). 𝜎̃2 was taken to be 0.95. The estimated value for 𝜀𝑖, the disturbance 

terms 𝜀𝑖̂, were saved, and re-used for the two- and one-group scenario. For the 

estimation of the slopes, the design weights were taken into account. 

 

For the two-group scenario, units appointed to group 1 were left unchanged and 

units of group 2&3 were combined into one group. Using the 𝑦𝑖-values and model 

structure of the three group model, we estimated their common quarterly slopes, 

the parameters are given in Table 14. Next, new 𝑦𝑖  values were generated for the 

combined group 2&3 units using these common quarterly slopes and using exactly 

the same disturbance terms as for the three group model.  

 

Finally for the one-group scenario the same approach was taken as for the two-

group scenario. First, all units were combined into one common group (group 

1&2&3). Using the 𝑦𝑖-values and model structure of the three group model, we 

estimated the common quarterly slopes (for all units together), the parameters are 

given in Table 14. Next, new 𝑦𝑖  values were generated using these common 

quarterly slopes and using exactly the same disturbance terms as for the three 

group model. 

 

Table 14. Set up of three artificial populations: with three, with two and with 

one group of units.  

Mixture Group Proportion 

Yearly 

slope  Quarterly slope 

     Q1 Q2 Q3 Q3 

Three 1 23.1 0.999      

 2 36.7   0.908 0.861 0.855 0.807 

 3 40.2   0.988 0.968 0.968 0.935 

         
Two 1 23.1 0.999      

 2&3 76.9   0.949 0.915 0.917 0.874 

         
One 1&2&3 100     0.963 0.938 0.938 0.905 

 

Results 

As expected, for the population where all units have the same reporting behaviour 

(one group scenario), the cumulative value of 𝑟̂𝑖
𝑞

𝛽𝑖
𝑞

 continuously increased toward 

its maximum, or continuously decreased towards its minimum for each of the four 

quarters of the year. When the population was a mixture of two groups with a 

different reporting behaviour, this shape was also found in the first and fourth 

quarter whereas in the second and third quarter the cumulative effect first 

increased towards a maximum and then decreased again. For a population with a 

mixture of three reporting groups, the shape of the cumulative value of 𝑟̂𝑖
𝑞

𝛽𝑖
𝑞

 in 
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the second and third quarter became much more irregular than for the population 

with one reporting group. In the fourth quarter the cumulative value of 𝑟̂𝑖
𝑞

𝛽𝑖
𝑞

 for 

the population with three groups first reached a local minimum and the increased 

again till its final value. Furthermore, for the population with three groups, in the 

fourth quarter, the first 30 largest absolute residuals belong to units of group 1 

and 2 (of which six of group 1) thereafter residuals belonging to units of group 3 

are found.  

 

From this simulation analysis we can conclude that the shape of the cumulative 

distribution of 𝑟̂𝑖
𝑞

𝛽𝑖
𝑞

 becomes more irregular when the population in reality 

consists of a mixture of groups with different reporting patterns. 

 

 
Figure 21. Cumulative effect of the units to the difference between the quarterly 

slope and the yearly slope, for a simulated population. Parameters are based on 

Job Placement 2016. 
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5. Conclusions and discussion 

A first objective of the present paper was to fine-tune the exact model that is used 

for the quarterly effects. We looked into the residuals of outlying versus non-

outlying units, to the appointment of weights on quarterly versus yearly basis and 

to the factor lambda. Firstly, we found that the residuals over the different units 

were clearly more homoscedastic with the two-group mixture model than with the 

Huber model. Secondly, we showed that the weights (that distinguish outliers from 

'non-outliers') should be appointed on a yearly basis rather than quarterly, 

because otherwise the quarterly slope effects can be unjustly attenuated due to 

the method to compute the weights. Thirdly, we found that setting the 

heteroscedasticity correction factor lambda to 1 resulted in approximately 

homoscedastic disturbance terms. We decided to use fixed, rather than estimated, 

values for the parameter lambda to make the results over time better comparable. 

The remainder of the results were therefore based on a two-group mixture model, 

with group membership weights appointed yearly and a factor lambda of 1. 

Examples in the literature of the use of mixture models to model measurement 

errors can be found in Di Zio and Guarnera (2013). 

 

For the three years and the four economic sectors, we consistently found that the 

weighted turnover was larger for the VAT data than for the survey data. Analysis of 

linked VAT-survey microdata by van Bemmel (2018) on Job Placement showed that 

in some cases the turnover that was reported by enterprises matched with the 

turnover of only a part of the total number of VAT units that belonged to the 

enterprises. In those cases, it may not be clear to the enterprise for which (VAT / 

legal) units we would like them to report survey data. Possibly, explicitly summing 

up all legal units on the survey form reduces the extent of this problem. We do not 

know whether missing a part of the legal units in the survey turnover is the only 

explanation for this turnover difference. We aim to contact a number of 

enterprises in the near future, to gain a better understanding of the causes of this 

difference. 

 

Van Delden and Scholtus (2017) analysed the data of 2014 and 2015 and found 

quarterly effects for Manufacturing, Construction and Retail Trade. Because the 

quarterly effect that they found was small compared to noise in the data, the 

second objective of this paper was to repeat the analysis including 2016 data, to 

determine whether the seasonal differences are consistent over time and whether 

it is also found in the economic sector Job Placement. Indeed, the results in the 

current paper over the three years and all four economic sectors consistently 

showed a quarterly effect: the slope of the fourth quarter of the year was smaller 

than that of the first quarter. The effects were strongest for Manufacturing and 

Job placement, and weaker for Construction and Retail Trade. Our findings thus 

strongly suggest that the relation between VAT and survey turnover varies with 

the quarter of the year, although the effect is not so large.  

 

We attempted to quantify whether quarterly effects of this size are relevant for 

the published results. The business statistics division who compiles the output 
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uses the norm that month-on-month growth rates of the economic sectors should 

be changed by at most 0.4 per cent points due to the benchmarking process. That 

value is to be understood as a norm for the bias, for a systematic effect. We did 

not use this norm directy but used the conservative norm of a maximum 

difference in the quarterly slope compared to the yearly average slope of ± 0.0015. 

If the slope in the first quarter is shifted upwards (by at most 0.0015) and in the 

fourth quarter downwards (by at most -0.0015) then the benchmarking revision of 

the quarter-on-quarter growth rate for the first quarter remains within 0.3 per 

cent points, and therefore should be considered irrelevant for statistical 

production. Tables 710 showed that the difference between the slope of the 

fourth and the first quarter in all years and economic sectors was at least 0.3 per 

cent points.  

  

We have checked whether definitional differences between survey and VAT 

turnover can explain the quarterly effects. The survey turnover concerns totals 

invoiced during the reference period (Commission Regulation, 2006). The VAT also 

concerns totals invoiced, but the interesting case is the situation of goods with a 

long production time (roads, ships and so on). For the yearly taxes on profit and 

loss, each tax declaration should also account for the returns and costs of the part 

of large projects that has been completed at the end of the year (see 

Belastingdienst, 2018). For the VAT tax, however, the turnover has to be declared 

as soon as an invoice is send, but a company can decide to send the invoice after 

the project has been completed (see HigherLevel, 2014). Since the survey turnover 

also concerns totals invoiced, this should not yield definitional differences. In 

practical reporting behaviour however, differences might occur. 

  

We would like to know more about practical reporting behaviour of enterprises in 

order to understand the quarterly effects. To this end, we plan to contact a 

number of enterprises with a pronounced quarterly effect, preferably, for a 

subsequent number of subsequent years. We will ask them to explain how they fill 

in both the survey and the VAT form and how the differences in the values occur. 

We also like to know which of the two sources has the most reliable quarterly 

effect. Hopefully, this can be deduced when we have a better understanding of the 

reporting behaviour of the enterprises. 

 

The third objective of the paper was to investigate whether the quarterly slope-

differences can be explained by groups of units that have a certain reporting 

pattern in common. To this end, we grouped the units into 81 reporting patterns, 

defined in section 4.1. By design, the pattern with the largest fraction was "EEEE". 

The next five patterns with the largest fractions were “LLLL”, “EEEL”, “EELE”, 

“LEEE”, ELEE””, which is consistent with the observation that the weighted total 

turnover derived from VAT declarations is larger than for the survey. For each of 

the twelve combinations of economic sectors and years we found that a large 

number of different patterns each contributed to the total estimated quarterly 

effects. This implies that quarterly effects cannot be attributed to units with a 

limited set of specific patterns. Moreover, we found that a large fraction of the 

enterprises were not appointed to the same pattern for two subsequent years. 

This implies that the distinguished patterns apparently do not capture inherent 

reporting behaviour of enterprises. This results underlines the need to contact the 
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enterprises, to gain insight into the underlying causes of the quarterly differences 

between VAT and survey turnover. 

 

The fourth and last objective of the present paper was to investigate whether the 

quarterly slope-differences can be explained by a limited number of most 

influential enterprises. To that end, we analysed the contribution of individual 

units to the differences in quarterly slopes. When sorted on the basis of their 

absolute effect on the quarterly slope in the fourth quarter, there were more units 

needed until the cumulative value remained within the selected threshold, than 

when sorted on the basis of the normalised quarterly effect per unit. The 

normalised quarterly effect is the most relevant one for explaining the quarterly 

effects. Using those normalised effects, depending on the economic sector and 

year 36 – 671 units were needed to explain the quarterly effects up to a threshold. 

This concerns too many units to analyse manually (each production cycle) and 

correct when needed, to get rid of the quarterly effect. Recall that the sorting of 

the units varied for each of the four quarters, so in practice even more units need 

to be checked to cancel out all quarterly effects.  

 

Recall from the introduction that we would like to correct the seasonal effects in 

either the survey or in the VAT data, or in both, in order to facilitate future 

benchmarking. First of all, outcomes of the causes of the differences in seasonal 

effects may be used to reduce the measurement errors in the survey data, for 

instance by adjusting survey questions. Secondly, maybe the editing process of the 

survey and/or the VAT data may be adjusted such that effects of seasonal 

differences are attenuated. Finally one might try to derive a model-based 

correction for the seasonal patterns or one might base quarterly growth rates 

solely on the data set for which the seasonal pattern is most reliable. 

 

In order to derive such an automatic correction method we have three future 

points of investigation. The first point is that we want to know to what extent the 

two turnover time series have a seasonal bias. By contacting a number of 

enterprises, as mentioned earlier, we hope to gain insight into this seasonal bias 

and its causes. The second point is that we would like to know whether the 

quarterly effects can be explained by background variables or not. An example of 

such a background variable is the difference, in days, between the day of 

recipience of the VAT report versus that of the survey. A larger difference in the 

fourth quarter suggests that more work is needed to complete the VAT declaration 

for instance because turnover corrections need to be made. Relevant background 

variables might be included in a future bias-correction method. The third point of 

investigation concerns the number and kind of groups that is accounted for in the 

mixture model. The analysis of the residuals (section 4.2.3) suggested that is it 

useful to check whether a mixture model with more than two groups fits the data 

better. A first analysis on estimating such an extended mixture model can be found 

in Ostlund (2018) and in Van Delden et al. (2019). 
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7. Appendix 1: Details on model 
estimation 

7.1 Mixture model, outlier detection by quarter 

The parameters of the mixture model given by equation (10) are estimated by 

maximum likelihood, using an Expectation Conditional Maximisation (ECM) 

algorithm. For a fixed value of 𝜆 (the parameter that describes the degree of 

heteroscedasticity), this algorithm was given in Appendix A of Van Delden and 

Scholtus (2017). An updated version of this algorithm will be described here, but 

we now include an optional extension to estimate 𝜆 by maximum likelihood as 

well. 

 

https://www.higherlevel.nl/forums/topic/44194-onderhanden-werk-en-btw/
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Let 𝜑(. ; 𝜇, 𝜎2) denote the density of a univariate normal distribution with mean 𝜇 

and variance 𝜎2. Under model (10), the observed density of 𝑦𝑖
𝑞

 is a mixture of two 

normal densities: 

 

𝑓(𝑦𝑖
𝑞

; 𝜽) = (1 − 𝜋)𝜑(𝑦𝑖
𝑞

; 𝒃𝑇𝝃𝑖
𝑞

, 𝜎̃2/𝑤𝑖
𝑞

) + 𝜋𝜑(𝑦𝑖
𝑞

; 𝒃𝑇𝝃𝑖
𝑞

, 𝜗𝜎̃2/𝑤𝑖
𝑞

). (36) 

 

Recall that 𝑤𝑖
𝑞

= (𝑥̃𝑖
𝑞

)−𝜆, with 𝑥̃𝑖
𝑞

= max(𝑥𝑖
𝑞

, 1). Furthermore, 𝜽 denotes the 

vector of model parameters. Depending on whether 𝜆 is fixed or considered as an 

estimable parameter, 𝜽 is either given by 𝜽 = (𝜋, 𝒃𝑇 , 𝜎̃2, 𝜗)𝑇  or 𝜽 =

(𝜋, 𝒃𝑇 , 𝜎̃2, 𝜗, 𝜆)𝑇. 

 

Density (36) arises because the assignment of each observation (𝝃𝑖
𝑞

, 𝑦𝑖
𝑞

) to the first 

or second group of the mixture model, represented by the indicator 𝑧𝑖
𝑞

, is not 

known. If the values 𝑧𝑖
𝑞

 had been observed as well, maximum likelihood estimation 

could have been based instead on the complete-data log likelihood function, which 

is: 

 

log 𝐿(𝜽) = ∑ ∑{(1 − 𝑧𝑖
𝑞

) log[(1 − 𝜋)𝜑(𝑦𝑖
𝑞

; 𝒃𝑇𝝃𝑖
𝑞

, 𝜎̃2/𝑤𝑖
𝑞

)]

𝑖∈𝑠𝑞

4

𝑞=1

+ 𝑧𝑖
𝑞

log[𝜋𝜑(𝑦𝑖
𝑞

; 𝒃𝑇𝝃𝑖
𝑞

, 𝜗𝜎̃2/𝑤𝑖
𝑞

)]} 

= −
𝑛 log(2𝐩𝐢)

2
−

𝜆

2
∑ log 𝑥̃𝑖

𝑞

𝑞,𝑖

+ log(1 − 𝜋) ∑(1 − 𝑧𝑖
𝑞

)

𝑞,𝑖

+ (log 𝜋) ∑ 𝑧𝑖
𝑞

𝑞,𝑖

−
𝑛 log 𝜎̃2

2
−

log 𝜗

2
∑ 𝑧𝑖

𝑞

𝑞,𝑖

−
1

2𝜎̃2
∑(1 − 𝑧𝑖

𝑞
)(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

−
1

2𝜗𝜎̃2
∑ 𝑧𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

. 

 
Here 𝑛 = ∑ |𝑠𝑞|4

𝑞=1  is the total number of observations and 𝐩𝐢 denotes the 

numerical constant 3.1415… (not to be confused with the probability 𝜋). 

 

The above log likelihood function is based on the assumption that the data consist 

of independent, identically distributed observations. To account for the sampling 

design of the survey data used here, we can apply pseudo maximum likelihood 

(PML); see Skinner et al. (1989, Section 3.4.4) or Chambers and Skinner (2003, 

Section 2.4). For this particular application, PML is equivalent to maximising the 

weighted complete-data log likelihood function 

 

log 𝐿𝑑(𝜽) = ∑ ∑ 𝑑𝑖
𝑞

{(1 − 𝑧𝑖
𝑞

) log[(1 − 𝜋)𝜑(𝑦𝑖
𝑞

; 𝒃𝑇𝝃𝑖
𝑞

, 𝜎̃2/𝑤𝑖
𝑞

)]

𝑖∈𝑠𝑞

4

𝑞=1

+ 𝑧𝑖
𝑞

log[𝜋𝜑(𝑦𝑖
𝑞

; 𝒃𝑇𝝃𝑖
𝑞

, 𝜗𝜎̃2/𝑤𝑖
𝑞

)]} 
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= −
𝑁 log(2𝐩𝐢)

2
−

𝜆

2
∑ 𝑑𝑖

𝑞
log 𝑥̃𝑖

𝑞

𝑞,𝑖

+ log(1 − 𝜋) ∑ 𝑑𝑖
𝑞

(1 − 𝑧𝑖
𝑞

)

𝑞,𝑖

+ (log 𝜋) ∑ 𝑑𝑖
𝑞

𝑧𝑖
𝑞

𝑞,𝑖

−
𝑁 log 𝜎̃2

2
−

log 𝜗

2
∑ 𝑑𝑖

𝑞
𝑧𝑖

𝑞

𝑞,𝑖

−
1

2𝜎̃2
∑(1 − 𝑧𝑖

𝑞
)𝑑𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

−
1

2𝜗𝜎̃2
∑ 𝑧𝑖

𝑞
𝑑𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

, 

 

with 𝑑𝑖
𝑞

 the calibration weight of unit 𝑖 in quarter 𝑞, and 𝑁 = ∑ ∑ 𝑑𝑖
𝑞

𝑖∈𝑠𝑞
4
𝑞=1 . In 

general, PML yields consistent estimates of the parameter values that would be 

obtained by regular maximum likelihood estimation if the entire target population 

had been observed. 

 

As 𝑧𝑖
𝑞

 is unobserved, we cannot maximise the complete-data log likelihood 

directly. Instead, we can apply PML estimation for incomplete data using an ECM 

algorithm. This means that we maximise 𝑄𝑑(𝜽) = 𝐸{log 𝐿𝑑(𝜽) |𝝃𝑖
𝑞

, 𝑦𝑖
𝑞

, 𝜽}, i.e., the 

conditional expectation of the complete-data log likelihood, given the observed 

data. For model (10), the function 𝑄𝑑(𝜽) is obtained by replacing each instance of 

𝑧𝑖
𝑞

 in the above expression for log 𝐿𝑑(𝜽) by its conditional expectation 𝜏𝑖
𝑞

=

𝐸(𝑧𝑖
𝑞

|𝝃𝑖
𝑞

, 𝑦𝑖
𝑞

, 𝜽) = 𝑃(𝑧𝑖
𝑞

= 1|𝝃𝑖
𝑞

, 𝑦𝑖
𝑞

, 𝜽). Hence, 𝑄𝑑(𝜽) is given by: 

 

𝑄𝑑(𝜽) = −
𝑁 log(2𝐩𝐢)

2
−

𝜆

2
∑ 𝑑𝑖

𝑞
log 𝑥̃𝑖

𝑞

𝑞,𝑖

+ log(1 − 𝜋) ∑ 𝑑𝑖
𝑞

(1 − 𝜏𝑖
𝑞

)

𝑞,𝑖

+ (log 𝜋) ∑ 𝑑𝑖
𝑞

𝜏𝑖
𝑞

𝑞,𝑖

−
𝑁 log 𝜎̃2

2
−

log 𝜗

2
∑ 𝑑𝑖

𝑞
𝜏𝑖

𝑞

𝑞,𝑖

−
1

2𝜎̃2
∑(1 − 𝜏𝑖

𝑞
)𝑑𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

−
1

2𝜗𝜎̃2
∑ 𝜏𝑖

𝑞
𝑑𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

. 

(37) 

 

By means of Bayes’ rule, it follows from (36) that 𝜏𝑖
𝑞

 is given by: 

 

𝜏𝑖
𝑞

= 𝑃(𝑧𝑖
𝑞

= 1|𝝃𝑖
𝑞

, 𝑦𝑖
𝑞

, 𝜽) 

=
𝑃(𝑧𝑖

𝑞
= 1|𝜽)𝑓(𝑦𝑖

𝑞
|𝑧𝑖

𝑞
= 1; 𝝃𝑖

𝑞
, 𝜽)

𝑃(𝑧𝑖
𝑞

= 0|𝜽)𝑓(𝑦𝑖
𝑞

|𝑧𝑖
𝑞

= 0; 𝝃𝑖
𝑞

, 𝜽) + 𝑃(𝑧𝑖
𝑞

= 1|𝜽)𝑓(𝑦𝑖
𝑞

|𝑧𝑖
𝑞

= 1; 𝝃𝑖
𝑞

, 𝜽)
 

=
𝜋𝜑(𝑦𝑖

𝑞
; 𝒃𝑇𝝃𝑖

𝑞
, 𝜗𝜎̃2/𝑤𝑖

𝑞
)

(1 − 𝜋)𝜑(𝑦𝑖
𝑞

; 𝒃𝑇𝝃𝑖
𝑞

, 𝜎̃2/𝑤𝑖
𝑞

) + 𝜋𝜑(𝑦𝑖
𝑞

; 𝒃𝑇𝝃𝑖
𝑞

, 𝜗𝜎̃2/𝑤𝑖
𝑞

)
. 

(38) 
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The ECM algorithm alternates between an E step and an M step. The E step 

involves computing expression (38) for all observations, given the current 

parameter values in 𝜽. The M step involves estimating new values for 𝜽 by 

maximising the function 𝑄𝑑(𝜽). The E and M steps are iterated until the parameter 

estimates have converged. 

 

To find the maximum of 𝑄𝑑(𝜽), we set the partial derivatives 𝜕𝑄𝑑/𝜕𝜋, 𝜕𝑄𝑑/𝜕𝒃𝑇, 

𝜕𝑄𝑑/𝜕𝜎̃2, 𝜕𝑄𝑑/𝜕𝜗, and (optionally) 𝜕𝑄𝑑/𝜕𝜆 equal to zero. For the above 𝑄𝑑 

function, the resulting set of simultaneous equations cannot be solved analytically. 

Instead, we take on the more straightforward problem of solving each equation 

separately, while holding the other parameter values fixed. This leads to an ECM 

algorithm rather than an EM algorithm (Little and Rubin, 2002). 

 

The M step consists of the following sub-steps: 

M1. Compute a new value for 𝜋 by solving 𝜕𝑄𝑑/𝜕𝜋 = 0. The solution is given by: 

𝜋 =
∑ 𝑑𝑖

𝑞
𝜏𝑖

𝑞
𝑞,𝑖

∑ 𝑑𝑖
𝑞

𝑞,𝑖

. 

M2. Compute new regression coefficients 𝒃 by solving 𝜕𝑄𝑑/𝜕𝒃𝑇 = 𝟎. It turns out 

that 𝒃 can be obtained by weighted least squares, using the weights 𝑣𝑖
𝑞

=

𝑑𝑖
𝑞

𝑤𝑖
𝑞

(1 − 𝜏𝑖
𝑞

+ 𝜏𝑖
𝑞

/𝜗): 

𝒃 = (∑ 𝑣𝑖
𝑞

𝝃𝑖
𝑞

(𝝃𝑖
𝑞

)𝑇

𝑞,𝑖

)

−1

(∑ 𝑣𝑖
𝑞

𝝃𝑖
𝑞

𝑦𝑖
𝑞

𝑞,𝑖

). 

M3. Compute a new value for 𝜎̃2 by solving 𝜕𝑄𝑑/𝜕𝜎̃2 = 0. The solution is: 

𝜎̃2 =
∑ 𝑣𝑖

𝑞
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2
𝑞,𝑖

∑ 𝑑𝑖
𝑞

𝑞,𝑖

. 

M4. Compute a new value for 𝜗 by solving 𝜕𝑄𝑑/𝜕𝜗 = 0. The solution is given by: 

𝜗 =
1

𝜋𝜎̃2 ∑ 𝑑𝑖
𝑞

𝑞,𝑖

∑ 𝜏𝑖
𝑞

𝑑𝑖
𝑞

𝑤𝑖
𝑞

(𝑦𝑖
𝑞

− 𝒃𝑇𝝃𝑖
𝑞

)
2

𝑞,𝑖

. 

M5 (optional). Compute a new value for 𝜆 by solving 𝜕𝑄𝑑/𝜕𝜆 = 0, i.e.: 
1

𝜎̃2
∑(1 − 𝜏𝑖

𝑞
+ 𝜏𝑖

𝑞
/𝜗)𝑑𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(log 𝑥̃𝑖

𝑞
)(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

− ∑ 𝑑𝑖
𝑞

log 𝑥̃𝑖
𝑞

𝑞,𝑖

= 0. 

This last equation does not have an analytical solution for 𝜆, but it can be solved 

numerically. (In our application, we used the R function uniroot for this.) If this 

sub-step is run, then we must also update the weights 𝑤𝑖
𝑞

= (𝑥̃𝑖
𝑞

)−𝜆. 

 

In each computation, the most recent parameter values are used. (So, e.g., when 

𝜎̃2 is computed in sub-step M3, we use the weights 𝑣𝑖
𝑞

 and regression coefficients 

𝒃 that have just been computed in sub-step M2.) If 𝜆 is considered fixed, sub-step 

M5 can simply be left out of the algorithm. In that case, the weights 𝑤𝑖
𝑞

= (𝑥̃𝑖
𝑞

)−𝜆 

do not change. 

  

For fixed 𝜆, the above algorithm corresponds to that of Van Delden and Scholtus 

(2017), with minor corrections so that PML estimation is applied consistently. For 

regular ML estimation (without survey weights), this algorithm can be seen as a 

special case of the ECM algorithm for a normal contamination model described by 

Di Zio and Guarnera (2013). 
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To initialise the ECM algorithm, starting values have to be chosen for the 

parameters in 𝜽. In our application, we used the results of the robust regression 

approach to find appropriate starting values for 𝜋, 𝒃, 𝜎̃2, and 𝜗. In the scenarios 

that involved estimating 𝜆, we always used 𝜆 = 1 as a starting value. Van Delden 

and Scholtus (2017) investigated whether the ECM algorithm might converge to a 

local rather than a global maximum, by repeating the algorithm with different 

starting values. They did not find any evidence for convergence to local maxima. 

7.2 Mixture model, outlier detection by year 

As was described in Section 3.1.4, we also used a version of the mixture model in 

which units 𝑖 were assigned to the same group (outlier or non-outlier) for all 

quarters 𝑞 of the same year. For a given year, this amounts to introducing the 

restriction that 𝑧𝑖
1 = 𝑧𝑖

2 = 𝑧𝑖
3 = 𝑧𝑖

4 = 𝑧𝑖
+, say, for all units 𝑖. As we will now show, 

this restriction affects the E step of the above ECM algorithm but not the M step. 

 
Let 𝜑𝑝(. ; 𝝁, 𝚺) denote the density of a 𝑝-dimensional normal distribution with 

mean vector 𝝁 and variance-covariance matrix 𝚺. Under model (10) with the 

restriction 𝑧𝑖
1 = 𝑧𝑖

2 = 𝑧𝑖
3 = 𝑧𝑖

4 = 𝑧𝑖
+, the observed density of 𝒚𝑖 = (𝑦𝑖

1, 𝑦𝑖
2, 𝑦𝑖

3, 𝑦𝑖
4)

𝑇
 

is a mixture of two four-dimensional normal densities: 

 
𝑓(𝒚𝑖; 𝜽) = (1 − 𝜋)𝜑4(𝒚𝑖; 𝝁𝑖 , 𝚺𝑖) + 𝜋𝜑4(𝒚𝑖; 𝝁𝑖 , 𝜗𝚺𝑖), 

𝝁𝑖 = (𝒃𝑇𝝃𝑖
1, 𝒃𝑇𝝃𝑖

2, 𝒃𝑇𝝃𝑖
3, 𝒃𝑇𝝃𝑖

4)
𝑇

= 𝑿𝑖𝒃, 

𝚺𝑖 = diag{𝜎̃2/𝑤𝑖
1, 𝜎̃2/𝑤𝑖

2, 𝜎̃2/𝑤𝑖
3, 𝜎̃2/𝑤𝑖

4}. 

(39) 

 

with 𝑿𝑖
𝑇 = (𝝃𝑖

1, 𝝃𝑖
2, 𝝃𝑖

3, 𝝃𝑖
4). Note that within each group (i.e., conditional on 𝑧𝑖

+ = 0 

or 𝑧𝑖
+ = 1), the quarterly observations of unit 𝑖 are still considered independent, 

because the matrix 𝚺𝑖 is diagonal.  

 

In practice, the calibration weights are fixed throughout a year, so we can write 

𝑑𝑖
1 = 𝑑𝑖

2 = 𝑑𝑖
3 = 𝑑𝑖

4 = 𝑑𝑖
+ for each unit 𝑖. The weighted complete-data log 

likelihood and the function 𝑄𝑑(𝜽) are now given by: 

 

log 𝐿𝑑(𝜽) = ∑ 𝑑𝑖
+{(1 − 𝑧𝑖

+) log[(1 − 𝜋)𝜑4(𝒚𝑖; 𝝁𝑖 , 𝚺𝑖)]

𝑖

+ 𝑧𝑖
+ log[𝜋𝜑4(𝒚𝑖; 𝝁𝑖 , 𝜗𝚺𝑖)]} , 
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𝑄𝑑(𝜽) = −
𝑁 log(2𝐩𝐢)

2
−

𝜆

2
∑ 𝑑𝑖

+ log 𝑥̃𝑖
𝑞

𝑞,𝑖

+ log(1 − 𝜋) ∑ 𝑑𝑖
+(1 − 𝜏𝑖

+)

𝑖

+ (log 𝜋) ∑ 𝑑𝑖
+𝜏𝑖

+

𝑖

−
𝑁 log 𝜎̃2

2
−

log 𝜗

2
∑ 4𝑑𝑖

+𝜏𝑖
+

𝑖

−
1

2𝜎̃2
∑(1 − 𝜏𝑖

+)𝑑𝑖
+(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

−
1

2𝜗𝜎̃2
∑ 𝜏𝑖

+𝑑𝑖
+(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

, 

 

with 𝜏𝑖
+ = 𝐸(𝑧𝑖

+|𝑿𝑖, 𝒚𝑖, 𝜽). Analogously to (38), we obtain from (39): 

 

𝜏𝑖
+ =

𝜋𝜑4(𝒚𝑖; 𝝁𝑖 , 𝜗𝚺𝑖)

(1 − 𝜋)𝜑4(𝒚𝑖; 𝝁𝑖 , 𝚺𝑖) + 𝜋𝜑4(𝒚𝑖; 𝝁𝑖, 𝜗𝚺𝑖)
. (40) 

 

In the E step of the ECM algorithm, the probabilities 𝜏𝑖
+ are now updated using 

(40) instead of (38). For the M step, we note that maximising the above function 

𝑄𝑑(𝜽) is equivalent to maximising the function (37) given in the previous 

subsection, provided that we set 𝜏𝑖
1 = 𝜏𝑖

2 = 𝜏𝑖
3 = 𝜏𝑖

4 = 𝜏𝑖
+ at the end of each E 

step. Hence, with this modification, the M step can remain the same as before. 

7.3 Huber model 

As was described in Section 3, the Huber models are estimated by an iteratively 

weighted least squares procedure. For Huber models with fixed 𝜆, we used the 

standard R function rlm. To estimate 𝜆 for Huber models that contain this 

additional parameter, we used the following heuristic approach, which mimics the 

way 𝜆 is estimated for the mixture model. 

 

First, consider the Huber model with outliers assigned on a quarterly basis. In each 

iteration, the regression coefficients are estimated by weighted least squares, by 

minimising the loss function given by (3). This loss function is approximately 

equivalent to the log likelihood (under PML estimation) of a normal weighted 

linear regression model with weights 𝑤𝑖
𝑞

= 𝑔𝑖
𝑞

𝜔𝑖
𝑞

= 𝑔𝑖
𝑞

𝑑𝑖
𝑞

(𝑥̃𝑖
𝑞

)
−𝜆

: 

 

Λ𝑑 = −
𝑁 log(2𝐩𝐢)

2
+

1

2
∑ 𝑑𝑖

𝑞
log 𝑔𝑖

𝑞

𝑞,𝑖

−
𝜆

2
∑ 𝑑𝑖

𝑞
log 𝑥̃𝑖

𝑞

𝑞,𝑖

−
𝑁 log 𝜎̃2

2

−
1

2𝜎̃2
∑ 𝑔𝑖

𝑞
𝑑𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

. 

 

Note the similarity of this expression to (37). Having obtained estimates for the 

regression parameters 𝒃 and the Huber weights 𝑔𝑖
𝑞

 in the current iteration by the 

standard rlm procedure, we then compute an estimate for 𝜎̃2 based on Λ𝑑 (cf. 

sub-step M3 of the ECM algorithm): 
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𝜎̃2 =
∑ 𝑑𝑖

𝑞
𝑔𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2
𝑞,𝑖

∑ 𝑑𝑖
𝑞

𝑞,𝑖

. 

 

Next, 𝜆 is estimated analogously to sub-step M5 of the ECM algorithm, by 

numerically solving: 

 
1

𝜎̃2
∑ 𝑑𝑖

𝑞
𝑔𝑖

𝑞
(𝑥̃𝑖

𝑞
)

−𝜆
(log 𝑥̃𝑖

𝑞
)(𝑦𝑖

𝑞
− 𝒃𝑇𝝃𝑖

𝑞
)

2

𝑞,𝑖

− ∑ 𝑑𝑖
𝑞

log 𝑥̃𝑖
𝑞

𝑞,𝑖

= 0. 

 

Finally, the weights 𝜔𝑖
𝑞

 are updated by 𝜔𝑖
𝑞

= 𝑑𝑖
𝑞

(𝑥̃𝑖
𝑞

)−𝜆. We then proceed to the 

next iteration, until convergence. Again, we used 𝜆 = 1 as a starting value. 

 

Note that we used the above PML estimate for 𝜎̃2 only to derive the above 

equation for 𝜆; for the final estimate we used σ̂MAR from (6). In fact, the iterative 

algorithm did not converge if we used σ̂MAR to estimate 𝜆. Intuitively, using a non-

robust estimator for 𝜎̃2 to estimate 𝜆 makes sense, because 𝜆 is used to define the 

heteroscedasticity weight 𝜔𝑖
𝑞

= 𝑑𝑖
𝑞

(𝑥̃𝑖
𝑞

)−𝜆 prior to any correction for outlying 

observations. 

 

For the Huber model with outliers assigned on a yearly basis, the estimation 

procedure is virtually identical. The only difference is that the Huber weights 𝑔𝑖
𝑞

 

are now restricted such that 𝑔𝑖
1 = 𝑔𝑖

2 = 𝑔𝑖
3 = 𝑔𝑖

4 = 𝑔𝑖
+, with 𝑔𝑖

+ given by (14). 
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Explanation of symbols 
 

Empty cell Figure not applicable 

. Figure is unknown, insufficiently reliable or confidential 

* Provisional figure 

** Revised provisional figure 

2017–2018 2017 to 2018 inclusive 

2017/2018 Average for 2017 to 2018 inclusive 

2017/’18 Crop year, financial year, school year, etc., beginning in 2017 and ending 

in 2018 

2013/’14–2017/’18 Crop year, financial year, etc., 2015/’16 to 2017/’18 inclusive 

 

Due to rounding, some totals may not correspond to the sum of the separate 

figures. 
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